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Abstract: In the recently developed Krylov deferred correction (KDC)methods for ordinary differential equation
initial value problems [11], a Picard-type collocation formulation is preconditioned using low-order time integra-
tion schemes based on spectral deferred correction (SDC), and the resulting system is solved efficiently using a
Newton-Krylov method. Existing analyses show that these KDC methods are super convergent,A-stable, B-stable,
symplectic, and symmetric. In this paper, we investigate the efficiency of semi-implicit KDC (SI-KDC) methods
for problems which can be decomposed into stiff and non-stiff components. Preliminary analysis and numerical
results show that SI-KDC methods display very similar convergence of Newton-Krylov iterations compared with
fully-implicit (FI-KDC) methods but can significantly reduce the computational cost in each SDC iteration for the
same accuracy requirement for certain problems.
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1 Introduction

Many numerical techniques have been developed for
the accurate and efficient solution of stiff ordinary dif-
ferential equation (ODE) initial value problems, in-
cluding linear multi-step methods, Runge-Kutta meth-
ods, and operator splitting techniques [1, 5, 8, 10].
In this paper, we focus on the recently developed
Krylov deferred correction (KDC) technique for ODE
initial value problems [11] which was motivated by
the desire to accelerate the convergence of the itera-
tive spectral deferred correction (SDC) technique [6].
For linear systems, it is shown in [11] that the iter-
ates in the original SDC method are equivalent to a
Neumann series expansion for a particular precondi-
tioned collocation formulation. Instead of simply ac-
cepting this Neumann series expansion solution, the
KDC method searches for the optimal solution in the
corresponding Krylov subspace of SDC iterates. Nu-
merical experiments show that the KDC method can
accelerate the convergence and eliminate the order re-
duction phenomena observed in the SDC approach
[16, 17]. For general nonlinear systems, one can ei-
ther adapt a linearly-implicit approach or use the SDC
iterations as preconditioners for the collocation for-
mulation and apply a Jacobian-free Newton-Krylov
method [13, 15] directly to the resulting precondi-
tioned system. Preliminary analyses show that when
Gaussian quadrature nodes are used, the KDC method

is an efficient method to solve the Gauss collocation
(Gauss Runge-Kutta) formulation which is super con-
vergent,A-stable,B-stable, symplectic, and symmet-
ric. In the numerical implementations in [11, 12], ex-
plicit low-order time integrators are used for non-stiff
or mildly stiff problems, while implicit schemes are
applied to very stiff systems.

However, for problems with both stiff and non-
stiff components, it is usually advantageous to apply a
semi-implicit time integration scheme. Semi-implicit
versions of classical schemes such as the “Implicit-
Explicit” (IMEX) linear multistep methods or addi-
tive Runge-Kutta methods have already been devel-
oped for ordinary and partial differential equations
[2, 3, 14]. Similar semi-implicit SDC methods have
also been developed [4, 17]. In this paper, we apply
semi-implicit techniques to the KDC methods by ap-
plying different preconditioners to different compo-
nents in the SDC iterations. Our numerical results
presented here show that using a semi-implicit pre-
condioner has a negligible effect on the rate of conver-
gence of the SDC iterates compared to a fully-implicit
KDC method. On the other hand, the SI-KDC method
can have significantly smaller computational cost per
iterate.

We organize this paper as follows. In Sec. 2, we
briefly describe the KDC methods. In Sec. 3, the
semi-implicit KDC methods are discussed and their



convergence properties are analyzed. In Sec. 4, pre-
liminary numerical results are presented to compare
the SI-KDC methods with FI-KDC, and finally in
Sec. 5, we summarize our results and discuss appli-
cations and further improvements.

2 Krylov Deferred Correction Meth-
ods

In this section, we discuss the KDC technique for a
general ODE system

y′(t) = F (t, y(t)). (1)

Here we follow the derivation of KDC methods for
differential algebraic equations (DAEs) in [12] by
definingY (t) = y′(t) as the new unknown and con-
sidering the equivalent Picard type integral equation

Y (τ) = F (t, y0 +

∫ t

0

Y (τ)dτ). (2)

A variant of the KDC method based on the more tra-
ditional Picard integral equation as in [11] is also pos-
sible.

To march one step fromt = 0 to t = ∆t,
we choose substeps corresponding to thep Gaussian
nodes in[0,∆t]. Note that once the discretized solu-
tionsY = [Y1,Y2, · · · ,Yp]T at the Gaussian nodes
are obtained, we can derive a degreep − 1 Legendre
polynomial P (t) which interpolatesY at the nodes.
A continuous approximate solution toy(t) in Eq. (1)
can then be obtained by integratingP (t) analytically,
and the discretized solutiony is obtained by evaluat-
ing the resulting degreep polynomial at the same set
of nodes. Using the notation from [6], we call the
linear mappingy = ∆tSY the spectral integration
operator, whereS denotes the component-wise tensor
product of the spectral integration matrix. To derive
equations forY, we apply the collocation formula-
tion which requires the interpolating polynomialP (t)
to satisfy Eq. (2) at the Gaussian nodes, i.e.,

Y = F(t,y0 + ∆tSY), (3)

wherey0 = [y0, y0, · · · , y0]
T is the vector of initial

values. We symbolically denote Eq. (3) asH(Y) = 0.
It has been shown that Eq. (3) is equivalent to ap-stage
Runge-Kutta method, and is often referred to as the
Gauss Runge-Kutta (GRK) method [9]. The GRK for-
mulations have excellent accuracy and stability prop-
erties as summarized by the following theorem from
[9].

Theorem 1 For ODE problems, the Gauss Runge-
Kutta formulation usingp Gaussian nodes is order

2p (super convergence), A-stable, B-stable, symplec-
tic (structure preserving), and symmetric (time re-
versible). In particular, for fixed time stepsize∆t, the
discretization error decreases exponentially when the
number of nodesp increases.

However, as solutions at different times (nodes)
are coupled in Eq. (3), the direct solution for nonlin-
ear systems is in general numerically inefficient es-
pecially for largep. As far as we know, the largest
p used in existing implementations is approximately
p = 5 (order 10). On the other hand, the discretized
solution at a specific time in most existing low-order
time integrators only couples with the solutions at pre-
vious times, hence the numerical algorithm is more
efficient due to the reduced problem size. To take ad-
vantage of the excellent accuracy and stability proper-
ties of the GRK formulation and the efficiency of the
low-order time integrators, we introduce the Krylov
deferred correction approach for solving Eq. (3).

Assuming a provisional solutionỸ =
[Ỹ1, Ỹ2, · · · , Ỹp]

T is obtained at the Gaussian
nodes using a low-order time integrator and denoting
the corresponding interpolating polynomial approxi-
mation to the solution as̃Y (t), we define an equation
for the errorδ(t) = Y (t) − Ỹ (t) by

Ỹ (t) + δ(t) = F (t, y0 +

∫ t

0

(Ỹ (τ) + δ(τ))dτ). (4)

Separating the provisional solution and the error in
Eq. (4) at nodetm+1, i.e.

Ỹ (tm+1) + δ(tm+1) = F (tm+1, y0+
∫ tm+1

0
Ỹ (τ)dτ + (

∫ tm
0

+
∫ tm+1

tm
)δ(τ)dτ),

(5)

allows a lower-order method to be applied to approx-
imateδ(t) (denoted bỹδ). For the explicit (forward)
Euler method,̃δ = [δ̃1, δ̃2, · · · , δ̃p]

T is obtained by
solving the “decoupled” equation

Ỹm+1 + δ̃m+1 = F (tm+1, y0+

(∆tSỸ)m+1 +
∑m+1

l=1 ∆tlδ̃l−1),
(6)

where∆tl+1 = tl+1 − tl andt0 andδ0 are set to 0.
The matrix form of Eq. (6) can be written as

Ỹ + δ̃ = F(t,y0 + ∆tS⊗ Ỹ + ∆tS̃δ̃) (7)

where∆tS̃ is a lower triangular matrix representing
the rectangle rule approximation of the spectral in-
tegration operator. Matrix forms for other low-order
schemes can be obtained similarly.

In the SDC methods, the approximationδ̃ of the
error is added tõY to obtain an improved provisional



solution, and a new error equation is then derived and
solved by efficient low-order schemes. This procedure
is repeated until the error approximation is smaller
than a prescribed tolerance or a maximum number of
iterations is reached. In [11], it was shown that the
SDC approach is equivalent to a Neumann series ex-
pansion solution of the GRK formulation precondi-
tioned by the low-order time integrators. For stiff sys-
tems, as there may exist a few “bad” eigenvalues, or-
der reduction in the original SDC method is often ob-
served unless extremely small time stepsizes are cho-
sen.

Instead of simply accepting the Neumann series
solution, in the KDC methods, we consider Eq. (7) as
an “implicit” function

δ̃ = H̃(Ỹ)

where the provisional solutioñY is the input vari-
able and the output is̃δ. It can be seen that the zero
of H̃ also solves the original collocation formulation
H(Y) = 0. Moreover, it was shown in [12] that be-
cause the low-order method solves a “nearby” prob-
lem, the Jacobian of̃H is closer to identity than that
of H, thereforeH̃ = 0 is better conditioned and can
be solved efficiently by the Newton-Krylov methods
where the optimal solution is sought for in the Krylov
subspace instead of simple iterative refinements. As
Krylov subspace methods are used for each linearized
equation which is preconditioned by the SDC tech-
niques, we refer to this new scheme as the “Krylov
deferred correction” method.

There are two “Newton” iterations involved in the
KDC methods: In the “outer” Newton-Krylov itera-
tions for the preconditioned system, a “Jacobian-free”
approach is in general applied where the matrix vector
multiplication is approximated by a “forward differ-
ence” approach and each function evaluation is sim-
ply one SDC iteration to derivẽδ; Inside each SDC
iteration, to march fromtm to tm+1 using a low-order
scheme, a Newton type approach (e.g., the simplified
Newton’s method) is commonly applied if the result-
ing discretized equation is nonlinear. This will be re-
ferred to as the “inner” Newton iteration.

As KDC methods are simply efficient ways to
solve the GRK formulation, their accuracy and sta-
bility properties are therefore identical to those of the
GRK formulation when the solution converges. The
efficiency (rate of convergence) of the KDC methods
depends on the choice of low-order preconditioners,
the efficiency of the “outer” Newton-Krylov and “in-
ner” Newton type methods, and the properties of the
considered ODE system. It has been shown in [11, 12]
that the KDC methods allow “optimal” stepsizes for
prescribed accuracy requirements, and can effectively

eliminate the order reduction phenomena observed
in many existing time integration schemes. In gen-
eral, for stiff ODE systems, numerical experiments
show that the KDC methods are more efficient than
the SDC schemes for the same accuracy requirement,
and are competitive alternatives for existing state-of-
art solvers especially for long-time simulations with
high accuracy requirements.

3 Semi-Implicit Preconditioning
Techniques

Consider a general nonlinear ODE system which can
be split into two parts

y′(t) = FE(t, y(t)) + FI(t, y(t)), (8)

whereFE represents the non-stiff component andFI

the stiff part. When explicit low-order schemes are
used to precondition Eq. (8) in the KDC methods,
due to the stability region constraints, extremely small
time stepsizes have to be used to avoid the overflows
in the solution process. The resulting explicit KDC
(Ex-KDC) is therefore inefficient even though no in-
ner Newton iterations are required. The fully-implicit
KDC (FI-KDC) approach based on implicit low-order
preconditioners, on the other hand, allows much larger
stepsizes, however, inner Newton iterations must be
performed in each SDC iteration.

For stiff ODE systems with a linear or semi-
linear stiff component, it is possible to improve the
algorithm efficiency by introducing the semi-implicit
KDC (SI-KDC) technique, in which the non-stiff
component is discretized using an explicit scheme,
while an implicit method is applied to the linear stiff
part. Using the error equation and spectral integration
matrix as discussed in Sec. 2, the SI-KDC technique
can be presented in the matrix form as

δ̃(t) = FE(t, y0 + ∆tSỸ + ∆tS̃Eδ̃)

+FI(t, y0 + ∆tSỸ + ∆tS̃Iδ̃) − Ỹ(t),
(9)

whereS̃E represents strictly lower triangular integra-
tion matrix for an explicit scheme, and̃SI is the lower
triangular matrix for an implicit method. The implicit
functionH̃ is then similarly defined as in Sec. 2, and a
Newton-Krylov method is applied for its efficient so-
lution. Notice that when the nonlinear component is
non-stiff, usingS̃E in SI-KDC won’t introduce insta-
bility as in a fully explicit method even when the cho-
sen stepsize is comparable to that in FI-KDC. Also, as
the converged solution in SI-KDC solves the colloca-
tion formulation, its accuracy is the same as those de-
rived using other preconditioning techniques (it will,



however, slightly change the condition number of the
original system). Therefore, we conclude that the
SI-KDC methods have similar accuracy and stability
properties as the FI-KDC schemes.

To understand the efficiency of the SI-KDC meth-
ods, notice that when the stiff component is linear,
unlike in the FI-KDC methods, no inner Newton it-
eration is required in a Newton-Krylov solution in the
SI-KDC. Therefore, we focus on the eigenvalue dis-
tributions of the Jacobian matrix for the implicit func-
tion H̃ in SI-KDC, which approximately measures the
number of outer Newton-Krylov iterations. In the fol-
lowing, using the linearized stiff ODE system

{

yt = λ1A1y + λ2A2y + F (t),
y(0) = y0

(10)

as an example, we explicitly derive the Jacobian
matrix and compare it with that from the FI-KDC
scheme. In the formula, we assumeλ1 is a large neg-
ative number,λ2 is O(1), and all eigenvalues ofA1

andA2 areO(1) and positive, i.e.,λ1A1y represents
the stiff component andλ2A2y the non-stiff part.

For the linearized equation, the discretized error
equation takes the form

Ỹ + δ̃ = λ1A1(y0 + △tSỸ + △tS̃Iδ̃)

+λ2A2(y0 + △tSỸ + △tS̃Eδ̃) + F.
(11)

The implicit functionδ̃ = H̃SI(Ỹ ) can then be explic-
itly written as

δ̃ = H̃SI(Ỹ ) = (I − λ1A1△tS̃I − λ2A2△tS̃E)−1

((λ1A1 + λ2A2)(y0 + △tSỸ ) + F − Ỹ)),
(12)

and the Jacobian matrixJ ˜HSI
= ∂δ̃

∂Ỹ
of this explicit

form of H̃SI is

J ˜HSI
= (I − λ1A1△tS̃I − λ2A2△tS̃E)−1

((λ1A1 + λ2A2)△tS− I) .
(13)

Similarly, repeating this process for the FI-KDC
method, we get

J ˜HF I
= (I − λ1A1△tS̃I − λ2A2△tS̃I)

−1

((λ1A1 + λ2A2)△tS − I) .
(14)

Notice that asλ1 is a large negative number, the dom-
inating term in both Jacobian matrices isλ1A1△tS̃I.
The eigenvalues of the Jacobian matrix from SI-KDC
are therefore similarly distributed as those from FI-
KDC. In Fig. 1, we setλ1 = −104 and λ2 = 1,
and show the almost identical eigenvalue distributions
for Jacobian matrices from SI-KDC and FI-KDC. We
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Figure 1: The eigenvalue distributions of(JH̃SI
+ I)

and(J ˜HF I
+ I) are almost identical.

therefore conclude that the number of outer SI-KDC
Newton-Krylov iterations is approximately the same
as that in FI-KDC. Since no inner Newton iterations
are required in SI-KDC, the SI-KDC technique is
therefore more efficient compared with FI-KDC.

4 Preliminary Numerical Results
In this section, we present two numerical examples to
illustrate the performance of the SI-KDC methods.

4.1 Nonlinear ODE Example
First, we study a stiff nonlinear multi-mode ODE
problem from [11] consisting of theN coupled equa-
tions

y′i(t) = p′i(t) − λiyi+1(t)(yi(t) − pi(t)), i ≤ N − 1
y′N(t) = p′N (t) − λi(yi(t) − pi(t)), i = N.

(15)
The analytical solution isyi(t) = pi(t) wherepi(t) =
2+ cos(t+αi) and the phase parameterαi = 2πi/N .
We setN = 7 and chooseλi as [1, 1, 1, 1, 1, 1, 107 ].
These equations can be split into two groups: the first
six equations are nonlinear and non-stiff, and the last
equation is linear and stiff.

In the calculation, we march fromt0 = 0 to tfinal

= 3, and use 8 Gaussian nodes in each time step with
∆t = 0.5. We apply the SI-KDC method with forward
Euler for the non-stiff component and backward Euler
for stiff part, and compare results with those from FI-
KDC. In Fig.2, we compare the accuracy and conver-
gence. It can be seen that the number of outer Newton-
Krylov iterations for the SI-KDC is comparable to that
in FI-KDC for the same accuracy requirement. How-
ever, in the SI-KDC scheme, no inner Newton itera-
tions are required, as compared with 10 inner Newton
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Figure 2: Comparing the convergence of SI-KDC and
FI-KDC.

iterations required in the FI-KDC approach. The SI-
KDC is therefore more efficient for the same accuracy
requirement.

4.2 Van der Pol Problem
In our second example we consider the Van der Pol
oscillator which after rescaling gives

y′1 = y2, (16)

y′2 = (−y1 + (1 − y2
1)y2)/ǫ. (17)

This is a popular test problem for nonlinear stiff ODE
solvers. In this problem, asǫ approaches zero, the sec-
ond equation becomes increasingly stiff. Notice that
when the first equation is treated explicitly to update
y1, the second equation becomes linear with respect to
y2. Therefore, only linear equations appear in the low-
order time marching scheme when an semi-implicit
approach is applied.

In the experiment, we setǫ = 10−6 and use 8
Gaussian points for each time step. We march from
t = 0 to t = 0.05 using ∆t = 0.0125. Our nu-
merical experiments show that the number of outer
Newton-Krylov iterations in the SI-KDC is compara-
ble to that in FI-KDC for the same accuracy require-
ment and parameter settings. In the following, focus-
ing on the restarted GMRES based Newton-Krylov
method, we compare the convergence of the SI-KDC
and FI-KDC methods. When a full GMRES orthog-
onalization scheme is used, as both the memory and
number of operations grow rapidly when the number
of iterations increases, a common practice is to use the
restarted GMRES so the size of the Krylov subspace is
bounded by a restarting valuek0. In general, largek0

means better convergence properties of the Newton-
Krylov method, at the cost of additional memory allo-
cation and extra arithmetic operations.

In Fig. 3, we show how different choices ofk0

change the properties of the Newton-Krylov itera-
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Figure 3: Comparing the convergence of GMRES(k0)
for differentk0 for SI-KDC and FI-KDC

tions, and compare the convergence of the SI-KDC
to that of the FI-KDC method. In this example, the
residual represents the 2-norm of the residual for the
linearized equation. It can be seen that FI-KDC is op-
timal in stability and has better convergence properties
in the outer Newton-Krylov iterations under the same
parameter settings. However, the residual after each
Newton-Krylov iteration in SI-KDC decays in a very
comparable way as in FI-KDC. In each SDC iteration,
approximately 10 inner Newton iterations are required
in FI-KDC to march fromtm to tm+1, while only one
linear solve is needed in SI-KDC, we therefore con-
clude that the SI-KDC approach is more efficient than
FI-KDC for this example.

Note that for fixed sizek0 in GMRES, whenk0

is large, unnecessary GMRES iterations will be per-
formed, while much slower convergence is observed
when k0 is too small. Indeed, finding optimal pa-
rameters in the Newton-Krylov methods is an ac-
tive research area. Our experiments indicate that dy-
namically chosingk0 may result in optimal Newton-
Krylov algorithms which converge super-linearly or
even quadratically.

5 Conclusion
In this paper, semi-implicit KDC methods are intro-
duced for stiff ODE systems with nonlinear non-stiff
component and linear or semi-linear stiff part. Analy-
ses and numerical experiments show that the SI-KDC
methods are more efficient compared with the fully
implicit KDC methods as no inner Newton iterations
are required, while they have the same accuracy and
stability properties as the FI-KDC schemes.

Currently, we are generalizing the SI-KDC ideas



to differential algebraic equations (DAEs) (as in [12])
and partial differential equations (PDEs), and devel-
oping numerical packages based on the SI-KDC meth-
ods for applications in power systems and computa-
tional solid and fluid mechanics. Results along these
directions will be reported in the future.
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