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The method of regularized Stokeslets is a numerical approach to approximating solutions
of fluid–structure interaction problems in the Stokes regime. Regularized Stokeslets are
fundamental solutions to the Stokes equations with a regularized point-force term that
are used to represent forces generated by a rigid or elastic object interacting with the fluid.
Due to the linearity of the Stokes equations, the velocity at any point in the fluid can be
computed by summing the contributions of regularized Stokeslets, and the time evolution
of positions can be computed using standard methods for ordinary differential equations.
Rigid or elastic objects in the flow are usually treated as immersed boundaries represented
by a collection of regularized Stokeslets coupled together by virtual springs which deter-
mine the forces exerted by the boundary in the fluid. For problems with boundaries mod-
eled by springs with large spring constants, the resulting ordinary differential equations
become stiff, and hence the time step for explicit time integration methods is severely con-
strained. Unfortunately, the use of standard implicit time integration methods for the
method of regularized Stokeslets requires the solution of dense nonlinear systems of equa-
tions for many relevant problems. Here, an alternate strategy using an explicit multirate
time integration scheme based on spectral deferred corrections is incorporated that in
many cases can significantly decrease the computational cost of the method. The multirate
methods are higher-order methods that treat different portions of the ODE explicitly with
different time steps depending on the stiffness of each component. Numerical examples on
two nontrivial three-dimensional problems demonstrate the increased efficiency of the
multi-explicit approach with no significant increase in numerical error.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

This paper presents a new strategy for the temporal integration of ordinary differential equations that can be decomposed
into multiple components with various levels of stiffness. Specifically, higher-order multirate methods are constructed from
a slightly more general type of deferred correction scheme. The term multirate is used here to describe a method that uses
different time steps to integrate different parts of the splitting of a system of ODEs (e.g. as in [1]). The multirate methods are
based on a multi-explicit spectral deferred correction (MESDC) method designed for systems of ODEs that are computation-
ally expensive to treat with a fully implicit method. The MESDC method is an explicit variation of the spectral deferred
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correction (SDC) method developed by Dutt et al. [2] and is similar to the multi-implicit SDC methods presented by Bour-
lioux et al. and Layton et al. [3,4].

For equations for which the computation of the contributions from the stiffest components of the system is relatively
inexpensive to compute, the use of a multirate approach can lead to a decrease in the overall computational cost. The most
likely scenario for finding a splitting for which the stiff term is computationally less expensive to compute is when a splitting
of the variables themselves is possible (as explained in Section 3.2). Other possibilities exist, including the case where stiff
terms are more easily parallelizable than non-stiff terms, as is typically true for advection-diffusion–reaction type systems.
We present a framework for constructing explicit, higher-order, multirate schemes for such situations.

The motivation for the development of the MESDC method comes from the use of the method of regularized Stokeslets for
approximating fluid–structure interactions in Stokes flow. The method of regularized Stokeslets utilizes Lagrangian compu-
tational elements (Stokeslets) to represent an immersed boundary in the fluid domain. The use of a system of regularized
singularities connected by virtual springs to model flexible structures interacting with a surrounding fluid was popularized
by the seminal work of Peskin and McQueen on the immersed boundary method (e.g. see [5–8]). The original motivation for
the immersed boundary method was to model the dynamics of simplified models of the human heart. The physical mem-
branes of the heart are modeled by a collection of discrete delta functions which transfer force to the surrounding incom-
pressible fluid (which is discretized with a standard projection method). Forces are generated at the singularity positions
through a virtual spring law applied to neighboring singularities to mimic stretching forces or a similar local construction
to create normal forces to mimic bending forces. When the membranes are stiff, the underlying system of ODEs governing
the discretized fluid–structure dynamics is also stiff. In many immersed boundary applications, this stiffness restricts the
size of the maximum stable time step to be much smaller than the CFL limit of the associated projection method (e.g. see
[9–12]).

The immersed boundary method has since been widely applied in diverse applications ranging from the motion of molec-
ular motors [13] to the unfolding of parachutes [10]. The ease of implementation of the immersed boundary method has also
led to the use of stiff immersed boundaries to model rigid boundaries in incompressible fluids. The advantage of this tech-
nique is that arbitrarily complex boundaries can be easily superimposed over a uniform computational grid on which the
Navier–Stokes equations are solved. The drawback is that in order to make a boundary virtually rigid, the spring forces con-
necting the boundary points that enforce the rigidity must be made very stiff, which leads to a correspondingly stiff set of
ODEs to solve.

Although one could use an immersed boundary approach for Stokes flow [14,15], the method of regularized Stokeslets,
developed by Cortez [16,17], is more attractive for many problems in the Stokes regime since it avoids the necessity of solv-
ing the full fluid equations on an underlying numerical grid. However, the use of spring forces to model stiff and rigid bodies
interacting with the flow still introduces (at times severe) stiffness into the underlying temporal ODE. Due to the nonlinear
and nonlocal coupling of the fluid velocity and singularity position in both the immersed boundary and regularized Stokes-
lets methods, constructing efficient implicit or semi-implicit temporal integration methods for immersed boundary prob-
lems is a challenging task (e.g. see [18–22]). Therefore, a different approach to reduce the computational cost of stiff
problems using an explicit multirate approach based on MESDC is investigated here. The method is tested on two target
applications involving moving objects in three-dimensional Stokes flow, although the general idea is applicable to a wider
class of problems. An extension of the MESDC approach to immersed boundary problems in the Navier–Stokes regime is un-
der development and will be reported in a future paper.

The discussion in Section 3 describes the MESDC method for a general ODE that can be separated into components with
varying levels of stiffness, each to be treated with its own time step. In Section 4, two application examples are discussed,
both of that are motivated by current experimental fluid dynamics research being conducted at the University of North
Carolina [23–25]. The first example models a slender rigid spheroidal rod precessing in an incompressible fluid that also con-
tains a rigid sphere, while the second models multiple flexible fibers inspired by an experiment to investigate the flow
through the endothelial glycocalyx.

The examples differ significantly in how velocities are imposed and computed at the regularized Stokeslet positions. In the
first case, the position of the rod is prescribed, and a dense linear system must be solved to compute the Stokeslet strengths that
impose the prescribed velocity boundary conditions on the rod. On the other hand, the sphere moves with the fluid velocity, and
its rigidity is imposed by the use of virtual spring forces between Stokeslets. The stiffness of these springs translates into an in-
creased stiffness in the underlying ODE describing the motion of the Stokeslets and hence the need to use smaller time steps for
an explicit ODE method. Thus, the aforementioned linear systems (which are computationally expensive for a large system of
many regularized Stokeslets) need to be solved more frequently when the time step is smaller.

In the second example, only a background velocity is imposed at all Stokeslet locations and the forces arise only from vir-
tual springs connecting the Stokeslets. The velocity at any evaluation point must hence be computed by a sum over all the
Stokeslet contributions.

One goal in implementing the MESDC method is to use a coarse time step for the non-stiff component which requires
expensive linear solves and a smaller time step to accommodate the stiff components of the system. While implementing
an implicit method may seem like a logical choice since it allows for large time steps with stiff systems, doing so for the
method of regularized Stokeslets is undesirable since it would require the solution of a large, dense, nonlinear system
coupling both Stokeslet positions and forces each time step. It will be shown that the MESDC method is an accurate, stable
explicit method utilizing two different time steps to accommodate the needs of different components of the physical system.
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The remainder of this paper is organized as follows. Section 2 provides an overview of spectral deferred correction meth-
ods and Section 3 introduces the multi-explicit spectral deferred correction method including a discussion of efficiency in a
general context. The specific examples of using regularized Stokeslets to model a precessing rigid rod and a rigid sphere
interacting in an incompressible fluid and the flexible fiber model are discussed in Section 4. Numerical tests of the MESDC
method on the rod/sphere and flexible fiber problems are presented in Section 5 followed by a discussion of the results and
future research directions.

2. Overview of spectral deferred corrections

The basic strategy of spectral deferred correction (SDC) methods developed by Dutt et al. [2] is to use a simple numerical
scheme to compute a provisional solution for a time step and then to iteratively solve correction equations during the time
step to improve the accuracy of the provisional solution. One advantage of using SDC methods is that one can compute a
solution to an arbitrarily high formal order of accuracy using a simple numerical method.

For a general overview of the SDC method, consider this governing ordinary differential equation:
x0ðtÞ ¼ uðt; xðtÞÞ; ð1Þ
xðaÞ ¼ xa; ð2Þ
for t 2 ½a; b� where it is assumed xa; xðtÞ 2 Cn, u : R� Cn ! Cn, and u is sufficiently smooth so that higher-order methods are
appropriate. Consider the Picard integral equation for the solution:
xðtÞ ¼ xa þ
Z t

a
uðs; xðsÞÞds: ð3Þ
Let ~xðtÞ represent a provisional solution to the integral (3) and define the residual, Eðt; ~xÞ, as
Eðt; ~xÞ ¼ xa þ
Z t

a
uðs; ~xðsÞÞds� ~xðtÞ: ð4Þ
Also define the error, dðtÞ, as the difference between the solution and the provisional solution:
dðtÞ ¼ xðtÞ � ~xðtÞ: ð5Þ
Substitute the error from (5) into the equation for the solution (3) to obtain
dðtÞ þ ~xðtÞ ¼ xa þ
Z t

a
uðs; ~xðsÞ þ dðsÞÞds: ð6Þ
Combining (6) with the residual (4) produces another form of the correction equation:
dðtÞ ¼
Z t

a
uðs; ~xðsÞ þ dðsÞÞ � uðs; ~xðsÞÞ½ �dsþ Eðt; ~xÞ: ð7Þ
A discretized form of this equation will be used in conjunction with the provisional solution to update the solution.
The goal of SDC is to compute a solution in the ith time step, say ½ti; tiþ1�. First split the time step into Nm substeps such

that ti ¼ ti;0 < ti;1 < � � � < ti;m < � � � < ti;Nm ¼ tiþ1, as shown in Fig. 1. Since a spectral deferred correction method is being used,
one chooses the nodes of the substeps to correspond to Gaussian quadrature rules. For the discussion and examples pre-
sented here, Lobatto nodes are used. Layton and Minion explore other choices of quadrature nodes in detail in [26]. Thus,
the size of each substep, Dtm, is not uniform, but is naturally defined as Dtm ¼ ti;mþ1 � ti;m. Now compute the provisional solu-
tion within the ith time step at each node of the substep level, ~xkðti;mÞ, which will be simplified notationally as ~xk

m (the super-
script k denotes the iteration number that will be discussed shortly). In addition, to help simplify notation, the i subscript will
be dropped when it is implied, so that tm ¼ ti;m. Next, approximate the error dk

m ¼ dkðtmÞ using a first-order explicit method
analogous to the forward Euler scheme applied to Eq. (7):
dk
mþ1 ¼ dk

m þ Dtm uðtm; ~xk
m þ dk

mÞ � uðtm; ~xk
mÞ

h i
þ Emþ1ð~xkÞ � Emð~xkÞ: ð8Þ
Fig. 1. The ith time step ½ti; tiþ1� is split into Nm substeps ½ti;m; ti;m þ Dtm�, m ¼ 0;1; . . . ;Nm � 1 for use with the SDC Method.
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The final two terms in (8) must be approximated by numerical quadrature. Use the residual in (4) to write Emþ1ð~xkÞ � Emð~xkÞ
as
Emþ1ð~xkÞ � Emð~xkÞ ¼
Z tmþ1

tm

uðs; ~xkðsÞÞds� ~xk
mþ1 þ ~xk

m: ð9Þ
Approximate the integrand u in (9) with an interpolating polynomial
ûðtÞ ¼
XNm

j¼0

uðtjÞljðtÞ; ð10Þ
where ljðtÞ represents the jth Lagrange polynomial that satisfies ljðtiÞ ¼ dij:
ljðtÞ ¼
YNm

i¼0;i – j

t � ti

tj � ti
: ð11Þ
Let Imþ1
m ð~xkÞ approximate the integral in (9) by
Imþ1
m ð~xkÞ ¼

Z tmþ1

tm

ûðtÞds: ð12Þ
Note that the choice of quadrature in Imþ1
m ð~xkÞ depends on the choice of tm.

Now (8) becomes
dk
mþ1 ¼ dk

m þ Dtm uðtm; ~xk
m þ dk

mÞ � uðtm; ~xk
mÞ

h i
þ Imþ1

m ð~xkÞ � ~xk
mþ1 þ ~xk

m: ð13Þ
Now use (13) and ~xkþ1 ¼ ~xk þ dk to update the provisional solution:
~xkþ1
mþ1 ¼ ~xkþ1

m þ Dtm uðtm; ~xk
m þ dk

mÞ � uðtm; ~xk
mÞ

h i
þ Imþ1

m ð~xkÞ: ð14Þ
Each iteration of the correction equation increases the formal order of accuracy of the solution by one, provided the quad-
rature in (12) is accurate enough [2].

3. Multirate and multi-explicit spectral deferred corrections

This section outlines the construction of multirate integration schemes based on SDC methods. Variations of SDC methods
exist that treat components of an ODE with different substeps and/or a mix of implicit and explicit treatments. In [27], Min-
ion develops a semi-implicit SDC method allowing non-stiff components of an equation to be treated explicitly while the stiff
components are treated implicitly. These semi-implicit methods are similar to IMEX Additive Runge–Kutta (e.g. [28–31]) or
linear multistep schemes (e.g. [32–34]) in that both stiff and non-stiff (i.e. implicit and explicit) terms are treated with the
same time step. The semi-implicit approach is taken a step further in [3,4], where the advective term of an advection-diffu-
sion–reaction type equation is treated explicitly and the diffusive and reactive terms are treated implicitly but indepen-
dently, and each component can have different time steps. These methods are termed multi-implicit to signify that the
right hand side of the discretized equations is split into multiple parts, more than one of which is treated implicitly.

While one could consider implicit ODE methods for the regularized Stokeslet applications considered here, this leads to
the need to solve large dense nonlinear systems which are computationally very expensive to solve. Hence we explore in-
stead a multirate explicit approach which is computationally more efficient than a single time step explicit approach. We
refer to methods which use different time steps for different terms in a splitting of the equations as multirate methods
(e.g. see [1,35–37]). The multirate methods are based on a multi-explicit SDC method (MESDC), which signifies that the right
hand side of the discretized equations is split into multiple parts that are each treated explicitly. Such methods are slightly
more general than an explicit multirate scheme in that they also apply to the case where all components of the system are
updated with the same overall time step but with the right hand side of the equation split into multiple pieces each with a
different time step.

In the case of the rigid or elastic bodies moving within a Stokes flow, which will be discussed further in Section 4, the
representation of the bodies by spring-connected regularized Stokeslets introduces stiffness into the system. A natural split-
ting of the discretized equations results in splitting the contribution to the velocity at a given position into those coming
from nearby Stokeslets and those coming from well separated Stokeslets, which are presumably not connected by virtual
springs.

3.1. MESDC overview

In this section the MESDC method will be described for a system of ODEs treated with two different levels of time dis-
cretization. Specifically, let u ¼ u1 þ u2 where u1 and u2 will be treated with a large and small time step, respectively. Exten-
sions to a splitting into more than two pieces can be constructed as in [3]. The ODE is hence
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x0ðtÞ ¼ u1ðt; xðtÞÞ þ u2ðt; xðtÞÞ; ð15Þ
xðaÞ ¼ xa; ð16Þ
for t 2 ½a; b�, assuming as in Section 2 that xa; xðtÞ 2 Cn;u1;u2 : R� Cn ! Cn and sufficiently smooth. Then the Picard integral
equation for the solution is
xðtÞ ¼ xa þ
Z t

a
u1ðs; xðsÞÞ þ u2ðs; xðsÞÞ½ �ds: ð17Þ
Given a provisional solution to the integral equation for the ith time step, t 2 ½ti; tiþ1� 2 ½a; b�; ~xðtÞ, define the residual Eðt; ~xÞ by
Eðt; ~xÞ ¼ xðtiÞ þ
Z t

ti

u1ðs; ~xðsÞÞ þ u2ðs; ~xðsÞÞ½ �ds� ~xðtÞ: ð18Þ
Incorporating the error from (5) into (17) generates
dðtÞ þ ~xðtÞ ¼ xðtiÞ þ
Z t

ti

u1ðs; ~xðsÞ þ dðsÞÞ þ u2ðs; ~xðsÞ þ dðsÞÞ½ �ds: ð19Þ
Moreover, incorporating the residual from (18) produces the correction equation:
dðtÞ ¼
Z t

ti

u1ðs; ~xðsÞ þ dðsÞÞ � u1ðs; ~xðsÞÞ þ u2ðs; ~xðsÞ þ dðsÞÞ � u2ðs; ~xðsÞÞ½ �dsþ Eðt; ~xÞ: ð20Þ
The integral Eq. (20) is approximated by coupled operator splitting formulation:
d1ðtÞ ¼
Z t

ti

u1ðs; ~xðsÞ þ d1ðsÞÞ � u1ðs; ~xðsÞÞ½ �dsþ Eðt; ~xÞ: ð21Þ

dðtÞ ¼
Z t

ti

u1ðs; ~xðsÞ þ d1ðsÞÞ � u1ðs; ~xðsÞÞ þ u2ðs; ~xðsÞ þ dðsÞÞ � u2ðs; ~xðsÞÞ½ �dsþ Eðt; ~xÞ: ð22Þ
Since only a first-order approximation of the correction equation is required in the SDC method, this operator splitting will
not affect the overall order of accuracy of the method. The expression for d1 in (21) only contains terms relating to u1, thus, a
larger time step can be used to calculate d1. However, d in (22) incorporates both u1 and u2 terms and hence should be trea-
ted with a smaller time step. As such, each integral in (21) and (22) can be treated with a different time step when discret-
ized, as demonstrated in the following example.

As in the discussion of SDC methods in Section 2, the following example uses a first-order explicit discretization of the
integral equations analogous to the forward Euler method. Again, the goal is to find a solution on the ith time step
½ti; tiþ1�, which is split into Nm substeps: ti ¼ ti;0 < ti;1 < � � � < ti;m < � � � < ti;Nm ¼ tiþ1. Each substep is further split into Np sub-
steps: ti;m ¼ ti;m;0 < ti;m;1 < � � � < ti;m;p < � � � < ti;m;Np ¼ ti;mþ1. Fig. 2 shows the relationship between a time step and both levels
of substeps. As discussed in Section 2 with regard to SDC, the size of each substep can vary depending on the quadrature
method chosen. Again, Dtm ¼ ti;mþ1 � ti;m and Dtp ¼ ti;m;pþ1 � ti;m;p. To simplify notation, let tm ¼ ti;m and tp ¼ ti;m;p when the
deleted subscripts are understood. Now compute a provisional solution, ~xpþ1, as follows:
~xpþ1 ¼ ~xp þ Dtp u1;mð~xmÞ þ u2;pð~xpÞ
� �

: ð23Þ
Note that this solution is computed on the fine substep level (indexed by p) but it uses u1 velocity values from the coarse
substep (indexed by m) and u2 velocities on the fine substep. That is, u1 is constant within each substep.

Now approximate dk
1;mþ1 and dk

pþ1 from the correction Eqs. (21) and (22), respectively, with forward Euler:
dk
1;mþ1 ¼ dk

1;m þ Dtm u1ðtm; ~xk
m þ dk

1;mÞ � u1ðtm; ~xk
mÞ

h i
þ Emþ1ð~xkÞ � Emð~xkÞ: ð24Þ

dk
pþ1 ¼ dk

p þ Dtp u1ðtm; ~xk
m þ dk

1;mÞ � u1ðtm; ~xk
mÞ þ u2ðtp; ~xk

p þ dk
pÞ � u2ðtp; ~xk

pÞ
h i

þ Epþ1ð~xkÞ � Epð~xkÞ; ð25Þ
Time step ½ti; tiþ1� is split into substeps corresponding to the time step for u1; ½ti;m; ti;m þ Dtm�, and smaller substeps for the u2; ½ti;m;p; ti;m;p þ Dtp�, where
tm 6 Dt.
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where Emþ1ð~xkÞ � Emð~xkÞ and Epþ1ð~xkÞ � Epð~xkÞ correspond to the residual defined in (18):
Emþ1ð~xkÞ � Emð~xkÞ ¼
Z tmþ1

tm

u1ðs; ~xkðsÞÞ þ u2ðs; ~xkðsÞÞ
� �

ds� ~xk
mþ1 þ ~xk

m; ð26Þ

Epþ1ð~xkÞ � Epð~xkÞ ¼
Z tpþ1

tp

u1ðs; ~xkðsÞÞ þ u2ðs; ~xkðsÞÞ
� �

ds� ~xk
pþ1 þ ~xk

p: ð27Þ
As before, define the approximation of (26):
Imþ1
m ðu1 þ u2Þ �

Z tmþ1

tm

u1ðs; ~xkðsÞÞ þ u2ðs; ~xkðsÞÞ
� �

ds: ð28Þ
The form of Imþ1
m ðu1 þ u2Þ will be developed as follows, starting with the integral in (28) :
Z tmþ1

tm

u1ðs; ~xkðsÞÞ þ u2ðs; ~xkðsÞÞ
� �

ds ¼
Z tmþ1

tm

u1ðs; ~xkðsÞÞdsþ
XNp�1

p¼0

Z tm;pþ1

tm;p

u2ðs; ~xkðsÞÞds: ð29Þ
Since u1 is only known at the coarse nodes (tm’s) and the integration occurs from tm to tmþ1, use an interpolating polynomial
to approximate the function values at all Nm þ 1 points on the coarse substep level. Integrating u2 from tp to tpþ1 also requires
an interpolating polynomial that matches the velocity value at each of the Np þ 1 nodes of the mth coarse substep. Use the
known velocity values to find interpolating polynomials û1 � u1 and û2 � u2 that will be used shortly in quadrature:
û1ðtÞ ¼
XNm

m0¼0

u1;m0 lm0 ðtÞ; ð30Þ

û2ðtÞ ¼
XNp

p0¼0

u2;p0 lp0 ðtÞ; ð31Þ
where ljðtÞ represents basis polynomials that satisfy ljðtiÞ ¼ dij for j ¼ m0; p0. Namely,
lm0 ðtÞ ¼
YNm

i¼0;i – m0

t � ti

tm0 � ti
ð32Þ
and
lp0 ðtÞ ¼
YNp

i¼0;i – p0

t � ti

tp0 � ti
: ð33Þ
Hence
Z tmþ1

tm

u1ðs; ~xkðsÞÞ þ u2ðs; ~xkðsÞÞ
� �

ds �
XNm

m0¼0

u1;m0qm0
m þ

XNp

p0¼0

u2;p0qp0 ; ð34Þ
where
qm0
m ¼

Z tmþ1

tm

lm0 ðsÞds; ð35Þ

qp0 ¼
XNp�1

p¼0

qp0
p ; ð36Þ

qp0
p ¼

Z tm;pþ1

tm;p

lp0 ðsÞds: ð37Þ
Now the form of Imþ1
m is defined as (34):
Imþ1
m ðu1 þ u2Þ ¼

XNm

m0¼0

u1;m0qm0
m þ

XNp

p0¼0

u2;p0qp0 : ð38Þ
As in Section 2, the choice of substep nodes tm and tp relate to the quadrature used in Imþ1
m .

Similarly, consider approximating the integral from (27):
Ipþ1
p ðu1 þ u2Þ �

Z tpþ1

tp

u1ðs; ~xkðsÞÞ þ u2ðs; ~xkðsÞÞ
� �

ds: ð39Þ
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Again, to develop the form of Ipþ1
p , begin with the integral in question and utilize interpolating polynomials to discover
Z tpþ1

tp

u1ðs; ~xkðsÞÞ þ u2ðs; ~xkðsÞÞ
� �

ds �
XNm

m0¼0

u1;m0qm0
m;p þ

XNp

p0¼0

u2;p0qp0
p ; ð40Þ
where
qm0
m;p ¼

Z tpþ1

tp

lm0 ðsÞds; ð41Þ

qp0
p ¼

Z tpþ1

tp

lp0 ðsÞds: ð42Þ
Thus,
Ipþ1
p ðu1 þ u2Þ ¼

XNm

m0¼0

u1;m0qm0
m;p þ

XNp

p0¼0

u2;p0qp0
p : ð43Þ
Now that (38) and (43) define Imþ1
m and Ipþ1

p , respectively, all of the components of the correction equations can be computed.
Combining (26), (27), (38), and (43) into (24) and (25) produces a new form of the correction equations:
dk
1;mþ1 ¼ dk

1;m þ Dtm u1ðtm; ~xk
m þ dk

1;mÞ � u1ðtm; ~xk
mÞ

h i
þ Imþ1

m ðu1ð~xkÞ þ u2ð~xkÞÞ � ~xk
mþ1 þ ~xk

m; ð44Þ

dk
pþ1 ¼ dk

p þ Dtp u1ðtm; ~xk
m þ dk

1;mÞ � u1ðtm; ~xk
mÞ þ u2ðtp; ~xk

p þ dk
pÞ � u2ðtp; ~xk

pÞ
h i

þ Ipþ1
p ðu1ð~xkÞ þ u2ð~xkÞÞ � ~xk

pþ1 þ ~xk
p: ð45Þ
Finally, ~xkþ1 ¼ ~xk þ dk is used in addition to (44) and (45) to update the provisional solution:
~xkþ1
pþ1 ¼ ~xkþ1

p þ Dtp u1ðtm; ~xk
m þ dk

1;mÞ � u1ðtm; ~xk
mÞ þ u2ðtp; ~xk

p þ dk
pÞ � u2ðtp; ~xk

pÞ
h i

þ Ipþ1
p ðu1ð~xkÞ þ u2ð~xkÞÞ: ð46Þ
Each iteration (in k) of the correction equation increases the order of accuracy by one, provided the quadrature rules used to
calculate Imþ1

m and Ipþ1
p are sufficiently accurate.

3.2. MESDC efficiency

We now illustrate particular scenarios where using a multirate explicit numerical method results in a substantial gain in
numerical efficiency. Although the discussion is somewhat general, it is relevant to the time integration scheme in the meth-
od of regularized Stokeslets. This connection will be made clear in Section 4.

Consider the particular case of an ODE of the form
x0 ¼ uðxÞ ¼ AðxÞfðx; tÞ ð47Þ
where x and fðx; tÞ are vectors of length N and A is an N � N matrix whose entries depend on x. Furthermore, let x be nat-
urally decomposed into two pieces x1 and x2 with lengths n1 and n2 respectively. Eq. (47) can be hence written
x01
x02

� �
¼

u1

u2

� �
¼

A11ðx1;x2Þ A12ðx1;x2Þ
A21ðx1;x2Þ A22ðx1;x2Þ

� �
f1ðx1;x2; tÞ
f2ðx1;x2; tÞ

� �
; ð48Þ
where each submatrix Aij has size ni � nj. Depending on the relative costs of computing Aij and f j, a multirate time integration
strategy based on a splitting of the matrix A can be computationally less expensive than a standard scheme.

In the simplest case, let fðxÞ ¼ x and let A be a constant matrix. Then (47) is a constant coefficient linear system. If A is
dense, evaluating the right hand side, Ax, requires OðN2Þ operations. Given an explicit time integration scheme, the largest
stable time step of the method will depend on the eigenvalues of A. Now suppose that we can write A as
A ¼ A1 þ A2 ¼
A11 A12

A21 0

� �
þ

0 0
0 A22

� �
; ð49Þ
and furthermore that A1 has eigenvalues with smaller magnitude than A2 so that a multirate strategy is appropriate. For
example, in a multirate strategy where A1x is evaluated P times less often than A2x, then the relative cost of evaluating
the matrices is reduced from OðPN2Þ to OðPn2

2 þ 2n1n2 þ n2
1Þ or OðN2 þ ðP � 1Þn2

2Þ. If n2 is much smaller than N, this is a savings
of approximately a factor of P.

Now consider a more involved scenario with a nontrivial dependence of f on x. Let us assume that A can be computed in
OðN2Þ operations with a small prefactor, so that the computation of A is not significantly more expensive than evaluating Af.
Let us assume as well that f2ðx; tÞ can be computed in Oðn2

2Þ operations with a small prefactor. However, assume that the
computation of f1ðx; tÞ requires more significant computation. For example, suppose for some given vector vðtÞ
f1ðx; tÞ ¼ A�1
11 ðvðtÞ � A12f2ðx; tÞÞ: ð50Þ
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In Section 4.2, the evolution equations for a particular regularized Stokeslet calculation are shown to have this form. Now the
evaluation of f1ðx; tÞ requires Oðn3

1Þ operations for a direct evaluation of A�1
11 , or OðKn2

1Þ operations for K iterations of a Krylov
subspace method as is used in the numerical examples to follow. Hence the evaluation of AðxÞfðx; tÞ requires OðN2 þ Kn2

1 þ NÞ
operations. If the matrix A is split as in (49), then the evaluation of A1ðxÞfðx; tÞ has cost OðN2 þ Kn2

1 þ NÞ since it requires the
evaluation of f1ðx; tÞ. On the other hand, the cost of evaluating A2ðxÞfðx; tÞ is the same as that of evaluating A22ðxÞf2ðx; tÞ,
namely Oðn2

2Þ. The leading order term in these costs are OðN2 þ Kn2
1Þ and Oðn2

2Þ respectively, hence an even greater numerical
efficiency will result from using an operator splitting approach if n2 is significantly less than N, particularly when K is not
small. As an example, in the numerical results presented in Section 5, the number of GMRES iterations to solve the analog
of (50) is in the range of 10–20.
4. A specific MESDC example

In this section we give two specific examples of how the MESDC routine outlined in Section 3 can be utilized for the par-
ticular case of the time integration method within the method of regularized Stokeslets. We will first give a brief overview of
the method of regularized Stokeslets, then outline how MESDC is implemented for the case of a rotating rod and a rigid
sphere interacting in Stokes flow as well as flexible fibers in shear flow inspired by modeling the endothelial glycocalyx.
In both examples, the splitting of the ODEs governing the dynamics have clear physical counterparts which help illustrate
the MESDC method. These physical scenarios will also be used for numerical tests in Section 5.

4.1. Method of regularized stokeslets

The method of regularized Stokeslets, developed by Cortez [16,17], calculates the fluid velocity in Stokes flow due to a
collection of regularized forces. Cutoff functions are introduced as a way to regularize a point force. The regularization re-
moves the singular nature from the velocity field, hence the velocity can be evaluated anywhere in the fluid, including at
the location of a regularized Stokeslet. After regularizing the singular velocity, there exists a linear relationship between
the force at a point in space and the velocity at another point in space. Utilizing the linearity of Stokes flow, one can super-
impose the regularized Stokeslets solutions to build more complicated fluid velocity solutions.

Instead of representing a point force with a delta function, as is the case in deriving a Stokeslet (see [38]), consider reg-
ularizing the force using a radially symmetric cutoff function, /�. It is assumed that the cutoff function is a smooth approx-
imation to the delta function that satisfies
Z
/�ðxÞdx ¼ 1; ð51Þ

lim
�!0

/�ðxÞ ¼ dðxÞ; ð52Þ
where � is the spreading parameter that controls the extent of the distribution. This discussion will use the cutoff function
/�ðrÞ ¼
15�4

8pðr2 þ �2Þ7=2 ; ð53Þ
where r ¼ jx� x0j [16]. Now consider solving the Stokes equations with a regularized forcing term at x0, with x̂ ¼ x� x0:
lr2u ¼ rp� f/�ðx̂Þ; ð54Þ
r � u ¼ 0: ð55Þ
One can represent a solution to (54) and (55) with a regularized Stokeslet constructed from the cutoff function /� [17]:
S/�
ij ¼ dij

r2 þ 2�2

ðr2 þ �2Þ3=2 þ
x̂ix̂j

ðr2 þ �2Þ3=2 : ð56Þ
Here, i ¼ 1;2;3 and j ¼ 1;2;3 correspond to the three components of an applied force vector (indexed by j) and the three
components of the resulting velocity vector (indexed by i), as prescribed below in (58). Notice that in the limit as �! 0,
one recovers the expression for the singular Stokeslet in three dimensions [38]:
lim
�!0

S/�
ij ¼

dij

r
þ x̂ix̂j

r3 ¼ Sij: ð57Þ
The velocity due to a regularized Stokeslet is
uS;/�
i ðxÞ ¼ 1

8pl
X3

j¼1

S/�
ij fj; ð58Þ
where S/�
ij is the regularized Stokeslet in (56).
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Eq. (58) provides a way to calculate the velocity at a location x due to a regularized point force located at x0. Now, con-
sider calculating the velocity at a point x due to a collection of N regularized Stokeslets, each located at xn:
Fig. 3.
uS;/�
i ðxÞ ¼ 1

8pl
XN

n¼1

X3

j¼1

S/�
ij ðx;xnÞfj;n; ð59Þ
where fj;n represents the jth component of the force exerted at xn. To calculate the fluid velocity at M locations due to N reg-
ularized Stokeslets, this relationship can be expressed in matrix form:
uðxÞ ¼ S/� ðx; x0Þf; ð60Þ

where u is a 3M � 1 vector containing the velocity components at the M locations represented by the 3M � 1 vector x; x0 is a
3N � 1 vector of regularized Stokeslet locations, f is a 3N � 1 vector of force coefficients, and S/� is a 3M � 3N matrix incor-
porating the regularized Stokeslet information. When M ¼ N, the matrix S/� often can be inverted to compute the forces nec-
essary to satisfy a given velocity condition at a collection of points. This is the basis of the method of regularized Stokeslets
which will be used to model a precessing rod and a rigid sphere in Stokes flow, as discussed in Section 4.2, and a collection of
flexible fibers modeling the glycocalyx in Section 4.3.

4.2. Rod and sphere

The numerical examples in this paper are motivated by current experimental fluid dynamics research being conducted at
the University of North Carolina [23–25]. First, consider the case of a rigid rod precessing about its center in free space with a
prescribed angular velocity and a rigid sphere moving and interacting with the fluid, as shown in Fig. 3. The rigid sphere is
constructed with regularized Stokeslets that are placed within the fluid domain and connected by virtual springs to neigh-
boring regularized Stokeslets. Regularized Stokeslets connected by springs have been implemented in other works, for exam-
ple in [17] to model motile spirochetes (an order of bacteria that have a helical shape). The findings in [24] can be used as a
guide to choosing parameters for the regularized Stokeslets. Specifically, the regularized Stokeslets are inset from the desired
spherical surface so that the effective radius of the collection of regularized Stokeslets matches that of the desired rigid
sphere and minimizes the velocity error.

In this case, it is the spring forces that are responsible for adding stiffness to the system, requiring a reduction in time step
for an increase in the spring constant. Requiring the entire system to take small time steps is inefficient, motivating the
development of the MESDC method. In the context of this specific example, the MESDC method separates the system into
two parts, one for the velocity due to Stokeslets defining the rod and one for the velocity due to those defining the sphere.

Recall from Section 4.1, the fluid velocity at x due to regularized Stokeslets located at x0 is given by
uðx; x0Þ ¼ S/� ðx;x0Þfðx0Þ, where S/� is a matrix as defined in (56). Let xs represent a location on the sphere and let xr be a
location on the rod. Similarly, let fs and fr be forces located at xs and xr , respectively. For the sake of completeness in nota-
tion, define the following:

� us ¼ uðxs; �Þ: velocity at points on the sphere due to forces at any fluid location.
� ur ¼ uðxr ; �Þ: velocity at points on the rod due to forces at any fluid location.
A rigid rod precessing about its center with a prescribed angular velocity generates fluid flow moving a rigid sphere that also interacts with the fluid.
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� us;s ¼ uðxs;xsÞ ¼ S/�
ss fs: velocity at points on the sphere due to forces at the collective points on the sphere.

� us;r ¼ uðxs;xrÞ ¼ S/�
sr fr: velocity at points on the sphere due to forces at the points on the rod.

� ur;r ¼ uðxr ;xrÞ ¼ S/�
rr fr: velocity at points on the rod due to forces at the collective points on the rod.

� ur;s ¼ uðxr ;xsÞ ¼ S/�
rs fs: velocity at points on the rod due to forces at the points on the sphere.

Consider the following steps which give a summary of how the velocity decomposition is implemented. A central idea
here is that the fluid velocity at an arbitrary location can be decomposed into two components, the velocity due to regular-
ized forces exerted at points on the rod and the velocity due to regularized forces exerted at points on the sphere:
4 Imp
informa
uðxÞ ¼ uðx;xrÞ þ uðx;xsÞ: ð61Þ
Step 1. Prescribe the velocity of the rod at time ti : ur;i ¼ urðtiÞ.
Step 2. Use Hooke’s Law to calculate the spring forces generated by the sphere locations. Let dj

i be the length of the jth
spring and dj

0 be its resting length. For an arbitrary regularized Stokeslet location on the sphere, xs, let m be the number
of springs attached to xs and let êj be a unit vector directed along the jth spring. Then the net force on the regularized
Stokeslet located at xs is given by:
fs;i ¼
Xm

j¼1

�kðdj
i � dj

0Þêj: ð62Þ

Step 3. The rod and the sphere both exert forces on the fluid, so they will both contribute to the velocity on the rod at time
ti:

ur;i ¼ ur;r;i þ ur;s;i; ð63Þ
¼ S/� rr;i fr;i þ S/� rs;i fs;i: ð64Þ

Step 4. Solve (64) for the forces exerted at the rod, fr;i, using GMRES:

fr;i ¼ ðS/� rr;i Þ�1ður;i � S/� rs;i fs;iÞ; ð65Þ

Notice that the form of this equation is exactly that of (50), also noting that fr;i is the only unknown quantity. It should also be
noted that the condition number of S/�

rr;i increases as h
� decreases, where h represents spacing between regularized Stokeslets

and � is the spreading parameter. However, h and � can be chosen easily to avoid ill-conditioned matrices (see [24]).
Step 5. Use the forces at the rod to calculate the fluid velocity at each location of interest on the sphere:
us;i ¼ us;r;i þ us;s;i; ð66Þ
¼ S/�

sr;ifr;i þ S/�
ss;ifs;i: ð67Þ
The MESDC method is used to temporally integrate the system utilizing this velocity decomposition. Notice that the
decomposition in (66) is analogous to (15) in the discussion of MESDC in Section 3.

4.3. Flexible fibers

The motivation for a second numerical example comes from the work of Miller et al. in their study of the fluid dynamics sur-
rounding the endothelial surface layer (ESL) [25]. The ESL includes the glycocalyx and attached proteins projecting out of endo-
thelial cells. The glycocalyx is a brush-like structure protruding from the endothelial cells spaced in a hexagonal pattern [39,40].

The physical models studied by Miller et al. use an array of thin stationary rigid pins in Stokes flow to study the flow
through glycocalyx [25]. Here, the experiment is modeled numerically as a hexagonal array of flexible structures referred
to as fibers as depicted in Fig. 4. Each of the seven fibers consists of a collection of N regularized Stokeslets aligned as a tri-
angular beam. Each regularized Stokeslet is connected to its eight nearest neighbors by Hookean springs. Background shear
flow is added to this system with a no-slip plane implemented at the base of the fibers to represent a solid wall bottom.4

The velocity decomposition for using MESDC with the flexible fiber example distinguishes between the velocity at a par-
ticular fiber due to the forces generated by that fiber and the velocity collectively at the other fibers due to the forces gen-
erated by that particular fiber. That is, the velocity is decomposed into near field and far field contributions from each fiber,
which will be treated in MESDC with small and large substeps, respectively. Let xi represent the locations of the N regular-
ized Stokeslets on the ith fiber and xs represent tracer locations (any locations of interest in the fluid domain not occupied by
a regularized Stokeslet). In a similar fashion as the rod and sphere example discussed in Section 4.2, let ui;j ¼ uðxi;xjÞ rep-
resent the velocity at xi due to xj, as given by (60). In this case, let i ¼ 1; . . . ;7 represent the indices of the fibers where
lementation of the no-slip plane requires a system of regularized image singularities in addition to regularized Stokeslets. See [24] for further
tion.



Fig. 4. Top view of seven fibers arranged in a hexagonal pattern.
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the forces are exerted and let j ¼ 1; . . . ;7; s represent both the fibers and the tracers where the velocity is calculated. The
velocity is decomposed into near and far field contributions for use with MESDC:
uðxÞ ¼ ufarðxÞ þ unearðxÞ; ð68Þ
where x is the vector representing all regularized Stokeslet and tracer locations:
x ¼

x1

..

.

x7

xt

2
666664

3
777775
: ð69Þ
Note that both u and x are of size ð7N þ NsÞ � 3, where N is the number of regularized Stokeslet on each fiber and Ns is the
number of tracer locations. The near field velocity component includes the background flow velocity, ub, and the velocity
contributions from the ith fiber evaluated at the ith fiber, ui;i:
unear ¼ ub þ

u1;1

..

.

u7;7

0

2
666664

3
777775
: ð70Þ
The far field velocity component contains the velocity contributions from each fiber on the other fibers, not including itself. It
also contains the velocity from all seven fibers at the tracer locations:
ufar ¼

P7
j¼2

u1;j

..

.

P6
j¼1

u7;j

P7
j¼1

us;j

2
66666666666664

3
77777777777775

: ð71Þ
The velocity decomposition of u in (68) is analogous to the MESDC formulation in (15) where ufar is treated with a large time
step and unear is treated with a small time step. The flexible fiber model will be used as a numerical example in Section 5
along with the rod and sphere example discussed in Section 4.2.
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5. Numerical tests

The goal in implementing a multirate MESDC method in place of a standard SDC method is to be able to handle stiff sys-
tems with a larger time step for the non-stiff components of the system than previously used with the SDC method. The stiff
components will have similar small time steps in both MESDC and SDC treatments. If the relative cost of computing the non-
stiff components is sufficiently more than those of stiff components, an overall increase in the efficiency of the method can
be achieved. We demonstrate these issues on the two model problems discussed in Section 4. Much of the discussion in this
section focuses on the rod and sphere example of Section 4.2, but the flexible fiber example of Section 4.3 is also discussed
briefly Section 5.2.
5.1. Rod and sphere

To study the convergence and stability of MESDC in comparison to SDC, consider the previously mentioned system of a
slender rigid rod precessing about its center in free space moving a fluid that contains a rigid sphere, as shown in Fig. 3 and
discussed in Section 4.2. Recall, the rigid sphere is comprised of a collection of Ns regularized Stokeslets that are connected
with a network of virtual springs. Each regularized Stokeslet is connected to its nearest neighbors by springs with spring
constant k as well as the center of the sphere (with spring constant kc). As the fluid moves these regularized Stokeslets,
the displacement of the points generates a spring force that the singularities transfer back to the fluid. This additional col-
lection of forces then creates an additional velocity at the rod, which no longer satisfies the velocity boundary condition we
are trying to maintain on the rod. As such, a dense linear system needs to be solved at each time step to account for the
change in the velocity at the rod due to the sphere.

The size of the matrix involved in recomputing the singularity strengths in this linear system is 3Nr � 3Nr , where Nr is the
number of regularized Stokeslets comprising the rod. Thus, for large Nr , solving the linear system becomes increasingly
expensive. For the numerical examples involving the rod and sphere in this section, the total number of Stokeslets
N ¼ Nr þ Ns, where Nr ¼ 50 is the number of regularized Stokeslets representing the rod and Ns ¼ 100 is the number of reg-
ularized Stokeslets representing the sphere (3Nr and 3Ns are analogous to n1 and n2, respectively, in the efficiency discussion
in Section 3.2). While, Nr ¼ 50 is not prohibitively large, it will suffice to demonstrate some properties of the MESDC method.
We will also include another choice of Nr and Ns that will demonstrate MESDC efficiency in Section 5.3. The developed meth-
ods could be used to model experiments consisting of many rotating rods in future work, which would drastically increase
the expense of solving the linear systems. By implementing MESDC, the possibility of being able to compute this linear solve
less often while maintaining accuracy will be studied.

Unless otherwise noted, the reference solution is computed with Nt ¼ 512 time steps per rod revolution for all of the
numerical tests in this section. The position error is computed as the Euclidean norm of position error at mutual time steps
averaged over the course of one rod revolution5. The rod parameters used are Nr ¼ 50, rod length 2, and spreading parameter
�r ¼ 0:0276. As discussed in [24], the spreading parameter varies along the length of the rod proportionally with the radius of
the desired spheroid (with its maximum reaching the aforementioned value �r ¼ 0:0276). For the sphere, there are Ns ¼ 100
regularized Stokeslets with spreading parameter �s ¼ 0:1295 set on a spherical surface of radius 0.4315, which is meant to cor-
respond to a sphere of effective radius 0.5. (see [24]). The units of these length values are arbitrary, so they are adaptable to a
physical scenario of interest, provided the motion can be approximated by Stokes flow. The time scale is such that the rod com-
pletes one revolution in Nt time steps.

First consider studying the convergence rate. With both MESDC and SDC, Sections 2 and 3 claim that the order of the error
relates to the number of correction iterations used ðniterÞ, provided the quadrature choices are accurate enough. When
niter ¼ 0, the correction loop of the algorithms are not used, so the SDC and MESDC algorithms simplify to (multirate) forward
Euler. As such, one would expect the error to decrease linearly with Dt. Fig. 5 shows the error versus time step ðDtÞ for var-
ious numbers of iterations, niter ¼ 0;2;3;4;5;15, for both SDC and MESDC. The increase in the order of accuracy with SDC
iteration is apparent. Notationally, the iteration count niter begins with niter ¼ 2 so that the order of the method will corre-
spond with the niter value. For the data displayed in Fig. 5, the spring constants for the sphere are k ¼ 8; kc ¼ 0:8.

Notice that for niter ¼ 15, the convergence rate seems to approach 8 rather than 15 before leveling off as Dt approaches 0
(due to the limited precision of the quadrature weights). This is evidence of the quadrature convergence from choosing j ¼ 5
Lobatto nodes in each substep where a convergence rate of 2j� 2 limits the convergence rate from increasing beyond 8. By
choosing more nodes, one would expect this convergence rate to increase. This phenomenon is also visible in Fig. 6 which
shows similar data to Fig. 5, except that the spring constants are k ¼ kc ¼ 0. Since the spring constants are 0, the results of
MESDC and SDC are the same so only MESDC is displayed. Notice that for niter ¼ 4;5;15, the convergence rate appears to be 8,
rather than the anticipated 4,5, or 15, respectively. The niter ¼ 15 case is the same as discussed above, but the niter ¼ 4 and
niter ¼ 5 cases are such that the convergence rate exceeds the expected rate. In this case the springs have no added effect to
the system and the correction iterations within MESDC converge more quickly to the collocation solution [41]. Thus, the
temporal error is subdominant to the quadrature error in this case.
5 It should be noted that the error is not being compared to a system with an actual rigid sphere, rather the numerical solution with a given set of stiffness
parameters.



Fig. 6. Error in position versus time step using MESDC for a variety of niter values (number of correction iterations). Notice that the convergence rate
increases as niter increases. The slopes of the dashed lines are 1,2, and 8. Here the spring constants are k ¼ kc ¼ 0.

Fig. 5. Error in position versus time step using SDC and MESDC for a variety of niter values (number of correction iterations). Notice that the convergence
rate increases as niter increases. The slopes of the dashed lines are 1,2, and 8. Here the spring constants are k ¼ 8 and kc ¼ 0:8.
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Now to discuss stability, consider the niter ¼ 5 case, which should be fifth-order accurate. Consider sampling a variety of
spring constants, k, allowing the spring constant of the center springs that connect the center and each point on the sphere’s
surface, kc , to vary proportionally to the spring constant among nearest neighbors on the surface: kc ¼ 0:1k. Consider varying
the number of time steps, Nt , and spring constants, k. For the substep discretization (see Fig. 2), Nm ¼ 5 is fixed, but both
Np ¼ 5 and Np ¼ 10 are considered. Fig. 7 shows the position error versus time step for four chosen spring constants,
k ¼ 0;8;16;64, using both SDC and MESDC. Notice that for larger Dt, as k increases, the system becomes unstable. However,
for fixed k, the instability occurs at a smaller Dt for the SDC case than MESDC. This indicates an increase in stability when
using MESDC over SDC. For this application, the error achieved for the largest stable time step is quite small due to the high-
order of accuracy of the method, hence increasing the largest stable time step allowable is of greatest importance. Also, no-
tice that the MESDC error is consistently smaller than the SDC error for a given time step.

To view the same data in a slightly different context, consider plotting the error as a function of effective Dt rather than
Dt, where the effective Dt takes into account the fact that MESDC adds another level of substeps to the time discretization.
Referring to Fig. 2, letting Nm ¼ 5 and Np ¼ 5 divides each time step into five substeps and each of those substeps into five



Fig. 7. Error in position versus time step using SDC and MESDC for a variety of spring constants with niter ¼ 5 and Nm ¼ 5 for the rod and sphere example
presented in Section 4.2. From top left to bottom right plots, the spring constants are k ¼ 0;8;16;64 and kc ¼ 0:1k. The dashed lines have slope 5.
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smaller substeps. Here, the calculation of the contribution from the sphere on the sphere is computed 25 times each SDC
iteration with MESDC, as opposed to the remaining contributions which are computed 5 times per time step, where with
SDC, all contributions are computed five times each iteration. Using the effective Dt compares the time step of the finest level
of calculation whereas considering Dt compares the time step of the coarsest level of calculation. In this example when
Nm ¼ Np ¼ 5;Dteff ¼ 1

5 Dt for MESDC while Dteff ¼ Dt for SDC. Similarly, when Nm ¼ 5 and Np ¼ 10 for the MESDC case,
Dteff ¼ 1

10 Dt. Fig. 8 shows the same data as Fig. 7, except the error is plotted against the effective time step rather than Dt.
One noteworthy feature is that the instability occurs at approximately the same effective Dt value. This confirms that using
a coarser time step for the non-stiff component of the system does not effect the stability of the overall method.

When shifting perspectives to consider effective Dt rather than Dt, the finest substeps are commensurate in size and the
difference between SDC and MESDC is that the linear solves happen less frequently in the MESDC case than in the SDC case.
Thus, this can either be viewed as a scenario where one might want to add a finer level of substeps for a particular portion of
a calculation or, conversely, one might want to compute a part of a calculation on a coarser time scale gaining computational
efficiency without sacrificing accuracy.

5.2. Flexible fiber model

Now consider the flexible fiber glycocalyx model as discussed in Section 4.3. To demonstrate the aforementioned relation-
ships between MESDC and SDC, the model of seven flexible fibers was run with N ¼ 33 regularized Stokeslets on each fiber, a
spring constant of k ¼ 10, and spreading parameter � ¼ 0:01. Each fiber has length 1 and radius 0.037. The seven fibers were
arranged in a hexagonal pattern where six fibers were spaced equally on a unit circle centered at the seventh fiber, as shown
in Fig. 4. The background shear flow used is uðx; y; zÞ ¼ ½0:1z;0;0�, ensuring a no-slip plane at z ¼ 0. The reference solution is
computed with SDC using 500 time steps per 1 time unit. Figs. 9 and 10 represent the analogous plots for the fiber case as
Figs. 7 and 8 show for the rod and sphere scenario. Note again the dramatic increase in the size of the largest stable time step
for MESDC methods.

5.3. Computational timings

To demonstrate the increased efficiency of using MESDC compared to SDC, timings for a specific example are included.
Consider again a precessing rod and sphere, but allow the rod to be comprised of Nr ¼ 800 regularized Stokeslets. This is



Fig. 9. Error in position versus time step using SDC and MESDC with k ¼ 10;niter ¼ 5, and Nm ¼ 5 for the flexible fiber model presented in Section 4.3. The
dashed line has slope 5.

Fig. 8. Error in position versus effective time step using SDC and MESDC for a variety of spring constants with niter ¼ 5 and Nm ¼ 5 for the rod and sphere
example presented in Section 4.2. From top left to bottom right plots, the spring constants are k ¼ 0;8;16;64 and kc ¼ 0:1k. The dashed lines have slope 5.
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significantly more Stokeslets than are used in Section 5.1, but would give an indication of the scaling of the problem when
more rods are considered. Let the sphere consist of Ns ¼ 50 regularized Stokeslets that are connected to their nearest neigh-
bors with Hookean springs. Using a spring constant of k ¼ 64, Table 1 shows the computational time (in seconds) for the
largest stable time step for each method: SDC, MESDC with Np ¼ 5, and MESDC with Np ¼ 10. The computational time



Table 1
Computational timings for Nr ¼ 800, Ns ¼ 50, Nm ¼ 5, and k ¼ 64. The first data column shows the number of time steps per rod revolution for the largest stable
time step. The last column shows the total computational time for one rod revolution using the largest stable time step. Time units are in seconds.

Smallest number of stable time
steps per rod revolution

Computational time
per time step

Computational time
per rod revolution

SDC 106 25.9 2743.4
MESDC, Np ¼ 5 25 26.7 667.5
MESDC, Np ¼ 10 12 28.7 344.2

Fig. 10. Error in position versus effective time step using SDC and MESDC with k ¼ 10; niter ¼ 5, and Nm ¼ 5 for the flexible fiber model presented in
Section 4.3. The dashed line has slope 5.
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per time step is an average over five time steps and the computational time per rod revolution is the product of the previous
two columns. Note that the cost per time step is greater for MESDC methods, but this increase is more than compensated by
the reduction in the number of time steps required.

The timings in Table 1 only give evidence for the effectiveness on a specific example, and the overall gain in efficiency for
a multirate approach will depend strongly on the relative costs of computing the different pieces of the splitting of the equa-
tion. In this example, only two different time steps are used in the computation (i.e. rod and sphere), but splitting into more
than two pieces is possible. For example, the spring forces on the ball could be further split into those from nearest neighbor
connections and those well separated on the ball. Further research into the effectiveness of such a splitting is underway.
6. Summary

We have presented a new multi-explicit spectral deferred correction method that provides for increased efficiency in the
explicit time integration of ordinary differential equations with multiple time scales. This method is designed for ODEs that
can easily be decomposed into components with disparate levels of stiffness and would be computationally expensive to
treat in a fully implicit manner. When the stiffest terms of the equation (i.e. those that are updated most frequently) are rel-
atively inexpensive to evaluate, the use of coarser time steps for the less stiff components results in a substantial decrease in
overall computational cost.

The motivation for investigating such temporal integration methods comes from the method of regularized Stokeslets for
which the resulting ODE system has these characteristics. The MESDC method is demonstrated on two nontrivial three-
dimensional Stokes flow problems modeled with regularized Stokeslets. Specifically, a slender rigid rod precessing about
its center sweeping out a double cone in an incompressible fluid containing a rigid sphere and flexible fibers in shear Stokes
flow are used as examples in this discussion. These examples are motivated by current experimental fluid dynamics research
being conducted at the University of North Carolina [23–25]. In the rod and sphere case introduced in Section 4.2, the cal-
culation of the Stokeslet strengths along the rod requires the solution of a large dense linear system while those on the
sphere can be easily computed with a linear spring law. Hence, using the MESDC approach to apply a large time step to
the evolution equation of the rod reduces the total computational cost since the expensive dense system is solved less
frequently. The numerical experiments demonstrate that this reduction comes with no significant effect on the stability
and accuracy of the overall temporal integration scheme.
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Although the numerical experiments presented here use a decomposition of the ODE into two simple parts (correspond-
ing to Stokeslets on the rod and those on the sphere or near and far field contributions from Stokeslets on neighboring fibers),
the method is flexible enough to accommodate more complicated decompositions (e.g. see [3,4]). For example, in the present
scenario, each Stokeslet on the sphere could move according to a force further decomposed into contributions from nearest
neighbors, from the rest of the Stokeslets on the sphere, and from those on the rod. Similarly, for the glycocalyx example
introduced in Section 4.3, the near field contribution could be divided up into nearest neighbors, which are treated sepa-
rately from the rest of the points on the near fiber, adding another level of discretization. In some applications of immersed
boundary methods, both tangential and normal forces (which are typically dependent on the local curvature) are considered,
and the differing stiffness of these terms could be taken into account in designing an MESDC strategy. More elaborate adap-
tive decompositions are possible as long as one has at hand a reasonably efficient way of constructing the decomposition and
estimating the appropriate relative size of the time step for each component. Such strategies will be investigated in future
work.
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