
SEMI-IMPLICIT KRYLOV DEFERRED CORRECTION

METHODS FOR DIFFERENTIAL ALGEBRAIC EQUATIONS

SUNYOUNG BU, JINGFANG HUANG, AND MICHAEL L. MINION

Abstract. In the recently developed Krylov deferred correction (KDC) meth-

ods for differential algebraic equation initial value problems [33], a Picard-
type collocation formulation is preconditioned using low-order time integration
schemes based on spectral deferred correction (SDC), and the resulting system

is solved efficiently using Newton-Krylov methods. KDC methods have the
advantage that methods with arbitrarily high order of accuracy can be eas-
ily constructed which have similar computational complexity as lower order
methods. In this paper, we investigate semi-implicit KDC (SI-KDC) methods

in which the stiff component of the preconditioner is treated implicitly and the
non-stiff parts explicitly. For certain types of problems, such a semi-implicit
treatment can significantly reduce the computational cost of the preconditioner
compared to fully implicit KDC (FI-KDC) methods. Preliminary analysis and

numerical experiments show that the convergence of Newton-Krylov iterations
in the SI-KDC methods is similar to that in FI-KDC, and hence the SI-KDC
methods offer a reduction in overall computational cost for such problems.

1. Introduction

Many numerical techniques have been developed for the accurate and efficient
solution of ordinary and partial differential equation initial value problems with
algebraic constraints, including linear multi-step methods, Runge-Kutta methods,
and operator splitting techniques [6, 10, 16, 20, 30, 46, 54, 59, 61, 62]. Their
applications include (among others) numerical simulations in fluid and solid me-
chanics, circuits design, electrical power systems, and diffusion-reaction processes
in biological and chemical systems. In this paper, we focus on constructing efficient
higher-order methods for a special class of differential algebraic equations (DAEs)
based on a semi-implicit Krylov deferred correction (KDC) technique.

Classical deferred and defect correction methods for ODEs were first proposed
by Pereyra and Zadunaisky [51, 61, 62], in which higher-order accurate solutions of
initial value ODEs are iteratively built by approximating an equation for the error
(or defect) to increase the accuracy of a provisional solution. In 2000, Dutt et al.
[23] presented a new variation on the deferred/defect correction strategy for ODEs
by introducing Gaussian quadrature nodes and using a Picard integral equation
form of the correction equation. The resulting spectral deferred correction (SDC)
schemes can, in principle, achieve arbitrary order of accuracy for both stiff and non-
stiff problems, and (unlike linear-multistep methods) the linear stability properties
of higher-order versions of the methods are similar to those of lower-order versions.

2000 Mathematics Subject Classification. 65B10, 65F10, 65L20, 65L80, 65N35.
The work of Huang and Bu was supported by NSF grants 0811130 and 0941235. Part of

the work was done when Bu was a visiting member of the Institute for Mathematics and Its

Applications at the University of Minnesota. The work of Minion was supported by NSF grant
0854961.

1

2 Bu et al

Furthermore, SDC methods based on a semi-implicit or IMEX formulation have
been constructed by applying an operator splitting approach to the correction equa-
tions [14, 45, 46, 47]. Semi-implicit methods treat non-stiff terms in the equations
explicitly and stiff terms implicitly, which can significantly reduce the overall cost
for stiff problems compared to fully implicit methods. Higher-order semi-implicit
SDC schemes do not suffer from the stability limits of linear multistep schemes
based on BDF [3, 7, 25], nor the difficulty of satisfying the coupling constraints in
IMEX Runge-Kutta methods [8, 12, 13, 19, 37, 49, 57]. In fact, higher-order SDC
methods with multiple implicit or explicit terms and varying time steps (multirate
methods) have also been developed [14, 15, 41].

Notice that when the SDC iterations converge for an ODE, the method is equiv-
alent to a fully implicit Runge-Kutta (i.e. collocation) method and inherits the
excellent stability and accuracy properties of such methods. The benefit of using
the SDC approach is that it does not require the solution of coupled implicit equa-
tions between the nodes in the collocation formulation as a direct application of
a nonlinear solver would. Also, semi-implicit versions of SDC can be used to fur-
ther reduce the computational cost of the SDC iterates compared to fully implicit
methods for problems which can be readily split into stiff and non-stiff terms. Un-
fortunately, when SDC methods are applied to very stiff ODEs, the convergence of
the SDC iterates can be quite slow for a range of time-steps for which the method
is stable. In [32], it is shown analytically that the SDC iteration is equivalent to
a preconditioned Neumann series expansion for linear ODEs, where the precondi-
tioner is the low-order deferred correction procedure, and the slow convergence of
the SDC iterates is due to the existence of a few “bad” eigenvalues in stiff ODE and
DAE systems, as will be further discussed in Sec. 2.2. This type of order reduction
has been previously observed and analyzed for both SDC and some Runge-Kutta
methods (see e.g. [12, 13, 37, 42]). A procedure based on Krylov subspace methods
is introduced in [32, 33] that accelerates the convergence of SDC methods for stiff
problems and hence eliminates order reduction. Adapting the terminology from
the nonlinear solver community, one correction sweep of the SDC iteration in the
Krylov accelerated SDC methods becomes a preconditioner for the solution of the
full collocation formulation, as detailed in Sec. 2.

In [33], SDC methods are applied to DAE systems of the form

(1.1) F (y(t), y′(t), t) = 0

with the goal of constructing stable high-order solvers for DAEs. The SDC proce-
dure in [33] relies on a Picard type formulation of Eq. (1.1) written in terms of the
variable Y (t) = y′(t)

(1.2) F

(
y0 +

∫ t

0

Y (τ)dτ, Y (t), t

)
= 0.

We refer to Eq. (1.2) as the “yp-formulation” and discuss alternatives to this for-
mulation below. Unfortunately, it is demonstrated in [33] that in the most straight-
forward application of SDC to the “yp-formulation”, the SDC iterations may not
converge, even for arbitrarily small time step. However, using the Krylov sub-
space approach introduced in [32] for ODEs, efficient methods using SDC and the
yp-formulation for DAEs are constructed and evaluated in [33]. These so-called
Krylov deferred correction (KDC) methods converge to the solution of an implicit
Gauss Runge-Kutta (GRK) method while requiring only the solution of implicit
equations similar to those one would find in a first-order method. Furthermore, it
is shown in [33] that the implicit equations that arise in [33] can be better condi-
tioned than those arise from a straightforward application of Newton’s method to
the GRK formulation. The KDC methods are shown in [33] to compare favorably

SI-KDC methods for DAEs 3

with other popular approaches on standard test problems, especially when high
precision is required.

In the numerical implementations in [32, 33], explicit low-order time stepping
schemes are used in the KDC technique for problems with either non-stiff or mildly
stiff differential parts, while implicit schemes are applied to those with stiff parts.
However, as in the case for ODEs, for problems which can be appropriately split,
it is typically advantageous to apply a semi-implicit time integration scheme. The
focus of this paper is to study semi-implicit time integration schemes within KDC
methods. One case in which DAEs can be readily split is for equations of the form

(1.3)

{
y′(t) = f(y(t), z(t), t),
0 = g(y(t), z(t), t),

where the right hand side of the differential equations for y(t) can be split into
stiff and non-stiff components. Another possibility explored here is the use of
a linearly implicit approach on the differential equation for y′(t). We study the
convergence properties of the resulting semi-implicit KDC (SI-KDC) methods in
terms of the number of iterates needed to converge to the GRK solution and show
that, compared with the fully implicit KDC (FI-KDC) methods, the convergence
of the SI-KDC is similar. Since the resulting algebraic equation system in the SI-
KDC discretization is simpler than that in FI-KDC, the SI-KDC formulation can
hence be more efficient overall. Unfortunately, we also demonstrate that finding an
efficient semi-implicit splitting for the SI-KDC technique becomes more complicated
for higher-index DAE systems with both algebraic and differential components.

This paper is organized as follows. In Sec. 2, we briefly describe KDC meth-
ods, by introducing the Picard integral collocation formulation, spectral deferred
correction (SDC) technique, and Newton-Krylov methods. In Sec. 3, semi-implicit
KDC methods are discussed, and different semi-implicit preconditioning techniques
and their convergence properties are analyzed for DAE systems of different index.
In Sec. 4, preliminary numerical results are presented to compare different SI-KDC
methods with fully implicit schemes. Finally in Sec. 5, we summarize our results
and discuss further applications of the SI-KDC methods.

2. Krylov Deferred Correction Methods

In this section, we discuss the Krylov deferred correction (KDC) technique for
DAEs of the form (1.1). The subsections give a review of the discretization scheme
used in KDC methods, the formulation of the error equation, and how Krylov
subspace methods are used in the iteration.

2.1. Picard Integral Equation and Spectral Integration. In the KDC meth-
ods, unlike traditional numerical methods based on the differential form of the
equations, we first set Y (t) = y′(t) as the new unknown, and consider the Picard
type integral equation (1.2).

To discretize the integral equation (1.2) in one time step [0,∆t], we linearly map
the Gaussian nodes originally defined on [−1, 1] to [0,∆t], and denote the p nodes
by t = [t1, t2, · · · , tp]T. Similarly, we denote the solution y(t) and the derivative
values Y (t) at these nodes by y = [y1, y2, · · · , yp]T and Y = [Y1, Y2, · · · , Yp]

T

respectively. Given the discretized Y, a degree p − 1 interpolating polynomial
P (t) can be constructed to approximate each component of the solution Y (t) using

standard techniques. We can then approximate
∫ tm
0

Y (τ)dτ using
∫ tm
0

P (τ)dτ and
evaluate this degree p polynomial to obtain at t the approximate function values
of y. We refer to this procedure as spectral integration, and represent the linear
mapping from Y to y by a matrix ∆tS where the spectral integration matrix S

4 Bu et al

is independent of the step-size ∆t and can be precomputed. Using the spectral
integration matrix, we derive the collocation formulation

(2.1) F(y0 +∆tS ⊗Y,Y, t) = 0,

which will be symbolically denoted asH(Y) = 0. In the formula, y0 = [y0, y0, · · · , y0]T
is the vector of initial values, and ⊗ is the tensor product (i.e. ∆tS is applied to
each component of Y).

Instead of the “yp-formulation”, the original SDC method for ODEs in [23] is
based on the traditional Picard integral equation or “y-formulation”. Methods
based on the Picard formulation have also been developed for two point boundary
value problems in [27]. The “y-formulation” for ODEs can be generalized for DAE
systems of the form (1.3) by

(2.2)

{
y(t) = y0 +

∫ t

0
f(y(τ), z(τ), τ)dτ,

0 = g(y(t), z(t), t).

However, for an arbitrary DAE system of the form Eq. (1.1), the discretization
of the “y-formulation” in the current setting would require a differentiation ma-
trix rather than an integration matrix. Since spectral integration is numerically
better conditioned than spectral differentiation [27, 58], we focus here on the “yp-
formulation”.

It is also possible to formulate the integration matrix S using Radau or Lobatto
type quadrature nodes instead of Gaussian nodes and calculate the Legendre poly-
nomial coefficients accordingly. The Radau Ia quadrature nodes use the left end
point (i.e. t1 = 0), the Radau IIa nodes use the right end point (i.e. tp = ∆t),
and the Lobatto quadrature nodes include both end points. Also, Chebyshev poly-
nomials and the corresponding quadrature nodes may be used instead of Legendre
polynomial based nodes, which allow the fast Fourier transform (FFT) to be used
for acceleration (FFT is more efficient than existing fast Legendre transforms). De-
tailed analytical and numerical comparisons of different polynomials and nodes will
be reported later. For a discussion of the choice of nodes for the spectral deferred
correction methods for ODEs, the readers are referred to [42].

For DAEs, it is pointed out in [30] that the Gaussian collocation formulation
encounters “order reduction”. When p Gaussian nodes are applied to an index
one DAE system, numerical order for the algebraic component is only p, while for
Radau IIa nodes, the order is 2p − 1. We therefore focus on the Radau IIa nodes
in our numerical implementations for higher-index DAEs in this paper. Interested
readers are referred to [30] (Table 2.3, p18) for further details on the convergence
of collocation formulations for different index DAE problems.

2.2. Error Equation and Spectral Deferred Corrections. Notice that for
scalar equations, Eq. (2.1) is typically nonlinear with p unknowns as compared to
the 1-unknown equation encountered when using the backward Euler (or BDF)
method. For N dimensional vector DAEs, the number of unknowns becomes pN as
compared to N . Therefore direct application of Newton’s method utilizing Gauss
elimination for the required linear solves would require O((pN)3) operations for the
collocation formulation with p points, while O(N3) operations for BDF methods.
For this reason, although superior in accuracy and optimal in step-size, very high-
order collocation methods for Eq. (2.1) are rarely used in practice. In the following,
we discuss how the SDC procedure can be adapted to DAEs to produce efficient
methods for solving the high-order collocation formulations.

Assume a provisional solution Ỹ = [Ỹ1, Ỹ2, · · · , Ỹp]
T is obtained at the Gaussian

type nodes t in one time step [0,∆t], using a low-order method or other approxima-
tion scheme and denote the corresponding interpolating polynomial approximation

SI-KDC methods for DAEs 5

to the solution as Ỹ (t), one can define an equation for the error δ(t) = Y (t)− Ỹ (t)
by

(2.3) F

(
y0 +

∫ t

0

(
Ỹ (τ) + δ(τ)

)
dτ, Ỹ (t) + δ(t), t

)
= 0,

and the corresponding discretized system becomes

(2.4) F(y0 +∆tS ⊗ (Ỹ + δ), Ỹ + δ, t) = 0.

We symbolically denote the relation between Ỹ and δ as G(Ỹ, δ) = 0, i.e., given

Ỹ, solving Eq. (2.4) requires finding a specific value δ. Note that finding Y (or

the corresponding Ỹ + δ) such that G(Y,0) = 0 is equivalent to solving H(Y) =
0 (where H is defined after Eq. (2.1), which is numerically challenging as the
unknowns at different times are coupled. Instead, as Eq. (2.3) gives the identity

F

(
y0 +

∫ tm+1

0

Ỹ (τ)dτ +

(∫ tm

0

+

∫ tm+1

tm

)
δ(τ)dτ, Ỹ (tm+1) + δ(tm+1), tm+1

)
= 0,

a simple time-marching discretization of this equation similar to the explicit (for-

ward) Euler method for ODEs gives a low-order solution δ̃ = [δ̃1, δ̃2, · · · , δ̃p]T by
solving

(2.5) F

(
y0 + [∆tS ⊗ Ỹ]m+1 +

m+1∑
l=1

∆tlδ̃l−1, Ỹm+1 + δ̃m+1, tm+1

)
= 0,

where ∆tl+1 = tl+1−tl and t0 and δ0 are set to 0. Note that this update formula is in
general implicit even though an “explicit” time-marching scheme is used. Similarly,
a time-marching scheme based on backward Euler method is given by

(2.6) F

(
y0 + [∆tS ⊗ Ỹ]m+1 +

m+1∑
l=1

∆tlδ̃l, Ỹm+1 + δ̃m+1, tm+1

)
= 0.

These two methods differ only in the way the time integral of δ(t) is approximated.
Eq. (2.5) is equivalent to the rectangle rule using the left endpoint while Eq. (2.6)
is the rectangle rule using the right endpoint.

In the SDC methods, the low-order solution δ̃ is added to the provisional solu-
tion Ỹ in order to form a better approximation, and this iteration continues for
a prescribed number of times or until a prescribed error tolerance is achieved. It
has been shown that for ODE problems [34], for sufficiently small time step the

formal order of accuracy of Ỹ will increase by one after each SDC iteration using a
first-order method. Unfortunately, for general DAE problems of higher-index, it is
demonstrated numerically that the analogous SDC iteration procedure is divergent
for many DAE systems [33]. It is shown in [32] that for linear systems of ODEs, the
spectral deferred correction technique is equivalent to a preconditioned Neumann
series expansion, where the preconditioner is the low-order deferred correction pro-
cedure. Furthermore, the preconditioned system in the ODE case can be written
in the form

(I − C)x = b,

where C scales like ∆t, and hence one can prove that for small ∆t, all the eigenvalues
of C are located inside the unit disc on the complex plane and the Neumann series

x = b+ Cb+ C2b+ · · ·
is convergent. However for DAE problems, the analogous procedure produces a
matrix C that may have eigenvalues with magnitude greater than 1 independent
of the step-size ∆t, and hence the standard SDC procedure becomes divergent (see

6 Bu et al

[33] for details). However, this lack of convergence can be removed by applying
appropriate Newton-Krylov methods to the iterations.

2.3. Newton-Krylov Method and Preconditioners. Newton-Krylov methods
are designed for solving nonlinear algebraic equations of the form M(x) = 0 with
N equations and unknowns. Assume an initial approximate solution x0 is known,
Newton’s method is used to iteratively compute a sequence of quadratically con-
vergent approximations (assuming the Jacobian matrix JM is nonsingular at the
solution)

xn+1 = xn − δx,

where δx is the solution of the linear equation

JM (xn)δx = M(xn)

solved using Krylov subspace methods such as the GMRES, BiCGStab, and TFQMR
methods [11, 55, 38] (as JM is in general non-symmetric). The iterations in New-
ton’s method and the Krylov subspace methods can then be intertwined by reducing
the residual of the linear equation by a prescribed factor, and then restarting the
Newton iterations. The resulting methods are usually called the Newton-Krylov
methods.

Notice that when

JM (xn) = ±I − C,

where most eigenvalues of C are clustered close to 0, because of the rapid decay of
most eigenmodes in Cqb, the numerical rank of the Krylov subspace

Kq(JM , b) = {b, Cb, C2b, · · · , Cqb}
is low and the Newton-Krylov iterations converge rapidly. This is true even for
cases when there are a few eigenvalues located outside the unit circle (which causes
the divergence of the SDC methods for DAEs) or inside but close to the unit circle
(the order reduction of the SDC methods for stiff ODE problems).

2.4. Krylov Deferred Correction Methods. In general, an efficient numerical
implementation of a Newton-Krylov method depends on: (a) a formulation of the
problem M(x) = 0 such that JM is close to the identity matrix ±I, and (b) an
efficient procedure for computing the matrix vector product Cb (or equivalently
JMb). We now discuss these two points in the context of KDC methods.

For (a), one common technique to improve the convergence of a Krylov subspace
method is to apply a “preconditioner” to the original system. Traditionally, such
preconditioners are chosen as sparse matrices close to J−1

M [21]. Dense integral
operators have also been used as preconditioners (see e.g. [39]), which are efficiently
applied to an arbitrary vector using fast convolution algorithms such as the fast
multipole method [28]. For DAE problems, the low-order time stepping methods
in Eqs. (2.5-2.6) can be written in matrix form as

(2.7) F(y0 +∆tS ⊗ Ỹ +∆tS̃ ⊗ δ̃, Ỹ + δ̃, t) = 0,

where ∆tS̃ is the lower triangular representation of the rectangle rule approximation
of the spectral integration operator ∆tS. Specifically, for Eq. (2.5)

(2.8) ∆tS̃E =

0 0 · · · 0 0

∆t1 0 · · · 0 0
∆t1 ∆t2 · · · 0 0
· · · · · 0 0

∆t1 ∆t2 · · · ∆tp−1 0

SI-KDC methods for DAEs 7

and for Eq. (2.6)

(2.9) ∆tS̃I =

0 0 · · · 0 0
0 ∆t1 · · · 0 0
· · · · · 0 0
0 ∆t1 · · · ∆tp−2 0
0 ∆t1 · · · ∆tp−2 ∆tp−1

 .

As before, we denote the relation between Ỹ and δ̃ in Eq. (2.7) as an implicit

function of the form G̃(Ỹ, δ̃) = 0, and represent the corresponding explicit function

as δ̃ = H̃(Ỹ), where the provisional solution Ỹ is the independent input variable

and the output function value is δ̃, derived by solving Eq. (2.7) using one SDC
iteration. It can be seen that if Y satisfies the collocation formulation H(Y) = 0,

then G(Y,0) = 0 and G̃(Y,0) = 0, i.e., for the input Y, the output function value

H̃(Y) = 0. Therefore solving the collocation formulationH(Y) = 0 is equivalent to

finding the zero of the new function H̃(·). In [33], it is shown that because the lower-

order method solves a “nearby” problem, the Jacobian of H̃ is closer to identity
than that of H, and hence H̃(·) = 0 can be thought of as a preconditioned version
of H(·) = 0. Specifically, applying the implicit function theorem, the Jacobian

matrix JH̃ of H̃ is given by

JH̃ =
∂δ̃

∂Y
= −

(
∂F

∂Y
+

∂F

∂y
∆tS̃

)−1(
∂F

∂Y
+

∂F

∂y
∆tS

)
= −I +

(
∂F

∂Y
+

∂F

∂y
∆tS̃

)−1(
∂F

∂y
∆t(S̃ − S)

)
.

When ∂F
∂Y is non-singular, since S̃ is an approximation of S, when ∆t is small, JH̃

is close to −I, and Newton-Krylov methods can be applied directly to find the zero
of the preconditioned system H̃(·) = 0. For comparison, the Jacobian matrix of
H = 0 is given by

(2.10) JH =
∂H

∂Y
=

(
∂F

∂Y
+

∂F

∂y
∆tS

)
.

In regards to point (b), when a forward difference approximation technique is
adapted as in most Jacobian-free Newton-Krylov (JFNK) solvers, for any vector v,
we can approximate JH̃(x)v by

DhH̃(x : v) =
(
H̃(x+ hv)− H̃(x)

)
/h

for some properly chosen parameter h (h may be complex). Note that computing

the function H̃ in this formulation is simply a deferred correction iteration described
succinctly in Eq. (2.7). This difference approximation technique as well as the choice
of h have been carefully studied previously and the readers are referred to [36] for
details.

The results in [32] show that the KDC method for DAEs converges more ef-
ficiently (to the Gauss Runge-Kutta solution) using a low-order preconditioning
iteration compared with a direct solution of the coupled collocation formulation.
In the numerical implementation, the KDC method consists of two components:
a Newton-Krylov method that can be applied directly to solve the preconditioned
collocation formulation H̃(·) = 0; and the “function evaluation” required for the
Newton-Krylov method, which is simply one deferred correction iteration for the
given provisional solution. A pseudo code is listed in Figure 1 for one time step

8 Bu et al

Krylov Deferred Correction Method

[Comment:] We consider one step from 0 to ∆t. We assume the initial
condition y0 is given at t = 0, and the Gaussian nodes on [0,∆t] and the
corresponding integration matrix S are precomputed.

Step 1: Initial Guess
Apply a low-order time stepping method to compute an approximate

solution Y[0] of the original differential equation at the Gaussian
type nodes.

Step 2: Find the zero of H̃(·)
Use existing JFNK solver to solve the preconditioned system H̃(·) = 0

with initial guess Y[0] as the input variable.

[Comment:] Most JFNK solvers only require a “function evaluation

subroutine” (provided below) to compute H̃(v) for any provided
input variable v.

Step 3: Output y(∆t)

Compute and output y(∆t) = y0 +
∫∆t

0
Y (τ)dτ by using Gaussian

quadrature on the computed values Y at the Gaussian nodes from
Step 2.

Function evaluation subroutine

Input: A vector Ỹ provided by JFNK solver.

Using Ỹ as the provisional solution, solve Eq. (2.7), which is
equivalent to one SDC iteration with a low-order scheme.

Output: the low-order error approximation δ̃.
End Function evaluation subroutine

Figure 1. Outline of the KDC method

from 0 to ∆t, utilizing (a) existing JFNK solvers and (b) low-order time stepping
schemes for the original and error equations. Both (a) and (b) have been well
studied and documented in the literature.

Note that KDCmethods are composed of two Newton procedures: (a) a Jacobian-
free Newton-Krylov method is applied to find the zero of the preconditioned non-
linear system H̃(·) in Step 2; and (b) for each “function evaluation” H̃(v) (which
is an SDC sweep), a Newton-type method is applied to solve the (generally) non-
linear system in each substep of the lower-order time stepping method. We refer
to the Newton iterations in (a) as the outer iterations and those in (b) as the inner
iterations. For (a), existing JFNK solvers can be easily adapted, and for (b), we
modify the Newton solvers from existing efficient low-order time stepping schemes
for the original differential equations and solve the error equation. Clearly, each
“function evaluation” in general requires the efficient solution of p decoupled non-
linear systems (one at each substep). The purpose of introducing the semi-implicit
KDC methods is to optimize the low-order time-marching schemes to improve the

SI-KDC methods for DAEs 9

efficiency of the inner Newton iterations for problems where an appropriate splitting
can be found.

3. Semi-implicit Preconditioning Techniques for Stiff DAEs

In this section we discuss the semi-implicit approach in the low-order time-
stepping procedure which forms the preconditioner in the KDC methods. The
underlying idea is simply that one may treat the non-stiff terms explicitly and stiff
terms implicitly. For ODEs, it is often straightforward to determine an appropriate
semi-implicit splitting of the equations by examining the eigenvalues of a linearized
problem. However the situation is less clear for DAEs, and one of the pertinent
points in this section is that even for very simple examples, there can be several dif-
ferent logical ways to semi-implicitly split a DAE and it is not always clear apriori
which splitting will provide the most efficient method.

In the first part of this section, we briefly introduce the modification to the KDC
method needed to employ a semi-implicit approach. We then consider different
options for producing a splitting for simple linear DAE systems of index 1 and 2.

3.1. Semi-implicit KDC Technique. We first assume that the DAE system of
interest can be split into two parts

(3.1) F (y(t), y′(t), t) = FE(y(t), y
′(t), t) + FI(y(t), y

′(t), t) = 0

where FE represents the non-stiff component and FI the stiff component. We leave
the non-trivial task of finding an appropriate splitting to later sections.

As before, we introduce Y (t) = y′(t) as the new unknown to get

(3.2) FE

(
y0 +

∫
Y (τ)dτ, Y (t), t

)
+ FI

(
y0 +

∫
Y (τ)dτ, Y (t), t

)
= 0.

This Picard type integral equation can be directly discretized using the spectral
integration matrix S to yield the collocation formulation

(3.3) FE(y0 +△tS ⊗Y,Y, t) + FI(y0 +△tS⊗Y,Y, t) = 0

where Y = [Y1,Y2, ...,Yp]
T is the desired solution which approximates Y (t) =

y′(t) at the quadrature nodes t = [t1, t2, · · · , tp]T in one time step [0,∆t]. We

further define the error as δ(t) = Y (t) − Ỹ (t) where Ỹ is a provisional solution to
the DAE system. Eq. (3.3) can then be rewritten in terms of δ(t) as
(3.4)

FE

(
y0 +

∫
(Ỹ (τ) + δ(τ))dτ, Ỹ + δ, t

)
+FI

(
y0 +

∫
(Ỹ (τ) + δ(τ))dτ, Ỹ + δ, t

)
= 0.

To improve the provisional solution Ỹ (t), low-order methods can be applied to

derive an approximation of the error denoted by δ̃. When the explicit Euler method
(S̃E in Eq. (2.8)) is applied to the non-stiff part and the backward Euler method

(S̃I in Eq. (2.9)) to the stiff one, the low-order method can be rewritten in the
matrix form

FE(y0+△tS⊗Ỹ+△tS̃E⊗ δ̃, Ỹ+ δ̃, t)+FI(y0+△tS⊗Ỹ+△tS̃I⊗ δ̃, Ỹ+ δ̃, t) = 0.

This equation gives the preconditioned function δ̃ = H̃SI(Ỹ), and the application
of the Newton-Krylov methods is then straightforward. This technique is referred
to as the semi-implicit KDC (SI-KDC) technique. Following the discussions in

Sec. 2.3, the Jacobian matrix of H̃SI is obtained by

(3.5) JH̃SI
= −

(
∂F

∂Y
+

∂FE

∂y
∆tS̃E +

∂FI

∂y
∆tS̃I

)−1(
∂F

∂Y
+

∂F

∂y
∆tS

)

10 Bu et al

which is closer to −I compared with the Jacobian of the original collocation for-
mulation in Eq. (2.10), since S̃E and S̃I are approximations of S, and ∆t is small.

As the semi-implicit KDC discretization scheme converges to the solution of
the collocation formulation in Eq. (3.3), its accuracy is not significantly different
from results derived using fully implicit preconditioning techniques (or a direct
application of Newton’s method to the collocation formulation). It will, however,
change the condition number of the original system and different preconditioning
techniques (choices of FE and FI) usually result in very different convergence prop-
erties in the (outer) Newton-Krylov iterations. Also, the preconditioning strategies
can significantly change the efficiency of the inner Newton iterations (or even make
such iterations unnecessary) for special stiff DAE systems. In the following, using
simple linear index 1 and index 2 DAE systems of the form xt = a11x+ a12y + a13z

yt = a21x+ a22y + a23z
0 = a31x+ a32y + a33z,

(3.6)

we demonstrate how the choice of splitting can effect the efficiency of the SI-KDC
method. In particular, we focus on the impact on the convergence of the outer
Newton-Krylov iterations and efficiency of the inner process in one SDC iteration.

3.2. Index One DAE System. We first focus on a simple index one version of
Eq. (3.6) by setting a33 ̸= 0 and 1

a33
≈ O(1), and assume all other constants aij are

O(1) except for a22 which is a large negative number. The term with coefficient a22
hence represents the stiff component and all other terms are non-stiff. As discussed
in Sec. 2, we apply the “yp-formulation” to the differential variables x and y instead
of the traditional “y-formulation”. For the algebraic variable z, there are several
ways that this can be done, and we examine three possibilities here.

We first focus on a scheme based on applying the “yp-formulation” to z, and the
corresponding version of the error equation (2.7) becomes

(3.7)

 X̃+ δ̃1
Ỹ + δ̃2

0

 = A

 x0 +∆tSX̃+∆tS̃δ̃1
y0 +∆tSỸ +∆tS̃δ̃2
z0 +∆tSZ̃+∆tS̃δ̃3

where

(3.8) A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 ,

and S̃ is either S̃I or S̃E , representing different preconditioning schemes for different
terms. The equation for δ̃ can then be explicitly written as
(3.9) I −∆tS̃a11 −∆tS̃a12 −∆tS̃a13

−∆tS̃a21 I −∆tS̃a22 −∆tS̃a23
−∆tS̃a31 −∆tS̃a32 −∆tS̃a33

 δ̃1
δ̃2
δ̃3

 = A

 x0 +∆tSX̃

y0 +∆tSỸ

z0 +∆tSZ̃

−

 X̃

Ỹ
0

where I is an identity matrix. Clearly, S̃I should be applied to the stiff term with
coefficient a22. We further assume that we want the provisional solution to remain
on the manifold defined by the algebraic equation constraint 1, by applying S̃I to
{a31, a32, a33} terms (as the backward Euler method is well-defined and exact for a

single algebraic equation). The explicit low-order scheme S̃E can then be applied to

1Once convergence is reached, the algebraic constraint will be satisfied by construction, hence
here we are only considering enforcing the constraint for each KDC iterate.

SI-KDC methods for DAEs 11

all remaining terms. When S̃I and S̃E are respectively the backward and forward
Euler methods, the corresponding semi-implicit time-marching discretization for
Eq. (3.9) becomes δ̃

j+1

1 − a11
∑j+1

l=1 ∆tlδ̃
l−1

1 − a12
∑j+1

l=1 ∆tlδ̃
l−1

2 − a13
∑j+1

l=1 ∆tlδ̃
l−1

3

δ̃
j+1

2 − a21
∑j+1

l=1 ∆tlδ̃
l−1

1 − a22
∑j+1

l=1 ∆tlδ̃
l

2 − a23
∑j+1

l=1 ∆tlδ̃
l−1

3

−a31
∑j+1

l=1 ∆tlδ̃
l

1 − a32
∑j+1

l=1 ∆tlδ̃
l

2 − a33
∑j+1

l=1 ∆tlδ̃
l

3

= A

 x0 + [∆tS ⊗ X̃]j+1

y0 + [∆tS ⊗ Ỹ]j+1

z0 + [∆tS ⊗ Z̃]j+1

−

 X̃j+1

Ỹj+1

0

where ∆tl+1 = tl+1 − tl. Note that to march from tj to tj+1 in this specific semi-
implicit low-order time stepping procedure, the linear system for the unknowns
becomes δ̃

j+1

1

δ̃
j+1

2 − a22∆tj+1δ̃
j+1

2

−a31∆tj+1δ̃
j+1

1 − a32∆tj+1δ̃
j+1

2 − a33∆tj+1δ̃
j+1

3

 = RHS

where all the known quantities are collected in RHS. As the unknowns are “de-

coupled”, one can first solve the two “single variable” equations for δ̃
j+1

1 and δ̃
j+1

2 ,

and then solve the last equation for δ̃
j+1

3 . Therefore the evaluation of the new

function H̃SI is less expensive than evaluating H̃FI in the FI-KDC scheme where
S̃I is applied to all terms and a 3× 3 linear system must be solved.

As for the outer Newton-Krylov iterations, we compare the Jacobian matrix of
the resulting semi-implicit KDC schemeE −∆tS̃E ⊗

 a11 a12 a13
a21 0 a23
0 0 0

−∆tS̃I ⊗

 0 0 0
0 a22 0
a31 a32 a33

−1

(∆tS⊗A−E)

with that from the fully-implicit KDC approachE −∆tS̃I ⊗

 a11 a12 a13
a21 a22 a23
a31 a32 a33

−1

(∆tS⊗A−E), where E =

 I 0 0
0 I 0
0 0 0

 .

It can be shown analytically that the eigenvalues of the SI-KDC Jacobian matrix
are similarly distributed to those from FI-KDC for sufficiently small ∆t, as ∆tS̃Ia22
is the dominant part in both matrices. Therefore the convergence properties of the
Jacobian-Free Newton-Krylov methods are similar for both SI-KDC and FI-KDC
methods. In Sec. 4, we present numerical results for the eigenvalue distributions
for different preconditioning techniques.

Note that applying S̃I to more terms in Eq. (3.9) will generate schemes with

similar convergence properties. However the evaluation of the functions H̃ may be-
come more expensive as the unknowns may no longer decouple and a larger system
has to be solved. Also, it is possible to modify the requirement that the provisional
solution satisfies the algebraic equation, e.g., we can apply S̃E to {a31, a32} terms,
however this will significantly change the eigenvalue distribution compared with the
FI-KDC scheme.

12 Bu et al

In our second formulation, instead of applying the “yp-formulation” to the alge-
braic variable z, we use z directly

(3.10)

 X̃+ δ̃1
Ỹ + δ̃2

0

 = A

 x0 +∆tSX̃+∆tS̃δ̃1
y0 +∆tSỸ +∆tS̃δ̃2

z̃+ δ̃3

 .

In the numerical implementation, this second form avoids the introduction of the
variable Z̃, but does not change significantly the distribution of eigenvalues of
the Jacobian associated with this formulation (and hence the convergence of the
Newton-Krylov scheme).

Finally, we note that it is unnecessary to introduce the variable Z̃, and we can
eliminate the variable δ̃3 in Eq. (3.10) by working with z directly. We can therefore
work on the simpler system

(3.11)

 X̃+ δ̃1
Ỹ + δ̃2

0

 = A

 x0 +∆tSX̃+∆tS̃δ̃1
y0 +∆tSỸ +∆tS̃δ̃2

z̃

 .

An immediate advantage of this formulation is that given the provisional solutions
X̃ and Ỹ, we can use a semi-implicit scheme to derive low-order solutions of δ̃1, δ̃2
and z at each node point, and define a reduced size function [δ̃1, δ̃2] = H̃RS(X̃, Ỹ).
Due to the reduced system size, the (outer) Newton-Krylov method becomes more
efficient while requiring less memory. For our specific index 1 system, detailed
algebraic manipulation of the function H̃RS returns its Jacobian matrix[

I −∆tS̃a11 +∆tS̃ a13a31

a33
−∆tS̃a12 +∆tS̃ a13a32

a33

−∆tS̃a21 +∆tS̃ a23a31

a33
I −∆tS̃a22 +∆tS̃ a23a32

a33

]−1

(
∆tS ⊗

[
a11 − a13a31

a33
a12 − a13a32

a33

a21 − a23a31

a33
a22 − a23a32

a33

]
−
[

I 0
0 I

])
.

In this formulation, S̃I is associated with the a22 term. The requirement that
the provisional solution satisfies the algebraic equation constraint at all nodes is
equivalent to applying S̃I to terms associated with coefficient factors a31 and a32,
and S̃E can be applied to all remaining terms. Note that for small ∆t, the Jacobian
matrix H̃RS approaches the negative identity matrix.

Finally, as in the first formulation, it may not be necessary to enforce the re-
quirement that the provisional solution always stays on the manifold described by
the algebraic equation. Hence, under appropriate conditions, S̃E can be applied to
terms with coefficient factors a31 and a32, especially when the coefficients a13a31

a33
,

a13a32

a33
, a23a31

a33
, and a23a32

a33
are O(1).

In summary, even for a simple example, there are multiple ways in which the
SI-KDC method can be formulated, and the choice can affect the computational
cost of applying the preconditioner. In Sec. 4, some numerical tests are presented to
show that the choice can also affect the convergence of the (outer) Newton-Krylov
iterates in the SI-KDC methods. Therefore the choice of splitting must be carefully
considered and will depend on the problem at hand.

3.3. Index Two DAE System. We demonstrate here that the task of finding
proper semi-implicit splittings becomes even more involved for higher-index DAE
systems. In this section, focusing on the scheme where the “yp-formulation” is

SI-KDC methods for DAEs 13

applied to both differential and algebraic variables, we again consider Eq. (3.6) but
now with

(3.12) A =

 a11 a12 a13
a21 a22 a23
a31 a32 0

so that the index is two. Again we assume that a22 creates the stiffness in the equa-
tion and study the convergence and stability properties of different preconditioning
techniques.

Following the presentation for the index 1 case above, for the first formulation,
Eq. (3.9) becomes I −∆tS̃a11 −∆tS̃a12 −∆tS̃a13

−∆tS̃a21 I −∆tS̃a22 −∆tS̃a23
−∆tS̃a31 −∆tS̃a32 0

 δ̃1
δ̃2
δ̃3

 = A

 x0 +∆tSX̃

y0 +∆tSỸ

z0 +∆tSZ̃

−
 X̃

Ỹ
0

 .

where S̃ is either S̃I or S̃E representing the low-order approximation of the integra-
tion operator. Clearly, we have to apply S̃I to the stiff component with coefficient
a22. If we want to enforce the condition that the provisional solution stays on the
manifold defined by the algebraic equation, S̃I should be applied to both a31 and
a32 terms. Also, we can apply S̃E to a11, a12, and a21 terms. In the following, we
discuss different strategies for a13 and a23 terms, corresponding to terms related
with the algebraic variable z in the system.

Our first observation is that, unlike in the first formulation for index one DAE
systems, S̃E can no longer be applied to both a13 and a23 terms, as doing so gen-
erates a singular linear system when marching from tj to tj+1, since all coefficients

for δ̃
j+1

3 are zero. Three remaining possibilities are to apply S̃I to both terms (case

II); or S̃E to a13 and S̃I to a23 (case EI); or S̃I to a13 and S̃E to a23 (case IE).
Applying the implicit function theorem, we can derive the Jacobian matrix for each
function H̃ in the KDC framework. The Jacobian matrix JII for case II is given byE −∆tS̃E ⊗

 a11 a12 0
a21 0 0
0 0 0

−∆tS̃I ⊗

 0 0 a13
0 a22 a23
a31 a32 0

−1

(∆tS⊗A−E),

JEI isE −∆tS̃E ⊗

 a11 a12 a13
a21 0 0
0 0 0

−∆tS̃I ⊗

 0 0 0
0 a22 a23
a31 a32 0

−1

(∆tS⊗A−E),

and JIE isE −∆tS̃E ⊗

 a11 a12 0
a21 0 a23
0 0 0

−∆tS̃I ⊗

 0 0 a13
0 a22 0
a31 a32 0

−1

(∆tS⊗A−E).

Similarly, repeating this procedure for the FI-KDC scheme, we get the Jacobian
matrix JFI E −∆tS̃I ⊗

 a11 a12 a13
a21 a22 a23
a31 a32 0

−1

(∆tS ⊗A− E).

It is possible to understand the properties of the four different preconditioning
techniques by studying the condition numbers for simple 3×3 matrices representing

14 Bu et al

the linear system to be solved during each step when marching from tj to tj+1. In

the following, we assume the stiff component I −∆tS̃Ia22 in the matrix

(3.13)

 I −∆tS̃a11 −∆tS̃a12 −∆tS̃a13
−∆tS̃a21 I −∆tS̃a22 −∆tS̃a23
−∆tS̃a31 −∆tS̃a32 0

is about order λ, and the magnitude of other terms is either order ϵ when ∆tS̃I is
applied, or 0 when an explicit time stepping scheme is used. The matrices for cases
II, EI, and IE, and the fully implicit FI-KDC formulation are 1 0 ϵ

0 λ ϵ
ϵ ϵ 0

 ,

 1 0 0
0 λ ϵ
ϵ ϵ 0

 ,

 1 0 ϵ
0 λ 0
ϵ ϵ 0

 , and

 1± ϵ ϵ ϵ
ϵ λ ϵ
ϵ ϵ 0

 ,

respectively. For λ = 103 and ϵ = 10−3, the condition number of the Jacobian ma-
trix for each formulation is similar to that of the corresponding matrix above, given
by 9.99 · 108, 1.00 · 1012, 1.00 · 109 and 9.99 · 108, respectively, and the correspond-
ing eigenvalues are almost identical. We therefore conclude that the convergence
and stability properties of case II and IE are similar to FI-KDC, while case EI is
not a proper preconditioner as it is more ill-conditioned. Numerical experiments
presented in Sec. 4.5 on a similar problem show that the number of iterations in
the outer Newton-Krylov methods for both cases II and IE are approximately the
same as that of the FI-KDC. However as the unknowns can be decoupled in the
IE formulation (during the substep from tj to tj+1, we can first solve the second

equation for δ̃2 at tj+1, then the third equation for δ̃1, and finally the first equation

for δ̃3), hence case IE is the most efficient preconditioning approach.
In summary, a good semi-implicit preconditioning technique should reduce the

amount of work required for evaluating the corresponding function H̃ without signif-
icantly changing the convergence properties of the outer Newton-Krylov methods.
This is possible for many stiff DAE systems, especially for those with nonlinear
non-stiff components and linear stiff parts. However, the optimal semi-implicit
preconditioner is problem dependent and requires an understanding of the under-
lying properties of the system. Also, in order to fully exploit the efficiency of the
new KDC methods, optimized strategies have to be developed for the selection of
adaptive step-size, order of the method, proper Newton-Krylov methods, as well
as several different parameters. As the discussion here indicates, optimizing the
performance of KDC methods for a given class of problems is an open research
problem.

4. Preliminary Numerical Results

In this section, we present several numerical examples to illustrate the perfor-
mance of the SI-KDC methods and validate the analyses presented in the previous
section.

4.1. Linear Index One DAE System. In the first example, we consider a stiff
linear index one DAE system
(4.1)

1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 0

y1
y2
y3
y4

′

=

2 0 −1 1
0 −104 0 0
1 0 0 0
1 1 0 1

y1
y2 − exp(t)

y3
y4

+

0

exp(t)
0
0

SI-KDC methods for DAEs 15

where the analytic solution is [cos(t), exp(t), sin(t), -cos(t)]. Following the presen-
tation in Sec. 3.2, the first splitting of the equations is formed by decomposing the
matrix on the right hand side of Eq. (4.1) into two parts:

2 0 −1 1
0 −104 0 0
1 0 0 0
1 1 0 1

 =

2 0 −1 1
0 0 0 0
1 0 0 0
0 0 0 0

+

0 0 0 0
0 −104 0 0
0 0 0 0
1 1 0 1

 .

The first piece of the matrix splitting represents the terms to be handled explic-
itly in the SI-KDC preconditioner, and the second represents those to be handled
implicitly. We treat the algebraic constraint implicitly to keep the solution on the
manifold defined by this algebraic equation in each iteration.

To test the efficiency of the semi-implicit formulation, we compare the eigenvalue
distribution of the matrix JSI +I derived from Eq. (3.5) to that of JFI +I from the
FI-KDC method. The particular discretization used is for ∆t= 0.2 and 5 Radau IIa
nodes. In Fig. 4.1, the eigenvalues of the respective Jacobians are plotted, and it
is evident that those from the SI-KDC approach are almost identical to those from
FI-KDC. As the convergence of the outer Newton-Krylov schemes is determined by
the eigenvalue distributions, this would indicate the SI-KDC method will converge
to the collocation formulation at the same rate as FI-KDC. However, since we can
easily derive δ̃3 from the 3rd equation and then δ̃1 from the first equation, the SI-
KDC method will have much lower computational cost than the FI-KDC approach.

−2 −1.5 −1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

Real part of eigenvalues

Im
ag

in
ar

y
pa

rt
 o

f e
ig

en
va

lu
es

FI−KDC
SI−KDC

Figure 2. Comparing eigenvalue distributions of SI-KDC with
FI-KDC for linear index 1 DAE system. Note the different scales
on the x-axes.

One concern when using the KDC type methods is the storage and number of
operations required by the Krylov subspace methods. When GMRES is used, the
required memory and number of multiplications grow linearly and quadratically
with iterations, respectively. For large scale partial differential equation applica-
tions, spatial data must be stored at each of the p nodes and at each of the GMRES
iterations, and the required memory storage may quickly exceed existing computer

16 Bu et al

architecture capacities. Hence alternative Krylov methods are often preferred, such
as the restarted GMRES, Bi-conjugate gradients stabilized (BiCGStab), and trans-
pose free quasi minimal residual (TFQMR) methods. In Fig. 3, we compare the
convergence of the GMRES with BiCGStab and TFQMR. In the experiments, we
use 5 Radau points and time step-size ∆t= 0.1 for t ∈ [1, 1.1]. Our numerical results
show very similar convergence rates for these methods, however for the BiCGStab
and TFQMR based methods the required memory is bounded, and the number of
multiplications grows linearly with iteration number.

1 2 3 4 5

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Number of Krylov Iterations

R
es

id
ua

l

GMRES
BiCGStab
TFQMR

Figure 3. Comparing different Krylov subspace methods.

As mentioned in Sec. 3.2, other SI-KDC formulations can be considered for
this index 1 DAE system. In the following, we study the convergence and effi-
ciency of the third approach in which the error equation formulation is not applied
to the algebraic variable and the “reduced-size” function given by [δ̃1, δ̃2, δ̃3] =

H̃RS(Ỹ1, Ỹ2, Ỹ3) has only 3 unknowns instead of 4 in the first formulation. In the
experiment, we march from t = 0.0 to t = 10.0 for different step-sizes and plot
the error as functions of the (left) step-sizes and (right) number of function calls
in Fig. 4. It can be seen that the SI-KDC scheme using the third formulation with
reduced system size uses fewer function evaluations and hence is more efficient for
the same accuracy requirement.

4.2. Nonlinear Index One DAE System. In our second example, we consider
a stiff nonlinear DAE problem
(4.2) y1 − cos(t)

y2 − sin(t)
0

′

=

 0 0 0
0 −106 0
0 0 0

+ U

 −1 0 0
0 0 0
1 1 1

UT

 (y1 − cos(t))y2
y2 − sin(t)

y3 − t

where U is an orthogonal matrix. For this system, the non-stiff component is
nonlinear and the stiff part linear, we therefore apply the explicit S̃E to the non-
stiff component and the implicit S̃I to the stiff part. Notice that only one linear
solve is required in the inner Newton iterations in the SI-KDC scheme whereas a
nonlinear problem would arise in the FI-KDC scheme. In the following, we compare

SI-KDC methods for DAEs 17

(a) (b)

10
−1

10
0

10
−8

10
−6

10
−4

Step−size

E
rr

o
r

Comparing original system with reduced system

Original System
Reduced System

10
3

10
4

10
−8

10
−6

10
−4

Number of function calls

E
rr

o
r

Comparing original system with reduced system

Original System
Reduced System

Figure 4. The error as functions of stepsize (left) and number of
function calls (right).

the convergence behavior and CPU time of the SI-KDC scheme with those from FI-
KDC where implicit time stepping schemes are applied to all terms in the system.
In Fig. 5, we compute the solution from t0 = 0.2 to tfinal = 0.25 with step-size
∆t = 0.05 using 5 Radau IIa points, and examine the residual after each (outer)
Krylov iteration for both SI-KDC and FI-KDC methods. It can be seen that the
convergence behavior in the SI-KDC scheme is very similar to that in FI-KDC.

1 2 3 4
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Number of Krylov Iterations

R
es

id
ua

l

SI−KDC
FI−KDC

Figure 5. Comparing the convergence of SI-KDC and FI-KDC
methods for nonlinear index 1 DAE system.

To compare the CPU time and the number of function evaluations, we use dif-
ferent number of nodes (3, 5, 7, 9 and 12) and march from t = 0 to tfinal = 10.0
with step-size ∆t = 1.0. In Fig. 6, we plot the error as functions of the (left) CPU

18 Bu et al

time and (right) number of function evaluations (each access to Eq. (4.2) is defined
as one function call) for each method. Each data point represents the result for a
specific number of nodes. Clearly, for the same accuracy requirement, the SI-KDC
scheme is much faster than FI-KDC, since only one linear solve is required when
marching from tj to tj+1 for the SI-KDC method, while a nonlinear equation system
must be solved in the FI-KDC approach. In Fig. 7, we plot how the error changes

(a) (b)

10
−3

10
−2

10
−1

10
0

10
−12

10
−10

10
−8

10
−6

10
−4

CPU time

E
rr

o
r

FI−KDC
SI−KDC

10
3

10
4

10
5

10
−12

10
−10

10
−8

10
−6

10
−4

Number of function evaluations

E
rr

o
r

FI−KDC
SI−KDC

Figure 6. The error as functions of CPU time (left) and number
of function evaluations (right).

as a function of the number of function evaluations using different time step sizes
(∆t= 0.25, 0.5, 1.0, and 2.0) and number of node points (3, 4, and 5) for both
SI-KDC and FI-KDC when marching from t0 = 0 to tfinal = 10.0. Each data point
represents the number of function evaluations and accuracy for a specific set of ∆t
and number of nodes. We can see that for the same accuracy requirement, the
SI-KDC scheme is much faster than FI-KDC; and for both methods, higher-order
schemes (more nodes) are more efficient than lower-order ones for higher-accuracy
requirements.

4.3. Electrical Power System. Differential algebraic equations have been widely
used in the study and engineering of the bulk transfer of electrical power (see e.g.,
[5, 48, 60]). Typical electrical power system networks include a large number of
dynamic and static components such as generators, exciters, governors, loads, trans-
formers, and other power electronic devices, where the dynamics and constraints for
each individual component are often modeled by a system of DAEs. As the power
systems exhibit a wide-range of time varying dynamics that may span several or-
ders of magnitude, their efficient numerical simulations are considered challenging.
In this section, to evaluate the performance of the SI-KDC approach, we consider
a simple power stabilizer system which has 9 buses and 3 generators with constant
power loads. Each generator has 2 states, so the number of differential states and
algebraic equations are 6 and 18, respectively. This system can be described by the

SI-KDC methods for DAEs 19

10
3

10
4

10
5

10
−10

10
−8

10
−6

10
−4

10
−2

E
rr

or

Number of function evaluations

SIKDC3
SIKDC4
SIKDC5
FIKDC3
FIKDC4
FIKDC5

Figure 7. Comparing SI-KDC with FI-KDC for different step
sizes and number of nodes.

following index 1 DAE system:

δ′ = Ωb(ω − 1),

ω′ = (Pm − Pe −D(ω − 1))/M,

Vi

∑
(Vj(Gij cos(θi − θj) +Bij sin(θi − θj))) + Pgi − Pdi = 0,

Vi

∑
(Vj(Gij sin(θi − θj)−Bij cos(θi − θj))) +Qgi −Qdi = 0,

where the differential variables δ and ω are the internal state vectors (generators and
loads), and Vi and θi are the algebraic variables for voltage magnitude and phase.
In the system, D is a coefficient representing a damping factor, and when D has a
large magnitude, the system becomes stiff with the term −D(ω−1) being linear and
stiff and other terms are nonlinear and non-stiff. Here M is an inertia constant; Pm

denotes the mechanical power; Pe = f(Vi, θi) is the electrical power; Pg = f(δi, θi)
and Qg = f(δi, θi) represent respectively the active and reactive power injected
in the network by generators; Pd and Qd are respectively the active and reactive
power absorbed from the network by loads; and Gij and Bij are respectively a
real and an imaginary part of an admittance matrix to represent the current status
between load i and load j. Also, the first two sets of differential equations model
the dynamics of the generators and loads, and the remaining algebraic equations
represent the fast power balance dynamics on the sparsely connected distribution
network of power lines and buses. To study the dynamics of the system, we assume
a one-phase fault on a line between bus 2 and bus 7 occurs at t = 1, and clears
out at t = 2. When the fault occurs, the shunt admittances of the network are
modified and the admittance matrix is recomputed. We neglect further details of
this model and techniques to split other systems to stiff and non-stiff in general,
and refer interested readers to [5, 48, 60].

In the simulation, we require that the provisional solution stays on the manifold
defined by the algebraic constraints, by applying implicit schemes to all terms in

20 Bu et al

the algebraic equation. For the differential equations, we apply explicit schemes to
both non-stiff components and algebraic variables, and implicit schemes only to the
stiff components. In Fig. 8, we first show how the accuracy of the SI-KDC method
depends on the number of Radau IIa nodes and different time step sizes, by plotting
the accuracy as a function of the number of total nonlinear solves (one nonlinear
solve is required for each substep from tj to tj+1). It can be seen that (a) for a

80 100 120 140 160 180 200
10

−12

10
−10

10
−8

10
−6

10
−4

Number of nonlinear solves

E
rr

or

n=3
n=4
n=5
n=6
n=7
n=8

Figure 8. Accuracy of SI-KDC method vs. number of nonlinear
solves for different number of nodes.

fixed number of nodes, smaller time step sizes (more nonlinear solves) are required
for higher-accuracy requirements, and (b) higher-order methods (more nodes) are
in general more efficient than lower-order ones for higher-accuracy requirements.

In Fig 9, using 6 Radau IIa nodes for each time step from t = 0 to t = 1.8,
to study the convergence properties of the outer Newton-Krylov methods in the
SI-KDC approach, we show the residual after each low-order SDC iteration (one

H̃SI evaluation) (left plot), and how the accuracy depends on the number of total
nonlinear solves required to march from tj to tj+1 (right plot). These results are
compared with those from the FI-KDC approach. Clearly, the FI-KDC approach is
optimal in stability and has (slightly) better convergence rates in the outer Newton-

Krylov iterations, however the residual after each H̃ evaluation (SDC iteration) in
the SI-KDC method decays in a very similar way as in FI-KDC. As explicit schemes
are applied to the non-stiff components and algebraic variables in the differential
equations, the size of nonlinear system from the SI-KDC scheme is smaller than
that from FI-KDC method, and therefore the SI-KDC preconditioning technique is
more efficient than FI-KDC for this specific application.

There exist many numerical simulation tools and methods for power systems
[2, 40, 60], including the techniques based on splitting the DAE systems to dif-
ferential and algebraic parts and solving them separately using ODE solvers for
the differential parts and a Newton-type method (e.g. Newton-Raphson) for alge-
braic components. In the following, we compare the performance of our SI-KDC
approach with a MATLAB based package called “PSAT”, a power system solver
based on the Newton-Raphson methods and trapezoidal rules [44]. In Fig. 10, we
examine the accuracy of the SI-KDC approach for different time step sizes and

SI-KDC methods for DAEs 21

(a) (b)

0 5 10 15 20
10

−12

10
−10

10
−8

10
−6

10
−4

Number of SDC iterations

R
e

s
id

u
a

l

SI−KDC
FI−KDC

0 50 100 150 200

10
−12

10
−10

10
−8

10
−6

10
−4

Number of nonlinear solves

E
rr

o
r

SI−KDC
FI−KDC

Figure 9. (left) Residual after each SDC iterations, and (right)
accuracy vs. number of nonlinear solves.

number of nodes, and compare the results with those from PSAT. In the figure,
each curve represents the results for a fixed time step-size, and each point on a
curve represents a different number of nodes used in the simulation, ranging from
3 to 10. Clearly, for a fixed step-size, more nodes generate higher-accuracy results,
and higher-order methods are more efficient for a prescribed accuracy requirement.
Also, compared with PSAT, the SI-KDC requires far fewer nonlinear solves for the
same accuracy requirement. In our simulation, fixed step sizes are used for both
SI-KDC and PSAT.

10
2

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Number of nonlinear solves

E
rr

or

dt=1
dt=0.5
dt=1/3
dt=0.2
psat(dt=0.01)

Figure 10. Comparing the accuracy and efficiency of SI-KDC
with PSAT.

22 Bu et al

4.4. Transistor Amplifier Problem. In our next example, we consider the tran-
sistor amplifier problem in [1] which is a stiff DAE system of index 1 consisting of
8 equations given by

M
dy

dt
= f(y), y(0) = y0, y′(0) = y′0,

with y ∈ R8 and 0 ≤ t ≤ 0.2. The matrix M is of rank 5 and is given by

M =

−C1 C1 0 0 0 0 0 0
C1 −C1 0 0 0 0 0 0
0 0 −C2 0 0 0 0 0
0 0 0 −C3 C3 0 0 0
0 0 0 C3 −C3 0 0 0
0 0 0 0 0 −C4 0 0
0 0 0 0 0 0 −C5 C5

0 0 0 0 0 0 C5 −C5

.

The function f is defined as

f(y) =

−Ue(t)
R0

+ y1

R0

−Ub

R2
+ y2(

1
R1

+ 1
R2

)− (α− 1)g(y2 − y3)

−g(y2 − y3) +
y3

R3

−Ub

R4
+ y4

R4
+ αg(y2 − y3)

−Ub

R6
+ y5(

1
R5

+ 1
R6

)− (α− 1)g(y5 − y6)

−g(y5 − y6) +
y6

R7

−Ub

R8
+ y7

R8
+ αg(y5 − y6)
y8

R9

where g and Ue are auxiliary functions given by g(x) = β(e

x
UF − 1) and Ue(t) =

0.1 sin(200πt). A fully implicit KDC scheme was applied to this problem in [33],
and numerical results show that for the same accuracy requirements, the efficiency
of the uniform FI-KDC solver is comparable to existing optimized adaptive solvers,
including the MEBDFI and RADAU packages (see [1] for discussions of the two
methods), especially when higher-accuracy is required.

For this example, as the stiffness also comes from the nonlinear components
(g(x) terms), we consider two different SI-KDC strategies for discretizing these
terms. In the first scheme denoted by “SI-KDC-S” (S for Simple), we apply an
explicit method to g terms, and an implicit scheme to the remaining linear terms.
In the second method, as the derivative of g(x) is easily available for this specific
example, we employ a “linearly-implicit” approach by rewriting g(y) as

g(y) = g(y)− g′(y0)(y − y0) + g′(y0)(y − y0)

= (g(y)− g′(y0)y) + g′(y0)y.

We then apply an implicit scheme to the linearized terms, and an explicit scheme
to the remaining nonlinear terms. We denote the second method as “SI-KDC-J”
due to the use of the Jacobian matrix.

In Fig. 11, we show how the residual changes as a function of the number of
SDC iterations and compare with the FI-KDC scheme using two representative
time steps of size ∆t = 0.0016666: in the left panel t ∈ [0.003333, 0.005] and in
the right [0.008333, 0.01]. In our simulation, we use 8 Radau IIa nodes, and the
numerical discretization error from the GRK formulation is approximately 1.5e−4.
It can be seen that more SDC iterations (H̃ evaluations) are required by the SI-
KDC-S scheme than either the SI-KDC-J or the FI-KDC method. Also, in the

SI-KDC methods for DAEs 23

right panel, the SI-KDC-J converges very similarly to the FI-KDC method. It is
worth noting also that when the stepsize is chosen to be 0.005 or larger for this
problem, one can observe overflow in the solution for both SI-KDC schemes, due
to the over-flow in the SI predictor.

0 20 40 60
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Number of SDC iterations

R
es

id
ua

l

t=[0.003333, 0.005]

0 20 40 60 80
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Number of SDC iterations

R
es

id
ua

l

t=[0.008333, 0.01]

FI−KDC
SI−KDC−S
SI−KDC−J

FI−KDC
SI−KDC−S
SI−KDC−J

Figure 11. Magnitude of the residual versus iteration for FI-
KDC, SI-KDC-S, and SI-KDC-J schemes.

However, as only one linear solve is required when marching from ti to ti+1

in each SDC iteration in the SI-KDC, while a nonlinear Newton type solver (we
adapted a package from [36] in our code) has to be introduced in FI-KDC, one

H̃ evaluation in SI-KDC is less expensive than that in FI-KDC. As a result, the
SI-KDC preconditioning strategies are often preferred as they can be more efficient
in CPU time, even though fewer number of SDC iterations may be required by the
FI-KDC scheme in most cases. This is further explained in Fig. 12, in which we use
8 Radau IIa nodes, and solve from t = 0 to 0.01 using different time step-sizes. In
the left plot, we show the error versus time step-size for the SI-KDC-S, SI-KDC-J,
and FI-KDC methods. As these methods solve the same GRK formulation, it is not
surprising that the error for a given time step is almost identical for each approach.
In the right plot, we show the CPU time and accuracy of these methods. It can
be seen that (1) compared with the FI-KDC scheme, both SI-KDC methods are
more efficient for the same accuracy requirements; and (2) as the Jacobian matrix
can be easily evaluated in this example, the SI-KDC-J scheme outperforms the SI-
KDC-S strategy, due to the reduced number of iterations when using the linearized
approximation.

We therefore conclude that the SI-KDC schemes may also be applied to prob-
lems with nonlinear mildly stiff components, especially when the number of the
corresponding “bad” eigenvalues which cause the stiffness is small, and no overflow
happens for the selected stepsizes in the computation. We refer interested read-
ers to [32] for further examples where explicit KDC methods work on mildly stiff
problems, while the original SDC methods may be divergent.

4.5. Linear Index Two DAE Systems. Finally in this section, to numerically
validate the analyses in Sec. 3.3, we study the SI-KDC techniques for two different

24 Bu et al

10
−4

10
−3

10
−2

10
−7

10
−6

10
−5

10
−4

10
−3

Time step size

M
ax

 E
rro

r
Convergence

FI−KDC

SI−KDC−S

SI−KDC−J

10
0

10
2

10
4

10
−7

10
−6

10
−5

10
−4

10
−3

CPU time

M
ax

 E
rro

r

Efficiency Comparison

FI−KDC

SI−KDC−S

SI−KDC−J

Figure 12. Comparing the order and CPU time of the FI-KDC
and SI-KDC schemes.

index two DAE systems. We first consider the system (see [6])
x′
1 = (α− 1

2−t)x1 + (2− t)αz + 3−t
2−t exp

t = f1(x1, z),

x′
2 = 1−α

t−2 x1 − 104x2 + (α− 1)z + (104 + 1) expt = f2(x1, x2, z),

0 = (t+ 2)x1 + (t2 − 4)x2 − (t2 + t− 2) expt = g(x1, x2)

with α ∼ O(1). Several semi-implicit approaches can be applied as discussed in
Sec. 3.3. The SI-KDC II approach applies implicit schemes to the algebraic variable
z in both differential equations, and the resulting low-order stepping scheme can
be succinctly represented as

(4.3)

Xj+1

1 = f1(x
j
1, z

j+1),

Xj+1
2 = f2(x

j
1, x

j+1
2 , zj+1),

0 = g(xj+1
1 , xj+1

2)

where the superscript j represents the node point tj , and the original equation is
used instead of the error equation form to simplify the notations. The SI-KDC IE
formulation applies an implicit scheme to z in the first equation, and an explicit
method to z in the second equation as in

(4.4)

Xj+1

1 = f1(x
j
1, z

j+1),

Xj+1
2 = f2(x

j
1, x

j+1
2 , zj),

0 = g(xj+1
1 , xj+1

2).

Similarly, the SI-KDC EI formulation is given by

(4.5)

Xj+1

1 = f1(x
j
1, z

j),

Xj+1
2 = f2(x

j
1, x

j+1
2 , zj+1),

0 = g(xj+1
1 , xj+1

2),

SI-KDC methods for DAEs 25

and the FI-KDC scheme uses the discretization

(4.6)

Xj+1

1 = f1(x
j+1
1 , zj+1),

Xj+1
2 = f2(x

j+1
1 , xj+1

2 , zj+1),

0 = g(xj+1
1 , xj+1

2).

As we discussed in Sec. 3.3, the SI-KDC EI preconditioning technique is ill-
conditioned, which is validated by the eigenvalue distribution of the matrix JEI +I
plotted in the left of Fig. 13, in comparison with those from JIE + I. In the right
plot of Fig. 13, we compare the eigenvalue distributions of the SI-KDC IE with
the fully implicit approach in Eq. (4.6), it can be seen that the eigenvalues are
very similarly distributed, therefore the convergence properties of the SI-KDC IE
approach is similar to those of the FI-KDC method. In Table. 1, we show the
condition number of the Jacobian matrix for different low-order stepping schemes
and different number of nodes. Not surprisingly, the condition number of the SI-
KDC EI matrix is huge and increases very rapidly as the number of nodes increases.

(a) (b)

−5 0 5 10 15

x 10
11

−20

−10

0

10

20

Real part of eigenvalues

Im
a

g
in

a
ry

 p
a

rt
 o

f
e

ig
e

n
v
a

lu
e

s

SIKDC−IE
SIKDC−EI

−80 −60 −40 −20 0 20
−8

−6

−4

−2

0

2

4

6

8

Real part of eigenvalues

Im
a

g
in

a
ry

 p
a

rt
 o

f
e

ig
e

n
v
a

lu
e

s

FI−KDC
SIKDC−IE

Figure 13. Comparing the eigenvalue distributions for (left) SI-
KDC IE and SI-KDC EI, and (right) SI-KDC IE and FI-KDC.

SI-KDC II SI-KDC IE SI-KDC EI FI-KDC
n=3 1.0961e+10 1.0895e+10 3.7478e+17 9.2462e+09
n=4 1.0488e+10 1.0372e+10 3.6052e+19 9.4638e+09
n=5 1.0406e+10 1.0229e+10 2.7762e+21 9.7303e+09
n=8 1.0691e+10 1.0248e+10 1.1832e+27 1.0405e+10
n=10 1.1015e+10 1.0323e+10 8.7312e+30 1.0821e+10
n=15 1.2053e+10 1.0491e+10 2.2292e+38 1.1951e+10
n=20 1.3376e+10 1.0603e+10 4.8088e+43 1.3307e+10

Table 1. Condition number of Eq. (3.13) for different node num-
bers and preconditioners.

26 Bu et al

Note that for special systems, SI-KDC EI can be stable. Consider the index two
system x′

1 = x1 = f1(x1),
x′
2 = 2x1 − 105x2 + z + (105 + 1) exp(t) = f2(x1, x2, z),

0 = x1 + x2 = g(x1, x2)

where the algebraic variable z does not appear in the first equation. For this
problem, the eigenvalue distribution of the matrix JEI + I is almost identical to
that of the FI-KDC as shown in Fig. 14, and the SI-KDC EI approach becomes
stable. In our numerical simulation, we use 7 Radau nodes for each time step, and

−150 −100 −50 0 50
−15

−10

−5

0

5

10

15

Real part of eigenvalues

Im
ag

in
ar

y
pa

rt
 o

f e
ig

en
va

lu
es

FI−KDC
SI−KDC

Figure 14. Comparing SI-KDC and FI-KDC for index 2 linear DAE.

march from t = 0.2 to t = 1.2 using step-size ∆t = 0.1. As the system is linear,
no Newton iterations are required and we use the GMRES method to solve the
preconditioned system. In Fig. 15, we compare the residual after each GMRES
step for both the SI-KDC EI and FI-KDC methods for one time step. Again, the
convergence of the SI-KDC EI approach is very similar to that of the FI-KDC.

We have also studied other higher-index DAE systems and our analysis and
numerical experiments show that designing optimal semi-implicit schemes for stiff
DAE systems are highly problem dependent, and requires detailed study of the
linearized system.

5. Conclusion

In this paper, semi-implicit KDC (SI-KDC) techniques are introduced for stiff
DAE systems and compared with fully-implicit KDC (FI-KDC) methods. The SI-
KDC technique treats the non-stiff components in the SDC preconditioner using
explicit methods and solves the stiff parts using implicit schemes. Our analysis and
numerical experiments show that when proper semi-implicit splittings are used,
the eigenvalues from the Jacobian matrix of the preconditioned function H̃SI are
similarly distributed as those from the FI-KDC method. However, when march-
ing from tj to tj+1, the SI-KDC preconditioner only requires the solution of a

SI-KDC methods for DAEs 27

1 2 3 4 5
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Number of Deferred Correction Iterations

R
es

id
ua

l

FI−KDC
SI−KDC

Figure 15. Comparing the SI-KDC and the FI-KDC for index 2
linear DAE.

simplified system, compared with the generally fully nonlinear system in the FI-
KDC discretization. The SI-KDC methods are therefore numerically less expensive
than the FI-KDC methods for the same accuracy requirements. Our analysis also
shows that unlike the ODE case, the existence of algebraic equations and algebraic
variables makes the design of optimal semi-implicit schemes a challenging task for
higher-index DAE systems, and requires detailed analysis and understanding of the
underlying system. It is therefore unrealistic to develop general purpose SI-KDC
numerical solvers for higher-index DAEs with optimal efficiency.

Note that the SI-KDC methods can be generalized to many partial differen-
tial equation systems with algebraic constraints. In particular, we are currently
working on the SI-KDC techniques for the Navier-Stokes equations and a two-scale
partial differential equation model for water treatment processes. Results along
these directions will be reported in the future.

References

1. http://pitagora.dm.uniba.it/˜ testset/
2. V. Ajjarapu, Computational Techniques for Voltage Stability Assessment and Control,

Springer, 2007.

3. G. Akrivis, M. Crouzeix, and C. Makridakis, Implicit-explicit multistep methods for quasi-
linear parabolic equations, Numer. Math., 82:521–541, 1999.

4. B. K. Alpert, and V. Rokhlin, A fast algorithm for the evaluation of Legendre expansions,
SIAM J. on Sci. and Stat. Computing, 12,158-179, 1991.

5. P. M. Anderson, Analysis of Faulted Power Systems, Wiley-IEEE Press, 1995.
6. U. M. Ascher, and L. R. Petzold, Computer Methods for Ordinary Differential Equations

and Differential-Algebraic Equations, SIAM, Philadelphia, 1998.
7. U. M. Ascher, S. J. Ruuth, and B. Wetton, Implicit-Explicit Methods For Time-Dependent

PDEs, SIAM J. Numer. Anal, 32, 797–823, 1997.
8. U. M. Ascher, S. J. Ruuth, and R. J. Spiteri, Implicit-Explicit Runge-Kutta Methods for

Time-Dependent Partial Differential Equations Appl. Numer. Math, 25, 151–167, 1997.

9. K. Atkinson, An Introduction to Advanced Numerical Analysis, 2nd edition, John Wiley,
1989.

28 Bu et al

10. W. Auzinger, H. Hofstätter, W. Kreüzer, and E. Weinmuller, Modified defect correc-

tion algorithms for ODEs. Part I: General theory, Numer. Algorithms, 36: 135-156, 2004.
11. R. Barrett, et al., Templates for the Solution of Linear Systems: Building Blocks for

Iterative Methods, 2nd Edition, SIAM, Philadelphia, 1994.
12. S. Boscarino, Erroro analysis of IMEX Runge-Kutta methods derived from differential-

algebraic systems, SIAM J. Numer. Anal., Vol. 45, No. 4, pp. 1600–1621, 2007.
13. S. Boscarino, On an accurate third order implicit-explicit Runge-Kutta method for stiff

problems, Appl. Numer. Math, Vol. 59, pp. 1515–1528, 2009.
14. A. Bourlioux, A.T. Layton, and M.L. Minion, High-Order Multi-implicit spectral deferred

correction methods for problems of reactive flow, J.Comput. Phys., 189, 351–376, 2003.
15. E. Bouzarth, M. Minion, A multirate integrator for regularized stokeslets, J. Comp. Phys.

229 (2010) 4208–4224.
16. K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical Solution of Initial-Value

Problems in Differential-Algebraic Equations, SIAM, Philadelphia, 1995.
17. S. Bu, J. Huang, and M.M. Minion, Semi-implicit Krylov Deferred Correction Methods

for Ordinary Differential Equations, Proceedings of the American Conference on Applied
Mathematics, Houston, May, 2009.

18. M. P. Calvo, and C. Palencia, Avoiding the order eduction of Runge-Kutta methods for
linear initial boundary value problems, Math. Comput., 71, 1529-1543, 2002.

19. M. P. Calvo, J. de Frutos, and J. Novo, Linearly implicit Runge-Kutta methods for

advection-reaction-diffusion equations, Appl. Numer. Math., 37:535–549, 2001.
20. C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods in Fluid

Dynamics, Springer-Verlag, 1988.
21. K. Chen, A. Iserles, and P. G. Ciarlet (Editors), Matrix Preconditioning Techniques

and Applications, Cambridge University Press, 2005.
22. K. Dekker, and J. G. Verwer, Stability of Runge-Kutta methods for stiff nonlinear differ-

ential equations. CWI Monographs. North-Holland, 1984.
23. A. Dutt, L. Greengard, and V. Rokhlin, Spectral deferred correction methods for ordinary

differential equations, BIT, 40(2) 241-266, 2000.
24. A. Dutt, M. Gu, and V. Rokhlin, Fast Algorithms for Polynomial Interpolation, Integra-

tion, and Differentiation, SIAM J. on Num. Anal., 33(5), 1689-1711, 1996.
25. J. Frank, W. Hundsdorfer and J. G. Verwer, Stability of Implicit-Explicit Linear Multi-

step Methods, Applied Numerical Mathematics: Transactions of IMACS, Vol.25,2–3, 1997
26. D. Gottlieb, and S. S. Orszag, Numerical Analysis of Spectral Methods, SIAM, Philadel-

phia, 1977.
27. L. Greengard, Spectral Integration and Two-Point Boundary Value Problems, SIAM J.

Num. Anal. 28, 1071-1080 1991.
28. L. Greengard, and V. Rokhlin, A Fast Algorithm for Particle Simulations, J. Comput.

Phys., 73, 325–348, 1987.

29. E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration: Structure-
Preserving Algorithms for Ordinary Differential Equations, Springer-Verlag, 2002.

30. E. Hairer, C. Lubich, and M. Roche, The Numerical Solution of Differential-Algebraic
Systems by Runge-Kutta Methods, Springer-Verlag, 1989.

31. E. Hairer, and G. Wanner, Solving Ordinary Differential Equations II, Springer, 1996.
32. J. Huang, J. Jia, and M. Minion, Accelerating the Convergence of Spectral Deferred Cor-

rection Methods, J. of Comp. Physics, 214(2), 633–656 , 2006.
33. J. Huang, J. Jia, M. Minion, Arbitrary Order Krylov Deferred Correction Methods for

Differential Algebraic Equations, Comput. Phys., 221,(2), 739–760, 2007.
34. J. Jia, J. Hunag, Krylov deferred correction accelerated method of lines transpose for para-

bolic problems, J. Comput Phys, 227(3),1739-1753, 2008.
35. C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations, SIAM, 1995.

36. C. T. Kelley, Solving Nonlinear Equations with Newton’s Method, SIAM, 2003.
37. C. A. Kennedy and M. H. Carpenter, Additive Runge-Kutta schemes for convection-

diffusion-reaction equations., Appl. Numer. Math., 44:139–181, 2003.

38. D.A. Knoll, D.E. Keyes, Jacobian-free Newton Krylov methods: A survey of approaches
and applications, J. Comput. Phys. 193 (2004) 357-397.

39. P. Kolm, S. Jiang, and V. Rokhlin, Quadruple and octuple layer potentials in two dimen-
sions. I. Analytical apparatus, Appl. Comput. Harmon. Anal. 14, no. 1, 2003.

SI-KDC methods for DAEs 29

40. A. Kurita, H. Okubo, K. Oki, S. Agematsu, D. B. Klapper, N. W. Miller, W. W. Price ,

J. J. Jr.Sanchez-Gasca, K. A. Wirgau, T. D. Younkins , Multiple time-scale power system
dynamic simulation , Power Systems, IEEE Transactions on On page(s): 216- 223, Vol. 8,
Issue: 1, Feb. 1993.

41. A. T. Layton, and M. L. Minion, Conservative Multi-Implicit Spectral Deferred Correction

Methods for Reacting Gas Dynamics, J. Comput. Phys, 194(2), 697-714, 2004.
42. A. T. Layton, and M. L. Minion, Implications of the choice of quadrature nodes for Picard

integral deferred corrections methods for ordinary differential equations, BIT, 45(2), 341-373,
2005.

43. A. T. Layton and M. L. Minion, Implications of the Choice of Predictors for Semi-Implicit
Picard Integral Deferred Correction Methods, Comm.App. Math. and Comp. Sci., 2(1),1–34,
2007.

44. F. Milano, An Open Source Power System Analysis Toolbox, Power Systems, IEEE Trans-

actions on, Vol. 20, No.3, 2005.
45. M. L. Minion, Higher-order Semi-implicit Projection Methods in Numerical Simulations of

Incompressible Flows, Papers from the workshop held in Half Moon Bay, CA, June 19-21,
2001. also LLNL Technical Report UCRL-JC-145295.

46. M. L. Minion, Semi-implicit spectral deferred correction methods for ordinary differential
equations, Comm. Math. Sci., 1:471–500, 2003.

47. M. L. Minion, Semi-Implicit Projection Methods for Incompressible Flow based on Spectral

Deferred Corrections, Appl. Numer. Math., 48 (3-4), 369-387, 2004.
48. N. Mohan, First Course on Power Systems, MNPERE, 2006.
49. L. Pareschi and G. Russo, Implicit-Explicit Runge-Kutta schemes for stiff systems of dif-

ferential equations, volume 3, pages 269–287. Nova Science, 2000.

50. J. O. Pessanha and A. A. Paz, Testing a differential-algebraic equation solver in Long-term
Voltage Stability Simulation, Mathematical Problems in Engineering, 2006.

51. V. Pereyra, Iterated Deferred Correction for Nonlinear Boundary Value Problems, Numer.
Math. 11, 111–125 1968.

52. L. R. Petzold, A Description of DASSL: A Differential-Algebraic System Solver, SAND82-
8637, Sandia National Lab, 1982.

53. A. Rangan, Adaptive Solvers for Partial Differential and Differential-Algebraic Equations,
Ph.D. Thesis, University of California at Berkeley , 2003.

54. A. Rangan, Deferred Correction Methods for Low Index Differential Algebraic Equations,
BIT, Vol.43, No.1,1-18, 2003.

55. Y. Saad, and M. H. Schultz. GMRES: a generalized minimal residual algorithm for solving
non-symmetric linear systems, SIAM J. Sci. Stat. Comp., 7:856–869, 1986.

56. J. M. Sanz-Serna, J. G. Verwer, and W. H. Hundsdorfer, Convergence and Order Re-
duction of Runge-Kutta Schemes Applied to Evolutionary Problems in Partial Differential
Equations, Numer. Math., 50, 405-418, 1986.

57. J. W. Shen and X. Zhong, Semi-implicit Runge-Kutta schemes for the non-autonomous
differential equations in reactive flow computations, Proceedings of the 27th AIAA Fluid
Dynamics Conference, AIAA, June 1996.

58. L. N. Trefethen, and M. R. Trummer, An instability phenomenon in spectral methods,

SIAM J. Numer. Anal, 24, 1008-1023, 1987
59. P. K. Vijalapura, J. Strain, and S. Govindjee, Fractional step methods for index-1

differential-algebraic equations, J. of Comp. Phys., 203(1), 305-320, 2005.
60. D. Yong, V. Ajjarapu, A Decoupled Time-Domain Simulation Method via Invariant Sub-

space Partition for Power System Analysis, Power Systems, IEEE Transactions on On page(s):
11- 18, Volume: 21, Issue: 1, Feb. 2006

61. P. E. Zadunaisky, A method for the estimation of errors propagated in the numerical solution
of a system of ordinary differential equations, The Theory of Orbits in the Solar System and

in Stellar Systems. Proceedings of International Astronomical Union, Symposium 25, 1964.
62. P. E. Zadunaisky, On the Estimation of Errors Propagated in the Numerical Integration of

Ordinary Differential Equations, Numer. Math. 27, 21–40 1976.

30 Bu et al

Department of Mathematics, University of North Carolina, CB # 3250, Phillips

Hall, Chapel Hill NC 27599-3250, USA
E-mail address: agatha@email.unc.edu

Department of Mathematics, University of North Carolina, CB # 3250, Phillips

Hall, Chapel Hill NC 27599-3250, USA
E-mail address: huang@email.unc.edu

Department of Mathematics, University of North Carolina, CB # 3250, Phillips
Hall, Chapel Hill NC 27599-3250, USA

E-mail address: minion@email.unc.edu

