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ABSTRACT

We present a four-dimensional ensemble Kalman filter (4D-LETKF) that approximately and efficiently solves a varia-

tional problem similar to that solved by 4D-VAR, and report numerical results with the Simplified-Parametrized primitive

Equation Dynamics model, a simplified global atmospheric model. We discuss the relationship of 4D-LETKF to other

ensemble Kalman filters and, in our simulations, compare it with two simpler approaches to assimilating asynchronous

observations.

We find that 4D-LETKF significantly improves on the approach of treating asynchronous observations as if they

occur at the analysis time. For a sufficiently short analysis time interval, the approach of computing innovations from

the background state at the observation times and treating those innovations as if they occur at the analysis time is

comparable to 4D-LETKF, but for longer analysis intervals, we find that 4D-LETKF is superior to this approach.

1. Introduction

This paper presents an efficient method of implementing a four-

dimensional ensemble Kalman filter, which we call the Four-

Dimensional Local Ensemble Transform Kalman Filter (4D-

LETKF) for assimilating asynchronous observations. Through

a change of coordinates, three-dimensional LETKF (Hunt et al.,

2007) is equivalent to the Local Ensemble Kalman Filter (LEKF)

of Ott et al. (2004), and locally its analysis is equivalent to the En-

semble Transform Kalman Filter (ETKF) of Bishop et al. (2001)

and Wang et al. (2004). Unlike variational-based data assimila-

tion schemes, ensemble Kalman filter (EnKF) schemes represent

the forecast uncertainty with an ensemble of forecasts. Ensem-

ble based data assimilation is a natural approach since numerical

weather prediction centres, such as NCEP, Meteorological Ser-

vice of Canada (MSC) and ECMWF, already employ ensemble

forecasting operationally to assess the uncertainty in their fore-

casts. Using this information in the data assimilation procedure

has the potential to provide better initial conditions, for both the

main forecast and the ensemble forecast. The goal of an EnKF
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is to generate at regular time intervals an analysis ensemble.

This analysis ensemble of model states should reflect both an

estimate of the true atmospheric state (through its mean) and

the uncertainty of this estimate (through its spread). If success-

ful, then applying the forecast model to the analysis ensemble

from one time yields a background ensemble at the next time.

In this case, the background ensemble represents a probabilis-

tic estimate of the atmospheric state before new observations

are assimilated. The analysis cycle is completed by adjusting

the background ensemble to better fit the new observations. In

particular, the analysis ensemble mean is a weighted average of

the background ensemble mean and the observations, with the

weights determined from the background and observation un-

certainties. More precisely, the analysis ensemble mean is the

model state that best fits the given background and observation

probability distributions.

In a Kalman filter, these distributions are assumed to be Gaus-

sian and the uncertainties are thus characterized by covariance

matrices. The background and observation covariances deter-

mine, via Bayes’ rule, the analysis covariance. In ensemble-

based schemes, the background covariance is computed as the

sample covariance of the background ensemble, and thus to

be consistent one must choose an analysis ensemble whose

sample covariance matches the analysis covariance determined

by the Kalman filter. Early versions of EnKF (Evensen, 1994;

Burgers et al., 1998; Houtekamer and Mitchell, 1998) do this
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Fig. 1. Average analysis errors as functions of pressure (in hPa) for

12-h analysis cycle with 4D-LETKF (solid), FGAT-LETKF (dashes)

and 3D-LETKF (dash–dotted line). Errors are averaged over period of

January 1982 (on all left subfigures) and over period of February 1982

(right subfigures). Variables U-wind (first row) are in metres per

second, temperature (second row) are in Kelvin and height (third row)

are in metres.

stochastically, in the sense that they perturb the observations

randomly and independently when generating each ensemble

member. Another approach is to add the columns of a square

root of the analysis error covariance matrix to the analysis en-

semble mean. This approach is deterministic, provided that a

specific choice of the matrix square root is specified, though

many different choices for the square root are possible (Tippett

et al., 2003). Examples of a deterministic EnKF include the En-

semble Adjustment Kalman Filter (EAKF) of Anderson (2001),

ETKF of Bishop et al. (2001), Ensemble Square Root Filter of

Whitaker and Hamill (2002) and LEKF of Ott et al. (2004).

In an operational setting, the analyses are typically gener-

ated every 6 h, though many observations are available more

frequently. Limited computational time is allowed for each anal-

ysis (less than 10 min at NCEP). Given such constraints, an

efficient algorithm to assimilate asynchronous observations be-

comes important. One approach is the 4D-EnKF of Hunt et al.

(2004). This four-dimensional extension of EnKF finds the anal-

ysis ensemble mean by fitting the linear combinations of the

trajectories of the background ensemble to the asynchronous

observations. This scheme may be thought of as an approxima-

tion to 4D-VAR (Fertig et al., 2007), the four-dimensional data

assimilation technique used operationally by ECMWF (see for

example, Le Dimet and Talagrand, 1986; Courtier et al., 1994;

Rabier et al., 1998, 2000). The main advantages of 4D-EnKF

over 4D-VAR are that, as with other ensemble Kalman filters, it

does not require computing the linear adjoint model for the (non-

linear) forecast model, and it propagates background covariance

information from one analysis cycle to the next.

Fertig et al. (2007) show that 4D-LETKF is comparable

with 4D-VAR in a perfect model simulations with Lorenz-96

model (Lorenz, 1996). Here, we describe 4D-LETKF in more

detail and present results of simulations with the Simplified-

Parametrized primitive Equation Dynamics (SPEEDY) model

(Molteni, 2003). In Section 2, we derive 4D-LETKF from the

variational point of view, and describe how we apply the anal-

ysis locally and incorporate variance inflation. In Appendix A,

we show that when the observation operator is linear, the analy-

sis of 4D-LETKF is equivalent to that of 4D-EnKF (Hunt et al.,

2004) and, in case of synchronous observations, LEKF (Ott et al.,

2004). For an ensemble of size k, LEKF and 4D-EnKF perform

the analysis in a (k − 1)-dimensional space E, using an orthonor-

mal basis consisting of eigenvectors of the background covari-

ance matrix. Here, we show that performing the analysis in a

k-dimensional space S with the background ensemble perturba-

tions as the ‘basis’, each analysis becomes computationally more

efficient. This choice of coordinates is equivalent to that used in

the analysis of ETKF (Bishop et al., 2001). While our choice

of matrix square root is different than in Bishop et al. (2001), it

agrees with the square root used by Wang et al. (2004). A step-

by-step pseudo-algorithm for implementing 4D-LETKF is given

in Appendix B.

Simpler approaches for dealing with asynchronous observa-

tions are to treat the observations as if they occur at the analysis

time (Gustafsson et al., 2001; Lindskog et al., 2001) or use First

Guess at the Appropriate Time (FGAT) of Huang et al. (2002).

FGAT computes the innovations, the differences between the

observations and the model state, at the asynchronous times and

treats these innovations as if they occur at the analysis time. Both

approaches were implemented with 3D-VAR (Courtier et al.,

1998) in a High Resolution Limited Area Model (HIRLAM). In

Section 3, we adapt these approaches to the LETKF formulation

and compare both schemes with 4D-LETKF in perfect model

simulations with the SPEEDY model (Molteni, 2003). Our
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Fig. 2. Average analysis errors of

temperature (in Kelvin) at 500 hPa for 12-h

analysis cycle with 4D-LETKF (top) and

FGAT-LETKF (bottom) during February

1982. In each analysis, the local region size

is 3 × 3 grid points and the observations

frequency is 3 h.

numerical results show that 4D-LETKF produces better anal-

yses than these two simpler approaches when the analysis time

interval is sufficiently long, while the results are similar to FGAT

approach over shorter analysis intervals. We conclude this paper

with a short summary in Section 4.

2. Formulations

The goal of data assimilation is to estimate the true state xt
n of

a system, such as the atmosphere, at current time tn given noisy

observations

yo
l = Hl

(
xt

l

) + εo
l , (1)

where Hl and εo
l are the observation operator and observation

error, respectively, at times {t l : l = 1, 2, . . . , n}, where t l <

t l+1. Typically, the true state xt
n and its underlying dynamics are

unknown. We assume that the evolution of xt
n is modelled by a

chaotic dynamical system:

xt
n+1 = M

(
xt

n

)
, (2)

whereM denotes a non-linear operator. In the derivations below,

we assume that M is invertible. Indeed this is always the case

if M is the evolution operator for a system of ordinary differ-

ential equations. However, M−1 may be difficult to compute in

practice because integrating the model backward in time can be

highly unstable, for example, in atmospheric models where the

underlying system of partial differential equations is irreversible.

We emphasize that we use M−1 only from a theoretical point

of view below, and that the filter we develop in Section 2.1 does

not require M−1 to be computed.

From a probabilistic point of view, we want not just a specific

estimate of xt
n, but a probability distribution p(xn) representing

the likelihood that a particular model state xn is equal to xt
n. As-

suming that observations prior to times t1 have yielded a back-

ground distribution p(xn), the goal of data assimilation is to find

the analysis probability distribution p(xn | yo
1, yo

2, . . . , yo
n) given

observations {yo
l : l = 1, . . . , n} in addition to the background

information. The analysis state xa
n is typically chosen to be the

mode of this distribution, that is, the most likely state. If the

distribution of observation errors is known, then applying Bayes
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Fig. 3. Average analysis errors of surface

pressure (in Pa) for 12-h analysis cycle with

4D-LETKF (top) and FGAT-LETKF

(bottom) during February 1982. In each

analysis, the local region size is 3 × 3 grid

points and the observations frequency is 3 h.

rule gives

p
(
xn

∣∣yo
1, yo

2, . . . , yo
n

) ∝ p(xn)p
(
yo

1, yo
2, . . . , yo

n

∣∣xn

)
. (3)

Hereafter, we denote yo = [(yo
1)T , (yo

2)T , . . . , (yo
n)T ]T , x =

[xT
1 , xT

2 , . . . , xT
n ]T and define operator H (x) = [H 1(x1)T ,

H 2(x2)T , . . . , H n(xn)T ]T . Kalman filters generally assume Gaus-

sian background and observation error distributions: p(xn) ∼
N (xb

n, B) and p(yo|xn) ∼ N (H (x), R), respectively. Here, com-

ponents of x depend on xn through the relation xn−l = M−lxn

and xb
n is the background state at time tn, obtained by feeding

the prior analysis state xa
0 at time t0 into (2) and iterating. B is

the background error covariance matrix and R is the observation

error covariance matrix. We assume that the observation errors at

different times {t l : l = 1, . . . , n} are uncorrelated, so the matrix

R is block diagonal where each block is an sl × sl covariance

matrix E[εo
l (εo

l )T ] = Rl. Here, sl denotes number of observations

at time tl. With these assumptions, maximizing (3) is equivalent

to minimizing the cost function:

J (x) = J b(x) + J o(x)

= 1

2

(
xn − xb

n

)T
B−1

(
xn − xb

n

)
+ 1

2
[yo − H(x)]T R−1[yo − H(x)],

= 1

2

(
xn − xb

n

)T
B−1

(
xn − xb

n

)
+ 1

2

n∑
l=1

[
yo

l − Hl (xl )
]T

R−1
l

[
yo

l − Hl (xl )
]
. (4)

with constraints defined by the dependence of xl at times {t l : l =
1, . . . , n − 1} on xn via the inverse of M.

The cost function (4) is the same as for 4D-VAR, except that

in 4D-VAR the background term and the vector x are expressed

in term of model state x1 at the beginning of the analysis time

interval. (This distinction will become irrelevant for the approxi-

mate cost function we minimize in the next section.) Operational

implementations of 4D-VAR (e.g. at ECMWF) generally use the
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Fig. 4. Average analysis errors of

temperature (in Kelvin) at 500 hPa for 12-h

analysis cycle with 4D-LETKF (top) and

FGAT-LETKF (bottom) during February

1982. In each analysis, the local region size

is 3 × 5 grid points and the observations

frequency is 3 h.

same B for each analysis. However, the background uncertainty

can vary considerably from time to time, so it is desirable to

allow B to vary from one analysis to the next.

Kalman filters take the covariance from the analysis probabil-

ity function p(xn | yo
1, . . . , yo

n) and use it to determine the back-

ground covariance for the next analysis cycle. In an ensemble

Kalman filter, an ensemble of initial conditions distributed ac-

cording to the analysis probability distribution is propagated by

the model to produce an ensemble of background states whose

sample mean and covariance determine the background proba-

bility distribution for the next analysis. In the next section, we use

this approach to derive our four-dimensional ensemble Kalman

filter. Like other Kalman filters, we will make a linear approx-

imation that makes the cost function quadratic; allowing us to

minimize the cost function exactly. In this four-dimensional set-

ting, our approximation also turns the constrained minimization

problem described in this section into an unconstrained problem.

2.1. Filter derivation through variational approach

Ensemble Kalman Filters estimate the true state xt
n with an en-

semble whose mean represents an estimate of xt
n and covariance

represents the uncertainty in the estimate. Starting with a back-

ground ensemble {xb(i)
n , i = 1, . . . , k}, the analysis step assim-

ilates the observations to produce an analysis ensemble {x a(i)
n ,

i = 1, . . . , k} (which is used to provide the background for the

next analysis cycle, as described above). In the cost function (4),

we replace the background state xb
n with the sample mean x̄b

n of

the background ensemble, and the background error covariance

matrix B with the sample covariance matrix

Pb
n = (k − 1)−1Xb

n

(
Xb

n

)T
, (5)

where k is the number of ensemble members and

Xb
n = [

xb(1)
n − x̄b

n, xb(2)
n − x̄b

n, . . . , xb(k)
n − x̄b

n

]
(6)

is the m × k matrix of background ensemble perturbations. Note

that this approximation is problematic for k < m since Pb
n is

not a full rank matrix, and hence is not invertible. However,

(P b
n )−1 is well defined on the ‘ensemble subspace’ spanned by

the columns of Xb
n. Thus, an ensemble Kalman filter minimizes

the cost function J over all model states xn such that xn − x̄b
n is

in this ensemble subspace, so that J is well defined.
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Fig. 5. Average analysis errors of surface

pressure (in Pa) for 12-h analysis cycle with

4D-LETKF (top) and FGAT-LETKF

(bottom) during February 1982. In each

analysis, the local region size is 3 × 5 grid

points and the observations frequency is 3 h.

As we discussed earlier, computing the cost function J as a

function of the model state xn at time tn would require usingM−1,

which may be impractical. However, by storing the background

ensemble {xb(i)
l , i = 1, . . . , k} at the observation times tl as

the model is integrated from the previous analysis time, we can

approximate M−1 as follows. To each xn for which J is well

defined, we will associate a corresponding model state xl in the

space spanned by the background ensemble at time tl, using

the same linear combination of the ensemble members as for

xn. The background distribution of xl will have mean equal to

x̄b
l , the sample mean of the ensemble at time tl, and covariance

P b
l = (k − 1)−1 Xb

l (Xb
l )T , where

Xb
l = [

xb(1)
l − x̄b

l , xb(2)
l − x̄b

l , . . . , xb(k)
l − x̄b

l

]
. (7)

In this sense, at each time tl we will use the Gaussian background

distribution associated with the ensemble at that time.

To make this approach more precise, we employ a pre-

condition (or a coordinate change) by expressing the deviation

of a state xl from the background mean state x̄b
l as a linear com-

bination of the background ensemble of perturbations, that is,

xl = x̄b
l + Xb

l w, l = 1, 2, . . . , n, (8)

where the weight w ∈ R
k is to be determined. Here w does not

depend on l, so the sequence x1, x2, . . . , xn is a linear combination

of the ensemble trajectories. The resulting trajectory represents

an approximate model trajectory, rather than an exact trajectory

of (2) as described earlier. By making this approximation, we

can consider the unconstrained problem of minimizing J as a

function of w.

Next, we approximate the observation vector corresponding

to the model state xl at time tl by:

Hl (xl ) = Hl

(
x̄b

l + Xb
l w

) ≈ Hl

(
x̄b

l

) + Yb
l w. (9)

Here the ith column vector of the sl × k matrix Yb
l is the deviation

of Hl (x
b(i)
l ) from its ensemble average. That is,

Yb
l = [

Hl

(
xb(1)

l

) − ȳb
l , Hl

(
xb(2)

l

) − ȳb
l , . . . , Hl

(
xb(k)

l

) − ȳb
l

]
, (10)
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Fig. 6. The left figures show the average absolute value of surface

pressure tendency (in Pa h−1) as a function of time for forecasts

initiated at time 0 on three arbitrarily chosen dates (January 16,

February 1 and February 15) in our assimilation period. The right

figures show the average of the precipitation rate (in mm h−1) as a

function of time. In each figure, the solid line represents the

corresponding quantity for the true trajectory, the dashes for the

analysis with a 3 × 3 local region, and the dash–dotted line for the

analysis with a 3 × 5 local region.

with ȳb
l = 1

k

∑k
i=1 Hl (x

b(i)
l ).1 Replacing xb

l with x̄b
l and B with

Pb
n, and using (5), (8) and (9), reduce the cost function (4) to:

J (w) = 1

2
(k − 1)wT w + 1

2

n∑
l=1

[
yo

l − Hl

(
x̄b

l

) − Yb
l w

]T

× R−1
l

[
yo

l − Hl (x̄b
l ) − Yb

l w
]
. (11)

That is, we reduce the (n × m)-dimensional constrained mini-

mization problem to a k-dimensional unconstrained minimiza-

tion problem. Note that in the w coordinate system, the back-

ground error covariance matrix becomes the identity and hence

we do not have to invert it. This choice of coordinates is analo-

gous to a preconditioning step that often done in variational meth-

ods, whereby the cost function is expressed in terms of a vec-

tor whose background covariance is the identity matrix. Lorenc

1If Hl is linear, then ȳb
l = Hl (x̄b

l ). For non-linear Hl, these quantities are

different.

(2003) suggests using cost function similar to (11), but without

the linear approximation (9), to incorporate an ensemble-based

background covariance into 3D-VAR or 4D-VAR, and Zupanski

(2005) uses the same cost function in an ensemble filter. A simi-

lar cost function has also been used in hybrid ensemble/3D-VAR

methods (Buehner, 2005; Wang et al., 2007).

The minimum of (11) is obtained by setting

∇J (w) = (k − 1)w −
n∑

l=1

(
Yb

l

)T
R−1

l

[
yo

l − Hl

(
x̄b

l

) − Yb
l w

] = 0.

The solution of this equation is the analysis weight vector

w̄a = P̃a

{
n∑

l=1

(
Yb

l

)T
R−1

l

[
yo

l − Hl

(
x̄b

l

)]}
, (12)

where

P̃a =
[

(k − 1)I +
n∑

l=1

(
Yb

l

)T
R−1

l Yb
l

]−1

. (13)

The analysis error covariance matrix P̃a in the ensemble space

is the inverse of the Hessian of the cost function (11) (Fisher and

Courtier, 1995; Zupanski, 2005). The analysis state is obtained

by substituting (12) into (8):

x̄a
n = x̄b

n + Xb
nw̄a

= x̄b
n + Xb

nP̃a

{
n∑

l=1

(
Yb

l

)T
R−1

l

[
yo

l − Hl

(
x̄b

l

)]}
. (14)

In the case that Hl is linear, eqs (13) and (14) are equivalent to

the standard Kalman filter equations, which minimize J in closed

form.

To complete the analysis, we generate an analysis ensemble

of model states whose mean is x̄a and whose error covariance

matrix in the model space is Pa = XbP̃a(Xb)T . To satisfy these

constraints, we update the ensemble using

xa(i)
n = x̄a

n + Xb
nWa(i) = x̄b

n + Xb
n

(
w̄a + Wa(i)

)
, (15)

where Wa(i) is the ith column of matrix Wa = [(k − 1)P̃a]
1
2 ,2

where M
1
2 denotes the symmetric square root of a symmetric

matrix M (We compute M
1
2 using its eigenvalues and eigenvec-

tors; since M = U�UT where U is an (orthogonal) matrix of

eigenvectors of M and � is a diagonal matrix of its eigenvalues,

M
1
2 = U�

1
2 U T , where �

1
2 is the diagonal matrix of the square

roots of the eigenvalues).

As we will show in Appendix A, this four-dimensional filter

is equivalent to 4D-EnKF of Hunt et al. (2004). The main differ-

ence is in the choice of coordinate (8). Next let us describe the

localization and a way to do variance inflation.

2In order that the mean of the analysis ensemble be x̄a
n , we need that

Xa
n 1 =Xb

n Wa 1 to be zero, where 1 = (1, 1, . . . , 1)T . Since Xb
l 1 =0, it

suffices that 1 be an eigenvector of Wa. This is also true for the symmetric

square root Wa.
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Fig. 7. Average analysis errors of

temperature (in Kelvin) at 500 hPa for 12-h

analysis cycle with 4D-LETKF (top) and

FGAT-LETKF (bottom) during February

1982. In each analysis, the local region size

is 3 × 3 grid points and the observations

frequency is 6 h.

2.2. Localization

To perform ensemble data assimilation for a global atmospheric

model with an ensemble of moderate size, some form of local-

ization is necessary. As pointed out in Anderson (2001), Hamill

et al. (2001) and Houtekamer and Mitchell (2001), the localiza-

tion suppresses spurious long-range correlations produced by a

limited ensemble size. On the other hand, it also improves the

efficiency of the scheme because each local analysis involves

much less data than a global analysis. Our localization is similar

to that of Keppenne (2000) and Ott et al. (2004), in that the anal-

ysis is done separately and, if desired, in parallel for different

local regions that cover the globe. In our formulation, the local-

ization is relatively simple; for each grid point of the model, we

choose a local subset of the global observations and apply the

equations of Section 2.1 using only the local observations. To be

more precise, see step (ii) of Appendix B.

In order to use the analysis ensemble members as initial con-

ditions for the forecast model, it is essential that the results of

the analysis be similar at nearby grid points. This can be ensured

by choosing similar sets of observations for neighbouring grid

points. As long as the observation sets overlap heavily, the analy-

ses will be similar. In practice, we find that such heavy overlap is

not always necessary. However, our choice of the matrix square

root is important in achieving consistency of nearby local anal-

ysis; the symmetric square root ensures that Wa depends con-

tinuously on P̃a . Indeed, with localization, other choices of the

matrix square root can cause our filter to diverge (Harlim, 2006).

2.3. Variance inflation

In order to compensate for the tendency of a small ensemble

to underestimate uncertainty, it may be desirable to artificially

inflate the background error covariance matrix Pb before each

analysis. (Or, one could instead inflate the analysis error covari-

ance matrix Pa after each analysis.) A common approach is mul-

tiplicative variance inflation (Anderson and Anderson, 1999):

multiply the background ensemble perturbations Xb
n by a con-

stant factor
√

1 + r with r > 0, which effectively multiplies Pb

by (1 + r). A similar result can be achieved more efficiently by

leaving Xb
n alone and replacing (13) by

P̃a =
[

(k − 1)I/(1 + r ) +
n∑

l=1

(
Yb

l

)T
R−1

l Yb
l

]−1

. (16)
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Fig. 8. Average analysis errors of surface

pressure (in Pa) for 12-h analysis cycle with

4D-LETKF (top) and FGAT-LETKF

(bottom) during February 1982. In each

analysis, the local region size is 3 × 3 grid

points and the observations frequency is 6 h.

Here (k − 1) I represents the inverse of the background covari-

ance matrix in the w coordinate system, and in (16) we have

multiplied this covariance matrix by (1 + r).

2.4. Relationship with other filters

Now, suppose that there are no observations at time {t l : l = 1,

2, . . . , n − 1} and that all observations at time tn are used (i.e.

no localization is done). Equation (14) is reduced to the analysis

mean update in a standard three-dimensional ensemble Kalman

filter. The analysis ensemble update (15) is different from the

ETKF of Bishop et al. (2001) because the choice of matrix square

root is different. Our choice of the symmetric square root is the

same as the Spherical-Simplex Ensemble Transform Kalman

Filter (Wang et al., 2004). That is, our matrix Wa is equivalent

to Wang et al. (2004) transform matrix T T (eqs 5 and C1).

In the three-dimensional setting, the analysis used in the 4D-

EnKF (Hunt et al., 2004) is the same as that in LEKF (Ott et al.,

2004). We show in Appendix A that LETKF is identical to LEKF

except in the coordinate representations of each analysis; LETKF

is more efficient since it requires no computations of the eigenval-

ues of the background error covariance matrix Pb. In numerical

experiments with the Lorenz-96 model (Lorenz, 1996), we are

able to reproduce the results of Ott et al. (2004) with significant

computational savings (Harlim, 2006).

3. Numerical experiments with SPEEDY model

3.1. SPEEDY model

In this paper, we apply our four-dimensional filter to a primitive-

equation Global Circulation Model (GCM). This spectral model

(nicknamed SPEEDY, for Simplified Parametrizations primitive-

Equation Dynamics; see Molteni, 2003, for details) has 7

vertical levels (with sigma level 0.950, 0.835, 0.685, 0.510,

0.340, 0.200 and 0.080) and a horizontal resolution correspond-

ing to a triangular spectral truncation at total wave number

30 (this yields 96 × 48 grid points in a standard Gaussian

grid). There are five basic prognostic variables: vorticity, diver-

gence, absolute temperature, specific humidity and logarithm of
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Fig. 9. Average analysis errors as functions of pressure (in hPa) for

24-h analysis cycle with 4D-LETKF (solid) and FGAT-LETKF

(dashes). Errors are averaged over period of January 1982 (on all left

subfigures) and over period of February 1982 (right subfigures).

Variables U-wind (first row) are in metres per second, temperature

(second row) are in Kelvin and height (third row) are in metres.

surface pressure. In addition to these variables, the model in-

cludes some diagnostic variables (such as saturation specific hu-

midity, relative humidity, dry and moist static energy and satu-

ration moist static energy) whose dynamics follow some simple

models of physical processes (such as convection, large-scale

condensation, clouds, short-wave and long-wave radiations and

diffusion). With these simplified parametrizations, the model is

designed to be (at least) an order of magnitude faster (in CPU

time) than an operational GCM with similar horizontal resolu-

tions.

The model dissipation and external forcing are determined

by winter-time climatological fields sea-surface temperature,

surface temperature and moisture in the top soil layer, snow

depth, bare-surface albedo, fraction of the sea-ice, land-ice and

land-surface covered by vegetation. The model forcing are up-

dated daily with no diurnal variations. The prognostic variables

are post-processed into zonal and meridional wind components

(U- and V-wind), absolute temperature (T), specific humidity

(Q), geopotential heights (Z) on pressure levels (925, 850, 700,

500, 300, 200 and 100 hPa) and surface pressure (Ps).

Theoretically, the forecasts produced by SPEEDY model are

less realistic than a more sophisticated model with higher reso-

lution such as the NCEP GFS. However, this model serves our

purpose in this paper since it is computationally inexpensive and

it describes the atmospheric variability in the Northern Hemi-

sphere during winter-time reasonably well.

3.2. Experimental design

In this paper, we compare 4D-LETKF to two approaches for

handling asynchronous observations (implemented to LETKF).

As we mentioned ealier, both approaches were formerly imple-

mented in a 3D-VAR scheme.

The first approach (Gustafsson et al., 2001; Lindskog et al.,

2001) is to treat all observations as if they occur at analysis

time. In our variational formulation, this approach corresponds

to replacing xb(i)
l with xb(i)

n in (10) and x̄b
l by x̄b

n in (11). In all of

our experiments, we observe the same variables at each time tl,

so Hl = Hn for all l. In this case, we replace Yb
l by Yb

n and the

cost function (11) becomes

J (w) = 1

2
(k − 1)wT w + 1

2

n∑
l=1

[
yo

l − Hl

(
x̄b

n

) − Yb
nw

]T

× R−1
l

[
yo

l − Hl

(
x̄b

n

) − Yb
nw

]
. (17)

Note that in the second term of (17), all model dependent vari-

ables are at time tn. Here after, we refer to this approach as

3D-LETKF where asynchronous observations are treated as ob-

servations at analysis time.

The second approach is to treat each observation innovation

(the difference between the observation and the background

model state at observation time) as if it occurs at the analysis

time. In our variational formulation, this corresponds to replac-

ing xb(i)
l by xb(i)

n in (10) but keeping x̄b
l in (11). In our scenario

where Hl = Hn for all l, the cost function then becomes

J (w) = 1

2
(k − 1)wT w + 1

2

n∑
l=1

[
yo

l − Hl (x̄b
l ) − Yb

nw
]T

×R−1
l

[
yo

l − Hl (x̄b
l ) − Yb

nw
]
.

(18)

Huang et al. (2002) call this way of handling observations as the

First Guess at the Appropriate Time (FGAT). Hereafter, we refer

it as FGAT-LETKF.

For each of the cost function (17) and (18), we perform the

analysis using equations analogous to eqs (14)–(16) that we use

for cost function (11). Specifically, for FGAT-LETKF we change

Yb
l to Yb

n whenever it appears in these equations. For 3D-LETKF,
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Fig. 10. Average analysis errors of

temperature (in Kelvin) at 500 hPa for 24-h

analysis cycle with 4D-LETKF (top) and

FGAT-LETKF (bottom) during February

1982. In each analysis, the local region size

is 3 × 3 grid points and the observations

frequency is 6 h.

we additionally change x̄b
l to x̄b

n in (14). Thus, 3D-LETKF uses

the background ensemble only at the analysis time, while both

FGAT-LETKF and 4D-LETKF use the background ensemble

states at each observation time, though FGAT-LETKF uses only

the background mean at times t l < tn .

We compare these three schemes with a 12-h analysis cycle

and a 24-h analysis cycle. A true trajectory is created by running

the SPEEDY model for 2 months starting from NCEP reanaly-

sis January 01 1982. Then, we generate simulated observations

by adding a normally distributed noise with zero mean to the

true states every 3 h for a 12-h analysis cycle and every 6 h

for a 24-h analysis cycle. Here the observations errors for each

variables are: 1 m s−1 for (both zonal, U-wind and meridional,

V-wind) wind speed, 1 K for temperature, 0.0001 kg kg−1 for

specific humidity, and 100 Pa for surface pressure, which are

small compared to the model natural variability (standard de-

viation from its temporal mean without data assimilation). For

pressure level 500 hPa, the natural variabilities are 6.78 m s−1 for

U-wind, 6.84 m s−1 for V-wind, 2.92 K for temperature, 0.0005

kg kg−1 for specific humidity, 69.41 m for the geopotential height

and 695.05 Pa for the surface pressure. At each (sigma) level, we

observe about 22% of the grid points (1008 locations) with ob-

servations uniformly distributed between 75◦N and 75◦S.

In each data assimilation experiment, we use an ensemble of

size 20. The initial ensemble consists of states from a long in-

tegration of the SPEEDY model at 20 randomly chosen times.

For each analysis, we use observations from a two-dimensional

local region of size 3 × 3 grid points; that is, we use all obser-

vations from the same vertical level (recall that there are seven

vertical levels in the model) and up to one grid spacing away in

both latitude and longitude. For the analysis at each grid point,

the number of observation locations varies among 1, 2 and 4

in each local region. For the 12-h analysis cycle, we also add

results assimilated with a two-dimensional local region of size

3 × 5 grid points (3 grid points in latitude and 5 in longitude), so

that in each local analysis the number of observation locations

varies among 2, 3, 4 and 6. Other local region sizes we tried yield

similar or worse results in all the cases we show.

Note that for every pair of horizontally neighbouring grid

points, their local regions share a set of observations that con-

stitute all of the observations for one region but only half or 2/3

of the observations for the other region. Furthermore, the local
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Fig. 11. Average analysis errors of surface

pressure (in Pa) for 24-h analysis cycle with

4D-LETKF (top) and FGAT-LETKF

(bottom) during February 1982. In each

analysis, the local region size is 3 × 3 grid

points and the observations frequency is 6 h.

regions do not overlap vertically. While this makes it possible to

have incompatible analysis at neighbouring grid points, below

we do not find the analysis fields to be imbalanced.

In the 12-h analysis cycle, we show simulations with variance

inflation coefficient r = 20% in the case of 3 × 3 local region af-

ter comparing simulations with r = 5, 15, . . . , 30%. In the case of

3 × 5 local region simulations, we use variance inflation coef-

ficient r = 30% after comparing simulations with r = 20, 25,

30, . . . , 40%. For the 24-h analysis cycle, we compared simu-

lations with variance inflation coefficient r = 30, 35, . . . , 60%

and show results with r = 40%. In each case, the chosen value

of r yielded the best results for 4D-LETKF and FGAT-LETKF,

and the results did not improve substantially with other values

of r for 3D-LETKF.

3.3. Results

In the results below, we measure the quality of each analysis

by calculating the root mean square (rms) difference between

the true state and the analysis ensemble mean at analysis time

tn. Here after, we refer to this quantity as the analysis error.

The temporal average analysis error is calculated in the rms

sense.

In Fig. 1, we show average analysis errors with a 12-h anal-

ysis cycle as functions of pressure (in hPa). We see that on av-

erage (during January and February 1982), the analysis errors

of both 4D-LETKF (solid) and FGAT-LETKF (dashes) are very

similar and significantly outperform 3D-LETKF (dash–dotted)

on all shown variables (U-wind, temperature and geopotential

height). In Fig. 2, we show for 4D-LETKF and FGAT-LETKF

the geographical dependence of the average analysis tempera-

ture error for February 1982. While the FGAT-LETKF errors

are smaller in some areas, the 4D-LETKF errors are notably

better in the tropical regions where the errors are the largest

(greater than 0.15). In Fig. 3, where the average analysis errors

for surface pressure (in Pa) are shown, we see a similar pat-

tern. That is, the errors of FGAT-LETKF are generally larger

than those of 4D-LETKF in regions where both errors are large

(greater than 25), mainly in the tropics but also near southern

Greenland.
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Fig. 12. The average 12-h growth of the

ensemble spread (as defined in the text)

during February 1982. The top figure shows

the growth for temperature at pressure level

500 hPa. The bottom figure shows the

growth for surface pressure.

In Figs. 4 and 5, we show the analysis errors of assimila-

tions with local region of size 3 × 5. Note that the experiments

with larger local region require more variance inflation (as noted

earlier, r = 30% for this choice, and 20% for those assimilated

with local region of size 3 × 3) because the ratio of the ensemble

size and the number of model variables in each local analysis de-

creases as a function of local region size. Secondly, the larger the

window of local region suggests more observations are included

in each local analysis. Thus, the larger the uncertainties are re-

duced which implies that each ensemble members are more alike

the other members. In fact, we observed a worse errors when the

window size is larger.

Note also that there are significant small-scale fluctuations in

the surface pressure analysis error in Figs. 3 and 5. This is an

artefact of our observation network, which provides observations

only at every other model grid point, so that as noted above the

number of observations assimilated varies significantly from one

grid point to the next. The analysis ensemble fields do not seem

to be imbalanced, however. To check the balance, in Fig. 6, we

show the average absolute value of the surface pressure tendency

and the precipitation rate, both plotted as functions of forecast

time. Here, both quantities are averaged over the globe excluding

the polar regions above 75◦ latitude. In Fig. 6, we choose three

different times (January 16, February 1 and February 15) from

our assimilation period and compute a 24-h forecasts of both

quantities with initial conditions from the true state (solid), from

the analysis with local region of size 3 × 3 (dashes) and from

the analysis with local region of size 3 × 5 (dash–dotted line).

In these results we see no sign of imbalance at the analysis time

for either local region size.

Below, we will show results of a 24-h analysis interval with

local region of size 3 × 3. First, we include results (Figs. 7 and

8) that show the effect of using less frequent observations (every

6 h rather than 3 h) in a 12-h analysis cycle. For these figures, we

use variance inflation r = 20%. Comparing with Figs. 2 and 3,

we see that using fewer observations increases the analysis errors

significantly in the mid-latitudes but not in the tropics. We use

the same observations (every 6 h) for the 24-h analysis interval
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Fig. 13. The average 24-h growth of the

ensemble spread (as defined in the text)

during February 1982. The top figure shows

the growth for temperature at pressure level

500 hPa. The bottom figure shows the

growth for surface pressure.

results below. In Fig. 9, we see an identical representation of

results as in Fig. 1, but all simulations are run with 24-h analysis

cycle. We note that 4D-LETKF (solid), on average, yields a bet-

ter analysis compared to FGAT-LETKF (dashes). For the 24-h

analysis cycle, 3D-LETKF fails to bring the analysis errors to

be at least comparable to observation errors even after cycling

through 2 months of assimilations (results are not shown). Fig-

ures 10 and 11 show the average analysis errors of temperature

at 500 hPa and surface pressure with 24-h analysis cycle dur-

ing February 1982, respectively. These numerical results clearly

suggest advantages of 4D-LETKF over FGAT-LETKF when the

analysis time is longer.

To understand further the circumstances that cause 4D-

LETKF and FGAT-LETKF to differ, consider (for the sake of

exposition) a scenario where observations are available at a sin-

gle time t l < tn . Then eq. (14) for the 4D-LETKF analysis mean

becomes (substituting from eq. 16)

x̄a
n = x̄b

n + Xb
n

[
(k − 1)I/(1 + r )

+ (
Yb

l

)T
R−1

l Yb
l

]−1(
Yb

l

)T
R−1

l

[
yo

l − Hl

(
x̄b

l

)]
.

If in addition Hl is linear, Hl(x) =Hl x, then Yb
l = HlXb

l , and

using the matrix identity

[cI + YT R−1Y]−1YT R−1 = YT [cR + YYT ]−1

we can write

x̄a
n = x̄b

n + Xb
n

(
Xb

l

)T
HT

l

[
(k − 1)Rl/(1 + r )

+ HlXb
l

(
Xb

l

)T
HT

l

]−1(
yo

l − Hl x̄b
l

)
.

In FGAT-LETKF we replace Xb
l by Xb

n, which affects the analy-

sis in two ways. Changing Xb
n(Xb

l )T to Xb
n(Xb

n)T overestimates the

cross-covariance between the background ensemble at the ob-

servation time tl and at the analysis time tn. Changing Xb
l (Xb

l )T

to Xb
n(Xb

n)T ignores the change in the spread of the background

ensemble between times tl and tn. Below we find in fact that

the amount of change in ensemble spread over the analysis time

window is a reasonable predictor of the size of the difference

between the 4D-LETKF and FGAT-LETKF analysis error.

Figures 12 and 13 show the geographical distribution of re-

spectively the 12- and 24-h growth of the ensemble spread. We

compute this growth factor as the ratio of the average amplitude
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of the ensemble perturbations Xb
n at analysis time tn and the av-

erage amplitude of Xb
0 at the start t0 of each analysis window,

where each (rms) average is taken over February 1982. This

averaged ratio simply reflects the growth in forecast uncertain-

ties. For temperature field, the largest growth occurs mostly in

the tropics after 12 h (Fig. 12). After 24 h, however, the largest

growth is in the extratropics (see Fig. 13). In both figures, we

see the largest growth for the surface pressure in similar regions

as for temperature, but the amount of growth is much higher

in the extratropics. These higher growth factors, especially for

the temperature, are geographically correlated with those regions

with larger analysis errors produced by FGAT-LETKF (compare

Fig. 12 with Figs. 2 and 3 for the 12-h analysis cycle or Fig. 13

with Figs. 10 and 11 for 24-h analysis cycle). This result sug-

gests that the regions where the FGAT-LETKF analysis is worst

compared to 4D-LETKF are those regions with the most rapid

growth in the ensemble spread.

4. Summary

In this paper, we describe a four-dimensional ensemble Kalman

filter. In our derivations, we show how our four-dimensional

filter differs from related approaches (Bishop et al., 2001; Hunt

et al., 2004; Ott et al., 2004; Wang et al., 2004). In addition to the

mathematical formulation, we also prescribe a pseudo-algorithm

for practical implementation.

In Section 3, we showed some results, simulated on a rela-

tively low resolution global weather model (SPEEDY model).

In our simulations, we compared three different approaches for

handling asynchronous observations with LETKF. We conclude

that 4D-LETKF is in general a better approach than 3D-LETKF

and FGAT-LETKF, though with a short enough analysis time

interval (12 h in this case), FGAT-LETKF and 4D-LETKF yield

comparable results. In this scenario, we also found that our re-

sults are not sensitive to the size of local regions used; however,

the larger the local regions is used, the more variance inflation is

needed. Even with a relatively small local region, we do not find

any problem with the balance of the analysis fields produced by

4D-LETKF.

As we increase the analysis interval to 24 h, we see the advan-

tage of 4D-LETKF over FGAT-LETKF. We conclude that this is

due to the fact that FGAT-LETKF ignores changes both in size

of the background covariance over the analysis time interval and

in the correlation between the background ensembles at the anal-

ysis time and the observation times, while 4D-LETKF accounts

for these changes. In particular, we found that 4D-LETKF out-

performed FGAT-LETKF significantly in the regions where the

ensemble spread grows the fastest.

In other scenarios, we expect one would see similar re-

sults; 3D-LETKF as a very crude approximation to 4D-LETKF,

while FGAT-LETKF should provide a much better approxi-

mation. How long the analysis time must be to see a sig-

nificant difference between 4D-LETKF and FGAT-LETKF

will depend on the model and the time distribution of the

observations. Within the LETKF framework, both methods

have similar computational complexity, though FGAT-LETKF

requires applying the observation operator only to the en-

semble mean at the intermediate observation times whereas

4D-LETKF requires applying it to each of the ensemble

members.
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6. Appendix A: Variational derivation of
4D-EnKF

In this section, we show that 4D-LETKF and 4D-EnkF (Hunt

et al., 2004) are equivalent for linear observation operators Hl,

which is assumed to be the case in the latter paper. Consider

Hl (x) = Hlx where Hl is an sl × m matrix. In this case, 4D-

LETKF is a more efficient way to compute the same analysis as

4D-EnKF. To see this, let us derive 4D-EnKF like in Section 2.1.

The fundamental difference between these two schemes is that

in 4D-EnKF, (8) is replaced by:

xn = x̄b
n + Uv, (A1)

where U is an m × (k − 1) matrix whose columns are the eigen-

vectors of Pb corresponding to nonzero eigenvalues. In matrix

form

Pb = U�UT (A2)

where the diagonal component of the diagonal matrix Σ is the

eigenvalue of Pb corresponding to eigenvector ui (the ith column

of U). Note that unlike w ∈ R
k in (8), v ∈ R

k−1.

The model state in the observation space, Hnxn, at time tn is:

Hnxn = Hn

(
x̄b

n + Uv
) = Hn x̄b

n + Ĥb
nv, (A3)

where Ĥb
n = HnU is an sn × (k − 1) matrix. At time t l , l = 1, . . . ,

n − 1, we need to represent model state xl as a function of state

xn so that the asynchronous observation operator Hlxl can be

approximated in the coordinate system defined by (A1).

Recall that in each analysis, we readjust the background en-

semble state {xb(i)
n , i = 1, . . . , k} with eqs (13)–(15) to pro-

duce analysis ensemble state {xa(i)
n , i = 1, . . . , k}, for which

each analysis ensemble member lies in the space spanned by the
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background ensemble state. Thus, we can write a prospective

model state xn at time tn as

xn = Xnŵ, (A4)

where column vectors of Xn are the background ensemble states

at time tn and ŵ is a k × 1 weight vector. Note that unlike w of

Section 2.1, which was multiplied by the ensemble perturbations

from their mean, ŵ is multiplied by ensemble states themselves.

At the observation time tl, we associate to xn the model state

xl = Xlŵ, (A5)

where column vectors of Xl denote the ensemble background

states at time tl.

The orthogonal projection onto the space spanned by the col-

umn vectors of Xn is given by the matrix Xn(Xn
T Xn)−1(Xn)T .

A vector xn in this space is equal to its projection, so (A4) is

satisfied with

ŵ = (
Xn

T Xn

)−1
(Xn)T xn . (A6)

Therefore, observations Hl xl at time tl can be described as a

function of xn via the matrix H′
l = Hl Xl(XT

n Xn)−1 XT
n :

H′
lxn = HlXl

(
Xn

T Xn

)−1
XT

n xn

= HlXlŵ

= Hlxl . (A7)

Then following (A3), we have

Hlxl = H′
lxn = H′

l

(
x̄b

n + Uv
) = H′

l x̄
b
n + Ĥb

l v, (A8)

with Ĥb
l = H′

lU.

Substituting (A1), (A2) and (A8) into cost function (4) yields

J (v) = 1

2
vT �−1v + 1

2

n∑
l=1

(
yo

l − H′
l x̄

b
n − Ĥb

l v
)T

× R−1
l

(
yo

l − H′
l x̄

b
n − Ĥb

l v
)
. (A9)

Here, term H′
l x̄

b
n is calculated with (A7); note that H′

n = Hn from

(A7). The minimum of (A9) is given by

va = P̂a
n∑

l=1

(
Ĥb

l

)T
R−1

l

(
yo

l − H′
l x̄

b
n

)
(A10)

with

P̂a =
[
�−1 +

n∑
l=1

(
Ĥb

l

)T
R−1

l Ĥb
l

]−1

.

The analysis is completed by evaluating

xa(i)
n = x̄b

n + U
(
va + Va(i)

)
, (A11)

where Va(i) is the ith column vector of matrix Va that satisfies

Va(Va)T = P̂a . However, as pointed out by Ott et al. (2004),

ensemble generation via the symmetric square root of P̂a may

create a discontinuity between two adjacent analyses when local

analysis is applied. To eliminate this issue, Ott et al. (2004) and

Hunt et al. (2004) generate ensemble perturbations in a similar

manner to (15), and replace (A11) by

xa(i)
n = (

x̄b
n + Uva

) + Xb
nŴa(i)

= x̄a
n + Xb

nŴa(i) (A12)

where Ŵa(i) is the ith column of

Ŵa =
[
I + (k − 1)−1

(
Xb

n

)T
U�−1(P̂a − �)�−1UT Xb

n

]1/2

.

One can show that Ŵa is equal to Wa used in (15) in the case

that the observation operators Hl are linear. In fact, one can also

show that for both methods, the analysis error covariance Pa in

the model state can be recovered by

Xb
nP̃a

(
Xb

n

)T = Pa = UP̂aUT , (A13)

with the first equality for 4D-LETKF and the second equality for

4D-EnKF.

Note that from the projection onto space spanned by the col-

umn vectors of Xn (see eqs A5 and A6) and the definitions of Xb
n

in eq. (6) and Xb
l in eq. (7), we have identity

Xb
l = Xl

(
Xn

T Xn

)−1
(Xn)T Xb

n . (A14)

Using (12), (A10), (A13) and (A14), we deduce

Xb
nwa = Xb

nP̃a
n∑

l=1

(
Xb

l

)T
HlR−1

l

(
yo

l − Hl x̄b
l

)
= [

Xb
nP̃a

(
Xb

n

)T ]
Xn

(
Xn

T Xn

)−1

×
n∑

l=1

XT
l HT

l R−1
l

(
yo

l − H′
l x̄

b
n

)

= Pa
n∑

l=1

(
H′

l

)T
R−1

l

(
yo

l − H′
l x̄

b
n

)

= UP̂aUT
n∑

l=1

(
H′

l

)T
R−1

l

(
yo

l − H′
l x̄

b
n

)
= Uva . (A15)

That is, the analysis ensemble mean x̄a
n is equivalent in both

schemes, 4D-EnKF and 4D-LETKF. Moreover, the ensemble

perturbations are exactly similar since Ŵa(i) = Wa(i). Though

mathematically they are equivalent, 4D-LETKF is computation-

ally more efficient since the analysis needs no calculations of the

eigenvectors ui. When n = 1, this derivation reflects the similar-

ities between LETKF and LEKF (Ott et al., 2004).

7. Appendix B: Pseudo-algorithm of 4D-LETKF

We now give a step-by-step description of how to implement

the analysis described in the Section 2.1 together with the local-

ization and variance inflation. Hereafter, we refer to the state at

time tl with a subscript l, where l = 1, . . . , n. The inputs to the

steps below are the m-dimensional vectors {xb(i)
l : i = 1, 2, . . . ,

k}, a non-linear operator Hl from m variables to sl variables, an

sl-dimensional vector yo
l and an sl × sl matrix Rl.
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(i) Form{xb(i)
l } into an m × k matrix Xl, average the columns

of Xl to get an m-dimensional vector x̄b
l and subtract this vector

from each column of Xl to get Xb
l . Apply Hl to each column of

Xl to form an sl × k matrix Yl, average columns of Yl to get the

sl-dimensional vector ȳb
l , and subtract this vector from each col-

umn of Yl to get Yb
l . Apply Hl to x̄b

l and to get an sl-dimensional

vector Hl (x̄b
l ).

(ii) From this point, perform the analysis locally at each

model grid point j. For each j, choose the observations to be

used in the local analysis and denote them yo
l (j) (In this paper,

we chose the observations from within a two-dimensional local

region of size 3 × 3 grid points centered at grid point j). Denote

the components of Yb
l , Hl (x̄b

l ) and Rl corresponding to the lo-

cal observations for grid point j by Yb
l ( j), Hl (x̄b

l )( j) and Rl(j),
respectively.

(iii) Form the k × k matrix

(k − 1)I/(1 + r ) +
n∑

l=1

[
Yb

l ( j)
]T

Rl ( j)Yb
l ( j), (B1)

where r is the desired amount of multiplicative variance inflation.

Take the inverse of (B1) to get P̃a( j) and calculate

wa( j) = P̃a( j)

{
n∑

l=1

[
Yb

l ( j)
]T

Rl ( j)−1
[
yo

l ( j) − Hl

(
x̄b

l

)
( j)

]}
.

(B2)

In this case, we ignore the correlation between observation er-

rors at different times tl. Generally, if one knows this correlation,

then one can form matrix R (j) with diagonal blocks Rl(j). The

correlation coefficients are subsequently assigned in the appro-

priate non-block diagonal components. Here, the second term in

(B1) is replaced with [Yb(j)]T R(j)Yb(j) where Yb(j) be the ma-

trix formed by stacking the matrices Yb
l (j) vertically. Equation

(B2) is replaced with

wa( j) = P̃a( j)[Yb( j)]T R( j)−1[yo( j) − H (x̄b)( j)], (B3)

where yo(j) and H (x̄b)( j) are obtained by (vertically) concate-

nating vectors yo
l (j) and Hl (x̄b

l )( j), respectively. In this paper,

since we assume zero correlation between observation errors at

different time, we use (B1) and (B2).

(iv) Compute the k × k matrix Wa( j) = [(k − 1)P̃a( j)]1/2.

Add wa(j) to each column of Wa(j), forming the k × k matrix

W(j). The analysis ensemble state {xa(i)
n (j)} at grid point j is

obtained by adding the background mean state x̄b
n( j) at grid point

j to the ith column of Xb
n(j) W (j), where Xb

n(j) consists of the

rows of Xb
n with components corresponding to variables at grid

point j.
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