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Issues of nonlinearities in data assimilation

Nonlinearity of the data assimilation problem
depends on model dynamics, observations
(accuracy, operators, sampling frequency),
and the model errors (e.g. Verlaan and
Heemink, 2000).

We’ll focus on nonlinear dynamics, and
propose two new methods for LETKF:

- Quter loop (as in 4D-Var)

- Running in place (for spin-up as well as for
long windows)



Verlaan and Heemink (2000):

use the “nonlinearity” to classify the ‘“‘hardness’’ of the
problem and predict the failure of data assimilation
algorithms
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With the full nonlinear model, Ensemble Kalman Filter works
better than the reduced rank filters for the highly nonlinear cases.



Gaussianity with Ensemble Kalman Filters

With very nonlinear dynamic, deterministic EnKF is more
likely to collapse than stochastic EnKF

EnSRF vs. perturbed obs EnKF :
Lawson and Hansen (2004) :

— as nonlinearity becomes appreciable, deterministic
filter break down earlier.

Leeuwenburgh et al., (2005):

—ENnSRF tends to introduce non-Gaussianity.
EnSRF+random rotation step helps to improve the
Gaussianity.



EnKF vs. 3D/4D-Var

= A disadvantage of ensemble-based KF is that
it does not handle nonlinear perturbations
well and therefore needs short assimilation
windows.

= EnKF doesn’t have the important outer loop
as in the incremental 3D-Var and 4D-Var
(DaSilva, pers. comm. 2006)

= Quter loop is needed to
= handle the nonlinearities

= improve the QC process for selecting
observations



LETKF v.s. 4D-Var
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EnKF does not handle well long windows because ensemble

perturbations become non-Gaussian. 4D-Var simply iterates
and produces a more accurate control.



Outer-loop in the incremental 4D-Var

Outer loop
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Proposed outer-loop for LETKF

Nonlinear integration in the outer-loop improves the nonlinearity in the
background trajectory => adopt the outer-loop for EnKF to improve the
mean trajectory!

Departures d. =y - H(X,)

‘di’ X;, P,

Hunt et al. 2007,
Ottetal., 2004
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No-cost smoother for 4D-LETKF
(Kalnay et al, 2007, Yang et al. 2008)
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The LETKF produces an analysis (Q ) in terms of weights of the ensemble forecast
members at the analysis time ¢, giving the trajectory that best fits all the observation in
the assimilation window, in 3D or in 4D prospect

No-cost LETKF smoother (¥%): apply at 7 _, the same weights found
optimal atz , works for 3D- or 4D-LETKF
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LETKF is implemented in the Quasi-Geostrophic channel model
*Observation impact is stored in the ensemble weight coefficients (V_Vn )
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Analysis and ensemble weights from LETKF
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Outer -loop in LETKF

Outer loop: do the same as 4D-Var, and use the final weights to
correct only the mean initial analysis, keeping the initial
perturbations. Repeat the analysis once or twice. It centers the

ensemble on a more accurate nonlinear solution.
Miyoshi pointed out that Jaszwinski (1970) suggested this in a footnote!!!!!
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at the improved mean, M (X, (¢,))



4D-Var vs. LETKF with Lorenz 3-Variable model

Kalnay et al. (2007a, TellusA), RMS analysis error

LETKF
4D-Var (3 members)
obs every 8 time-steps
(linear window) 0.31 0.30
Obs every 25 time-steps 053 0.68
(nonlinear window) (assim (5=1.22)
window=75) )

Long window + Pires et al. (1996) -> 4D-Var wins!



With the outer-loop

4D-Var LETKF LETKF+
(3 ensemble) outer loop
obs every 8 time-steps 0.31 0.30 0.27
(linear window) ) ) )
Obs every 25 time-steps lfci?m 0.68 162:14(26\
(nonlinear window) N (6=1.22) o

window=75)

With the outer-loop, LETKF analysis with 25 time-steps is much
improved, even better than 4D-Var!
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mean kurtosis

LETKF outer-loop analysis and Kurtosis

25 I True I
20 - LETKF no outer—loop—
L ETKF outer—loop
15| , -
10| _ £ ) -
() - _
_(% 0 — i ™ ]
T 5| _
©
> 10t
—15}F
—29s 16 17 18 ) T2'0 21 5o >3 24 25
K
Nonlinearity measured by kurtosiy" (x, -%)* (K -1o* =3
3000 . . . — T

T T .
e | ETKF no outer—loo Jj=l

2K LETKF outer—igop
2500 %

With the outer-loop, the forecast trajectory is improved
and stays in the correct regime

2000 -

1500
1000 r
K
S00 - -
SIS S S0 Y A0 N E I S N £

15 16 17 18 19 20 21 22 23 24 25



Impact of outer-loop for regimes of different error growth rate
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0.01> ® > 0.00
0.03> *® >0.01
®>0.03

For large error growth rates, the outer-loop is
particularly useful to improve the analysis.
No improvement is observed for the linear
regimes



Error nonlinearity grows when observations are sparse

= When the initial ensemble is far away from nature (e.g.,
cold start), EnKF needs a long spin-up time to reach a
satisfactory accuracy.

= Ensemble is less-Gaussian during spin-up

= The accuracy of the mean and the “errors of the day” carried

in the perturbations are key factors for good performance of
the EnKF.

= EnKF spins up much faster if starting from a good initial

condition, e.g. 3D-Var analysis, or perturbations drawn from
the B3dvar

= 4D-Var spins-up faster than EnKF because itis a
smoother: it keeps iterating until it fits the observations
within the assimilation window as well as possible.

= Example: in a severe storm where radar observations
start with the storm, there is little real time to spin-up




Caya et al. (2005) :
EnKF is eventually better than 4D-Var (but it is too late to

be usefulz.
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“Running in Place”

- EnKF is a sequential data assimilation system where, after
the new data is used at the analysis time, it should be
discarded...

- only if the previous analysis and the new background are
the most likely states given the past observations.

- If the system has converged after the initial spin-up all the
information from past observations is already included in
the background.

- During the spin-up we could use the observations
repeatedly if we could extract extra information. But we
should avoid overfitting the observations



Running in Place algorithm

a) Perform a standard EnKF analysis and obtain the
analysis weights at £, saving the mean square observations
minus forecast (OMF) computed by the EnKF.

b) Apply the no-cost smoother to obtain the smoothed
analysis ensemble at {,_, by using the same weights
obtained at £,

c) Perturb the smoothed analysis ensemble with a small
amount of random Gaussian perturbations, similar to
additive inflation.

d) Integrate the perturbed smoothed ensemble to £, If the
forecast fit to the observations is smaller than in the
previous iteration according to some criterion, go to a) and
perform another iteration. If not, let?, , <7, and proceed to
the next assimilation window.



Running in Place algorithm (notes)

Notes:

c) Perturb the smoothed analysis ensemble with a small
amount of random Gaussian perturbations, a method
similar to additive inflation.

This perturbation has two purposes:

1) Avoid reaching the same analysis as before, and

2) Encourage the ensemble to explore new unstable
directions

OMEF" (iter) — OMF” (iter + 1) o .
OMF* (iter)

d) Convergence criterion:. if

with ¢: 5% do another iteration. Otherwise go to the next
assimilation window.



Experiments with Lorenz 3-variab|e model

4D-Var LETKF LETKF+
(3 ensemble) outer loop
obs every 8 time-steps 0.31 0.30 0.27
(linear window) ) ) )
Obs every 25 time-steps lfcf?m 0.68 0.47
(nonlinear window) window=75) (6=1.22) 0.37 (RIP)

Running in place gives even more improvement than the outer-
loop because it improves both the mean and the covariance.



RIP improves Gaussianity

RMS analysis error from LETKF with and without RIP (K: ensemble size)

Without RIP With RIP
K=24 K=24 K=6 K=3
RMS error (first 10 cycles) 6.22 0.78 1.01 1.73
RMS error after converged 0.55 0.34 0.35 0.37
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* RIP quickly improves the analysis accuracy during the spin-up period
and improve the overall analysis accuracy.

* RIP can improve the analysis performance with smaller ensemble size.

* RIP can also improve the Gaussianity of the ensemble perturbations.



RIP LETKF with the Quasi-geostrophic model

= | ETKF (no RIP, random initial ensemble)
= = = | ETKF (with RIP, random initial ensemble
- LETKF (no RIP, B3DV initial ensemble)

= = = | ETKF (with RIP, B3DV initial ensemble
= 4D-Var
= == 3D-Var
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RIP LETKF with the Quasi-geostrophic model

LETKF
Ranlc_ii-rl;!Kilr:litial LETKF Random Variational
B3DV initial ensemble initial
ensemble
ensemble
No RIP With RIP No RIP With RIP itef:t(i?rl\;?alp 3;;;3" 0 %g;;’;;v
Spin-up: DA
cycles to
cyolesto | 144 46 54 37 37 a4 54
error
Mcion | 0.5 0.54 0.5 0.52 1.16 1.24 | 0.54

LETKF spin-up from random perturbations: 141 cycles. With RIP:

46 cycles

LETKF spin-up from 3D-Var perts. 54 cycles. With RIP: 37 cycles
= 4D-Var spin-up using 3D-Var prior: 54 cycles.




Summary

= As in the variational methods, an outer-loop with LETKF
(EnKF) allows to improve the nonlinear evolution of the
background trajectory and better fit the observations.

= “Running in place” improves both the mean (like the outer-
loop) and the covariance.

= When the EnKF is initialized from cold start, the “running in
place” method helps to achieve a fast spin-up. RIP works well
even without any prior information on the statistics.

= During spin-up, the observations can be used more than once
if we can extract extra information. The non-Gaussianity in the
ensemble can also be reduced during the spin-up.



