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A new data assimilation method called the explicit four-dimensional variational (4DVAR) method is 
proposed. In this method, the singular value decomposition (SVD) is used to construct the orthogonal 
basis vectors from a forecast ensemble in a 4D space. The basis vectors represent not only the spatial 
structure of the analysis variables but also the temporal evolution. After the analysis variables are ex-
pressed by a truncated expansion of the basis vectors in the 4D space, the control variables in the cost 
function appear explicitly, so that the adjoint model, which is used to derive the gradient of cost func-
tion with respect to the control variables, is no longer needed. The new technique significantly simpli-
fies the data assimilation process. The advantage of the proposed method is demonstrated by several 
experiments using a shallow water numerical model and the results are compared with those of the 
conventional 4DVAR. It is shown that when the observation points are very dense, the conventional 
4DVAR is better than the proposed method. However, when the observation points are sparse, the 
proposed method performs better. The sensitivity of the proposed method with respect to errors in the 
observations and the numerical model is lower than that of the conventional method. 
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The four-dimensional variational data assimilation 
(4DVAR) has been a very successful technique and used 
in operational numerical weather prediction (NWP) of 
some weather forecast centers[1,2]. In this method the 
optimal estimate of initial condition of a forecast model 
is obtained by fitting the forecasts to observations within 
a time window. The attractive features of 4DVAR in-
clude: (1) the full-model is set as a strong dynamical 
constraint, and (2) it has the ability to assimilate the data 
at multiple time. However, the control variables (initial 
state) are expressed implicitly in the cost function. In 
order to compute gradient of the cost function with re-
spect to the control variables, one has to integrate the 
adjoint model of the forecast model. But coding the ad-
joint for the 4DVAR and maintaining the adjoint, up-
dated with the model upgrading, are extremely la-
bor-intensive, especially when the forecast model is 
nonlinear and the model physics contain parameterized  

discontinuities[3,4]. Some researchers try to avoid inte-
grating the adjoint model or reducing the expensive 
computation[5―7]. But the linear or adjoint model is still 
required in the methods mentioned above. So the 
three-dimensional variational data assimilation (3DVAR) 
becomes the common practice in many numerical 
weather forecast centers. The 3DVAR can be considered 
as a simplification of the 4DVAR, but it has lost the two 
advantages of the 4DVAR mentioned above. In general, 
the analysis results rely heavily on the information from 
the background field. However, as we know, in 3DVAR 
the background error covariance matrix is usually sim-
plified and not flow-dependent, and so the background 
error covariance matrix cannot reflect the characteristics 
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of the forecast error in detail[8―11]. In 4DVAR, the back-
ground covariance matrix is also used as a constraint for 
the analysis, and it is also simplified greatly and not 
flow-dependent. In recent years, the methods based on 
the extended Kalman filter have been used in many ap-
plications. The Ensemble Kalman Filter (EnKF) method 
is one of them[12,13]. By forecasting the statistical char-
acteristics of the background errors with the Monte- 
Carlo method, the EnKF can provide flow-dependent 
error estimates of background errors. Some researchers 
have related 4DVAR to the EnKF. In their researches the 
background error matrix used in 4DVAR was replaced 
by the flow-dependent background errors matrix ob-
tained using EnKF method[14,15]. However, like the tradi-
tional four-dimensional data assimilation, the adjoint 
model is still required because it remains the basic char-
acteristics of the 4DVAR. Recently, Qiu and Chou[16] 
proposed a new method for four-dimensional data as-
similation. They pointed out that the solution of the data 
assimilation should be restricted to the attractors of at-
mosphere dynamic equations in the phase space in order 
to reduce the degree of underdetermined problem. The 
basic idea is that a base that supports the attractor can be 
obtained from the forecast ensemble by performing a 
SVD analysis. The atmosphere state will be expressed 
by a truncated expression of the basis function. Based on 
this work, Shao and Qiu[17] designed an ensemble-based 
three-dimensional data assimilation scheme. The results 
showed that this method performed much better than the 
traditional three-dimensional variational data assimila-
tion method. However, the analysis is only performed in 
a three-dimensional spectral space. Cao et al.[18] apply 
the technique of Proper Orthogonal Decomposition 
(POD) to the 4DVAR. This technique was shown to 
perform well, but the adjoint integration is still neces-
sary in this method. If we apply the technique of singu-
lar value decomposition (SVD) to a four-dimensional 
forecast ensemble, the singular vectors not only express 
the spatial structure of the atmosphere state but also re-
flect the time evolution of the atmosphere state. After 
the model status is expressed by a truncated expansion 
of the basis vectors obtained by SVD, the control vari-
ables in the cost function appear explicitly, so that the 
adjoint model is no longer needed. Based on this idea an 
explicit four-dimensional variational data assimilation 
method is proposed in this paper. The method is ex-
pected to not only simplify the data assimilation proce-
dure but also maintain the main advantages of the tradi-

tional four-dimensional variational data assimilation. 
Seven numerical experiments are performed with a 
two-dimensional shallow water equation model and 
simulated observations. Then a comparison is made be-
tween this method and the traditional four-dimensional 
variational data assimilation method. 

1  Description of methodology 

In principle, the four-dimensional variational data as-
similation (4DVAR) analysis xa is obtained through the 
minimization of a cost function J that measures the mis-
fit between the model trajectory Hk (xk) and the observa-
tions yk at a series of times tk,   1,..., .k K=

The 4DVAR method can be defined as a process of 
minimizing the following cost functional: 
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with the forecast model M imposed as strong constraints, 
defined by  
  (2) 0( ).k kM=x x

In (1) and (2) the superscript T stands for a transpose, 
b is a background value, the index k defines observa-
tional times, Hk is the observational operator that trans-
forms the vector x from the model space to the vector y 
in the observational space. Matrices B and R are back-
ground and observational error covariances, respectively. 
The control variable is the initial conditions x0 (at the 
beginning time of the assimilation time window) of the 
model. 

In the cost function the control variable x0 is con-
nected with xk through forward model and expressed 
implicitly, so it is difficult to compute the gradient of the 
cost function with respect to x0. For convenience we call 
the traditional four-dimensional variational data assimi-
lation as implicit four-dimensional variational data as-
similation (Implicit 4DVAR or I-4DVAR) and the new 
method proposed in this paper is called explicit 
four-dimensional variational data assimilation (Explicit 
4DVAR or E-4DVAR). 

Like the I-4DVAR, the E-4DVAR also needs to 
choose an assimilation time window. The four- dimen-
sional sample ensemble is obtained from the forecast 
ensembles at multiple times produced by using the 
Monte Carlo method, which is similar to that in the  
ensemble Kalman filter (EnKF). Then the basis vectors  
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are generated by applying the singular value decomposi- 
tion (SVD) technique to the matrix composed of the  
four-dimensional sample ensemble. The model states are  
then expressed by a truncated expansion of the leading  
SVD basis vectors. The SVD expansion coefficients can  
be determined by using a linear combination of the basis  
vectors to fit 4D innovation (observation minus back- 
ground) data with least-squares fitting method. In this  
way, the control variables are transformed to the expan- 
sion coefficients and are expressed explicitly in the cost  
function. The details are described as follows. 

Assuming there are K+1 observations yk(k=0, K) at 
time  during the assimilation time 

window (0, ). For simplicity, we assume that the 
analysis time levels are the same as the observation time. 
Integrate the model from tτ, a time before the starting 
time t0, to tk to produce the background field over the 
analysis time window. Generate M random perturbation 
fields and add each perturbation field to the initial back-
ground field at t = tτ and integrate the model to produce 
a perturbed 4D field over the analysis time window. The 
mth difference field is then given by  at 

time  where xb and xm denote the 
background and the perturbed fields, respectively. After 
scaling the difference fields by using the stand covari-
ance of the perturbation fields, M normalized forecast 
samples are obtained in the 4D space. Consider an en-
semble of column vectors represented by matrix 

 where the mth column vector 

0 ,..., ,...,kt t t t= K
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m mδ = −x x x

0 ,..., ,..., ,k Kt t t t=
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Mδ x  represents the mth sampled data field in a dis-
credited four-dimensional (4D) analysis space. The 
length of vector Mδ x  is N × M, where N = Ng × Nv × K, 
Ng is the number of the model spatial grid points, Nv is 
the number of the model variables, and K is the number 
of selected time levels over each analysis time window. 
The SVD of A yields 

  (3) ,T=A B VΛ

where Λ is a diagonal matrix composed of the singular 
values of A with  and  

  is the rank of A, B and 
V are orthogonal matrix composed of the left and right 
singular vectors of A, respectively[19]. The SVD in (3) 
g i v e s   a n d   
Thus, the ith column vector of V, denoted by Vi, is the ith  

1 2 ... 0rλ λ λ≥ ≥ ≥ ≥ 1rλ + =

2 ... 0,rλ + = = min  ( , )r M≤

eigenvector of C, while the jth column vector of B, de-
noted by bj, is the jth column vector of Q and is called the 
singular vector of A. 

The truncated reconstruction of analysis variable xa in 
four-dimensional space is given by  

 
1

,
p

j j
j=
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where p (≤r) is the truncation number. The solution for 
the forward model is approximately expressed by a 
truncated expansion of the singular vectors in a 
four-dimensional space. Substituting (4) into (1), the 
control variable becomes α instead of x0, so the control 
variable is expressed explicitly in the cost function and 
the computation of the gradient is simplified greatly. 

2  Numerical experiments 

In this section, seven identical observing system simula-
tion experiments are performed with a two-dimensional 
shallow-water equation model to test the proposed 
method. In addition, comparison is performed between 
the I-4DVAR (traditional four-dimensional variational 
data assimilation) method and the E-4DVAR (explicit 
four-dimensional variational data assimilation) method. 

2.1  Set-up of experiments 

The two-dimensional shallow-water equation model are 
formulated in the f-plane by  

 0,u u u hu v fv g
t x y x

∂ ∂ ∂ ∂+ + − + =
∂ ∂ ∂ ∂

 (5.1) 

 0,v v v hu v fu g
t x y y
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∂ ∂ ∂ ∂
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Here, f = 10−4s−1 is the Coriolis parameter, and hs is the 
terrain height and is defined as  
 0 sin(4 / )sin( / ),s xh h x L y Lπ π= y  (6) 

N

T2T T= =C A A VVΛ 2 .T= =Q AA B BΛ

where h0 = 200 m, Lx = Ly=13200 km are the length of 
two sides of the model domain, respectively, and the 
grid distance is x yΔ = Δ =300 km. The model domain is 
square with 45×45 grid points and the periodic boundary 
conditions at x = 0 and Lx as well as y = 0 and Ly are 
stipulated. The spatial derivatives are discretized by the  
two-order central finite difference scheme. The local 
time derivatives are discretized by using the two-step  
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backward difference scheme of Matsuno[20] to ensure the 
computational stability and restrain the effect of compu-
tational damping (on short waves in particular). The 
time step =360 s (equal to 6 minutes). The model 
state vector consists of the height h and the horizontal 
velocity components u and v at the grid points.  

tΔ

For the experiments, the “true” state is produced by 
integrating the “true” model (h0=200 m) with the fol-
lowing initial conditions at the very beginning of the 
integration (48 hours before the starting time of the first 
data assimilation cycle): 

 
3000 240sin( / )

120cos(2 / )sin(2 / ),
y

x y

h y L

x L y

π
π π

= +

+ L

x

 (7.1) 

  (7.2) 1 / ,u f g h y−= − ∂ ∂

  (7.3) 1 / .v f g h−= − ∂ ∂
The model-produced “true” fields at t = 0 (after 48 

hour integration to the starting time of the first assimila-
tion cycle) are plotted in Figure 1(a). In all the experi-
ments, we assume that the simulated “observations” are 
only the height h and available at selected grid points 
(the details will be described later). If the observations 
are complete, the model-produced “true” fields corre-
spond to the simulated observations. If the observations 
are incomplete, the simulated observations are generated 
by adding random errors to the above model-produced 
“true” fields. The statistical covariance of the random 
errors is 100 m2. The imperfect initial field at t=0 in the 
first assimilation cycle, as shown in Figure 1(b), is the 
temporal average of every 3-hour outputs of previous 
240 hours. This initial state is significantly different 
from the “true” state in Figure 1(a). In particular, the rms 
errors are 30.3 m/s, 1.56 m/s and 1.81 m/s for the h-, u- 

and v-fields, respectively, in this initial state. 

2.2  Design of experiments 

In each experiment, the above imperfect initial field (at t 

= 0) is used to initialized the model and the model is 
integrated from t = 0 to t = T to produce the 4D back-
ground field. The length of the data assimilation cycle is 
set to T = 12 hour. For E-4DVAR method, by adding 
perturbations to the above imperfect initial state, the 
same model is integrated from t = 0 to t = T to produce 
the perturbed 4D fields over the time window between 0
≤t≤τ in the first assimilation cycle. By using the back-
ground field and perturbed 4D fields, the analysis is then 
performed, and the analyzed field is used to update the 
background state at t = T (the ending time of the first 
cycle). After the first assimilation cycle, the model is 
integrated from t=T to t=2T for the next assimilation 
cycle, and so on so forth. In each experiment, the pro-
cedure goes through 10 cycles. The observations are 
available every 3 hours. The background fields are saved 
every 3 hours at the same time as the observations over 
each analysis time window. Each perturbed integration 
is initialized by adding a random field to the updated 
background state at the starting time of each cycle. Be-
cause the outputs of the perturbed integration at t = 0 do 
not reflect the model constraint, the samples are taken 
from 3rd hour to the ending time of an analysis time 
window. It means that the analysis and the observations 
are at the same time levels and the actual assimilation 
time window is 9 hours for E-4DVAR. Therefore, there 
are only observations at 4 time steps can be used during 
an analysis cycle. The ensemble size is M = 150 and the 
truncation number is p = 75 in all the experiments for 
E-4DVAR to ensure that the truncation error of the  

 
Figure 1  Model-produced “true” initial fields (a) and imperfect initial state (b) at the starting time (t = 0) of the first assimilation cycle. Contours are 
every 30 m for the height fields. Vectors are for the wind fields, and the vector scale (10 m/s) is labeled at the bottom of each panel. 
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sample fitting (quantified by the relative energy) is less 
than 5%. The perturbation fields are generated by using 
a quasi-random method proposed by Shao and Qiu[17] 
(see the appendix), which can guarantee appropriate 
co-relation to the perturbed field spatially. It is noted 
that, unlike EnKF, only one analyzed field is obtained in 
each analysis procedure in E-4DVAR and the initial 
condition should be perturbed at the starting time of the 
assimilation time window in each cycle. 

For I-4DVAR, the assimilation time window is also 
set to T = 12 hours and observations at 5 time levels can 
be used during an assimilation procedure. The same im-
perfect initial field (at t = 0) is used to initialize the 
model in the first assimilation cycle.  

If we consider the background constraint in 4DVAR, 
the analysis will heavily rely on the background error 
covariance which usually cannot be determined objec-
tively. Because of this, all the experiments performed in 
this paper do not consider the background constraint. In 
addition, we assume that the observation errors are not 
co-related with each other. Under this situation the 
computation of the cost function becomes simple. In this 
paper, a memoryless quasi-Newton algorithm is used to 
find the minimum of the cost function in E-4DVAR and 
in I-4DVAR. 

To evaluate the performance of the two algorithms, 
seven identical twin experiments are performed. The 
seven experiments are listed in Table 1. Here, 2025 ob-
servations imply that the height h observations are 
available at all the grid points within the model domain; 
202 observations imply that only 202 observations (10 
percent of all the grid points of the model domain) are 
available within the model domain. The locations of the 
observations are determined as the following fashion: 50 
percent are concentrated randomly into the southwest 
quadrant of the domain; another 50 percent are distrib-
uted randomly within the rest area of the model domain. 
The distribution of 101 observations is similar to that of 
202 observations except the number of the observations.  

One observation time implies that only the observations 
at the ending time of the assimilation time window are 
used; all observation times mean that all the observa-
tions at the observation times are used. If the model is 
imperfect, the maximum terrain height h0 (see eq. (6)) in 
the forecast model is set to 300 m, instead of 200 m.  

2.3  Experimental results 

To evaluate the performance of the two algorithms, the 
relative error given by the rms deviation of the assimi-
lated state from the true state divided by the rms devia-
tion of the forecast state from the true state at the ending 
time of the first assimilation cycle and denoted as E, is 
considered separately for the three state fields, h, u and v. 
For h it is 
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cycle,  and  are the analysis state and the “true” 
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1
fh  and  are the forecast and the “true” state 

of the forecast model at the ending time of the first 
assimilation cycle. The summation is made for all the 
grid points. For horizontal velocity components u and v 
the definition is similar. En(V)=[En(u)+ En(v)]/2 is used 
to denote the total wind erro

1
th

r. 
The first and the second experiment are designed to 

demonstrate the advantages of assimilating multiple 
time observations in the four-dimensional variational 
data assimilation and to compare the performance of the 
two methods with respect to perfect model and complete 
observations. In both experiments, the height observa-
tions are available at all grid points of the model domain. 
The difference between the two experiments is that all 
the observations within the assimilation time window 
are assimilated in experiment 1 while only observations 

Table 1  Experiments design 
Experiment No. Number of observations Time level of observations Observation errors Model errors 

1 2025 all No No 
2 2025 1 No No 
3 202 all No No 
4 101 all No No 
5 202 all Yes No 
6 202 all No Yes 
7 202 all Yes Yes 

 

1236 QIU ChongJian et al. Sci China Ser D-Earth Sci | August 2007 | vol. 50 | no. 8 | 1232-1240 



 

at a particular time are used in experiment 2. Figure 2 
shows the evolution of the relative error for height and 
wind through the assimilation cycles in each experiment. 
For I-4DVAR, when the height observations are avail-
able at all the grid points the height error decreases rap-
idly after first assimilation cycle and then keeps the 
small values through the assimilation cycles in both ex-
periments. The wind field can be retrieved accurately 
when observations at 5 time steps are used, however, 
when only the observations at the ending time of the 
assimilation cycle are used in analysis procedure, the 
retrieved wind field is much worse than that of using all 
the observations, but it is still much better than that from 
E-4DVAR. For E-4DVAR, when only the height obser-
vations at the ending time of the assimilation cycle are 
assimilated, the height error is 0.3 after first assimilation 
cycle, which can be considered as the truncation error 
generated by using eq. (4). The height error decreases 
continually in the first three assimilation cycles and then 
is about the same in the later assimilation cycles. When 
the observations of 4 time levels are used, the height 
analyses are not so good as that when the observations at 
a single time level in the initial several cycles. The rea-
son is that the larger truncation error is generated when 

the dimension of the variables is larger. However, after 
three cycles, the height analyses become better than that 
when using a single time observations, which is due to 
the obvious improvement of the wind field analyses 
through the assimilation. As shown in Figure 2(b), for 
E-4DVAR, the wind errors are much larger than the 
background errors in the initial three cycles when only 
the observations at a single time level are used. After 
four cycles, the analyses become better than the back-
ground. The results can be greatly improved if using 
four observation sets, even the analyses become better 
than that in I-4DVAR after several cycles. This implies 
that it is very useful to assimilate multiple time observa-
tions if we try to retrieve the variables which cannot be 
observed directly either for E-4DVAR or for I-4DVAR. 

To evaluate the influence of the spacial density of 
observations on the two methods experiments 1, 3 and 4 
are compared. The relative errors for experiments 3 and 
4 are plotted in Figure 3. Although the observation den-
sity has an effect on both E-4DVAR and I-4DVAR, its 
influence on E-4DVAR is weaker than that on I-4DVAR. 
The height errors from E-4DVAR are not obvious dif-
ference between experiment 3 (202 observations) and 
experiment 4 (101 observations), and both of them are  

 
Figure 2  Relative error for height (a) and wind (b) plotted as functions of cycle number in experiments 1 and 2. E-1 and I-1 denote E-4DVAR and 
I-4DVAR methods for experiment 1, respectively, E-2 and I-2 denote E-4DVAR and I-4DVAR methods for experiment 2, respectively.  

 

 
Figure 3  Relative error for height (a) and wind (b) plotted as functions of cycle number in experiments 3 and 4. E-3 and I-3 denote E-4DVAR and 
I-4DVAR methods for experiment 3, respectively, E-4 and I-4 denote E-4DVAR and I-4DVAR methods for experiment 4, respectively. 
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Figure 4  Relative error for height (a) and wind (b) plotted as functions of cycle number in experiments 3 and 5. E-3 and I-3 denote E-4DVAR and 
I-4DVAR methods for experiment 3, respectively, E-5 and I-5 denote E-4DVAR and I-4DVAR methods for experiment 5, respectively. 

 

 
Figure 5  Relative error for height (a) and wind (b) plotted as functions of cycle number in experiments 3 and 6. E-3 and I-3 denote E-4DVAR and 
I-4DVAR methods for experiment 3, respectively, E-6 and I-6 denote E-4DVAR and I-4DVAR methods for experiment 6, respectively. 
 
smaller than those from I-4DVAR. In particular, when 
the observations decrease from 202 (experiment 3) to 
101 (experiment 4), the analyses become much worse in 
I-4DVAR. Similar situation can be seen in wind analyses. 
When there are 202 observations, the analyses of 
E-4DVAR are a little better than that of I-4DVAR. When 
there are 101 observations, the wind errors will increase 
a little through the assimilation cycles for E-4DVAR, but 
in I-4DVAR, the wind errors increase greatly. 

To assess the effect of observation error on the analy-
sis, two experiments (experiment 3 and experiment 5) 
are compared (Figure 4). The analysis from I-4dvar is 
much more sensitive to the observation errors than that 
from E-4DVAR, especially for the wind field. A possible 
explanation is that in I-4DVAR the analysis is performed 
in all the grid points and without background constraint, 
so the analysis heavily relies on the observations. How-
ever, in E-4DVAR, the analysis is performed in the 
truncated spectral space. Although a truncation error is 
generated in the analysis procedure, some observation 
noise can also be filtered. 

In addition, a comparison is performed between ex-
periments 3 and 6 to examine the possible effect of the 
imperfect model on the two methods. As shown in Fig-

ure 5, for E-4DVAR, when the model is imperfect, the 
height errors increase a bit, but the wind errors increase 
greatly, In particular, the larger the number of the as-
similation cycles, the more obvious influence on 
analyses can be found through the 10 assimilation cy-
cles. Although the model error has an effect on the 
analyses in E-4DVAR experiments, with the same ex-
periment setup the imperfect model assumption has a 
greater influence on the analyses in I-4DVAR experi-
ments. This implies that the E-4DVAR method can be-
have better than the I-4DVAR method with the imperfect 
model assumption. 

When the errors in both the model and observations 
exist (experiment 7), the E-4DVAR method also behaves 
better than the I-4DVAR method. To compare analysis 
accuracy further of the two methods for all seven ex-
periments, averaged relative errors over the last five cy-
cles (from cycle 6 to cycle 10) are listed in Table 2. As 
shown by the first two columns in Table 2, only when 
the observations are very dense (for experiment 1 and 
experiment 2), which is difficult to realize, can the 
I-4DVAR perform better than E-4DVAR. Otherwise, the 
I-4DVAR always does not perform well compared with 
the E-4DVAR method. 
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Table 2  Averaged relative rms error for the analysis over the last five cycles (from cycle 6 to cycle 10) in seven experiments 
Experiment No. 1 2 3 4 5 6 7 

I-4DVAR 0.030 0.054 0.332 0.562 0.516 0.478 0.632 
6 10 ( )E h−  

E-4DVAR 0.178 0.218 0.220 0.256 0.272 0.207 0.320 
I-4DVAR 0.070 0.482 0.530 0.774 0.854 0.688 0.960 

6 10 ( )E V−  
E-4DVAR 0.442 0.818 0.500 0.566 0.604 0.602 0.702 

 
3  Summary and conclusions 

In this paper, a new explicit four-dimensional variational 
data assimilation (E-4DVAR) method is proposed. In the 
method, the control variables in the cost function appear 
explicitly so the analysis is very straightforward and 
does not require the use of an adjoint integration. The 
method is robust even when the shallow-water equation 
model is imperfect and the observations are incomplete. 
The potential merits of this method and its comparison 
with the traditional four-dimensional variational data 
assimilation technique (I-4DVAR) are demonstrated by 
seven experiments. The main conclusions are 
summarized as follows: 

(1) When the model is perfect and the observations 
are complete with a dense observation distribution, the 
E-4DVAR method does not perform as well as the 
I-4DVAR method, but when the observations are sparse, 
the E-4DVAR method performs much better than 
I-4DVAR method. In addition, the E-4DVAR method is 
less sensitive to the model errors and observation errors, 
so it is a very promising method and deserves further 
investigation in the future. 

(2) Like the EnKF method, the quality of analysis re-
lies on the number of the ensemble size used. The com-
putation is expensive due to the perturbed integration 
which is required to produce the forecast sample ensem-
ble during each assimilation cycle. But the parallel 
computation is easily applied in this method, and so the 
computation will not prevent it from applying to appli-
cation in the long run. However, unlike EnKF, in 
E-4DVAR, the initial condition needs to be perturbed in 
each assimilation cycle. Therefore the quality of the re-
sults relies on the perturbation method. How to generate 
a reasonable perturbed field is a topic requiring further 
investigation. 

(3) The truncation number has an effect on the analy- 
sis in E-4DVAR method, and it is associated with the ob- 
servation variable, observation errors, ensemble size as  
well as the degree of freedom used. The choice of the op- 
timal truncation number should be also handled carefully. 

(4) If the background term is included in the cost 
function, it is expected that the quality of the analysis 
will be greatly improved, especially when the observa-
tions are sparse or contain a significant error. This can 
be easily implemented in the E-4DVAR, because only a 
few coefficients need to be determined. However, in the 
I-4DVAR method, the background covariance error usu-
ally is considered as homogeneous and needs to be in-
verted during the analysis procedure. In this paper, the 
potential of the assimilation methods may be underesti-
mated, especially for the I-4DVAR method, since the 
background term is not included in the cost function. 

Appendix: The method for generating 
perturbed field 

The method for generating two-dimensional perturbed 
fields is expected to ensure that the generated perturbed 
fields approximately obey the Gaussian probability with 
variance σ and mean zero, and to have the ability to ad-
just the spatial correlation of the fields according to dif-
ferent requirements. The details are as follows:  

(1) Given the number of samples is N, the stand de-
viation of the random field is σ, the admissible gross 
random values might be modeled over a predefined in-
terval [−3σ, +3σ ]. Divide the whole interval into m 
subintervals. Then estimate how many random values 
might be generated in each subinterval according to the 
Gaussian probability theory and generate the corre-
sponding values. In this way, the generated perturbations 
approximately obey the Gaussian probability with vari-
ance σ and mean zero as long as the ensemble size is 
large enough. 

(2) Assume the center point of the spatial domain is 
the starting point. The first value u1 is generated ran-
domly, and then the value of the neighbor grid point is 
generated randomly from the subinterval  

, where   is the distance 

between two points, L is the characteristic length. The 
larger the characteristic length, the higher is the spatial 

1 1,[ ,u uδ− 2

δ σ= 1,2r1 1,2 ]u uδ+ 1,2 1,2 / ,u r L
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correlation of the random field. When L = 0, this method 
is equal to the Monte-Carlo method. In this paper, L is 
set to 1.5 to 3 grid distance. Similarly, the admissible 
interval of the kth grid point is given by   1 1,[ ku uδ− ,

1k k −1 1, 2 2, 2 2, 1 1,] [ , ]... [ ,k k k k ku u u u u u u u uδ δ δ δ− −+ − + −∩ ∩

1, ].k kuδ −+  After all random values at all grid points are 

generated, a two-dimensional perturbed field is obtained. 

In this way, each grid point related with its neighbor 
points and the correlation can be adjusted by changing 
the characteristic length. 

(3) Repeat steps (1) and (2) to generate another per-
turbed field until all the perturbed fields are obtained. It 
is noted that the random values used in the previous 
procedure should not be used to generate later perturbed 
fields. 
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