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ABSTRACT1

A new scheme is developed to improve the ensemble-based 4D variational data assimilation2

(En4DVar). In this new scheme, leading singular vectors are extracted from 4D ensemble3

perturbations in a hybrid space and then used to construct the analysis increment to fit the 4D4

innovation (observation minus background) data. The hybrid space combines the 4D observation5

space with only a gridded 3D subspace at the ending time of each assimilation cycle, so its6

dimension can be much smaller than the dimension of the fully gridded 4D space used in the7

original En4DVar. This improves the computational efficiency. With this hybrid-space approach,8

the background covariance matrix can be and only needs to be constructed in the 3D subspace9

while the analysis increment can fit the 4D innovation data in the observation space directly and10

also provide the necessary initial condition in the gridded 3D subspace directly for the model11

integration into the next assimilation cycle. In addition to the use of hybrid-space, the12

background error covariance model previously used in the original En4DVar is refined in13

consistency with the conventional ensemble Kalman filter and the analysis time window is14

shifted backward to avoid its caused forecast delay and shortened to avoid repeated uses of15

observations. The potential merits of the new scheme are demonstrated by assimilation16

experiments performed with an imperfect shallow-water equation model and simulated17

observations.18

19
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1. Introduction1

In an ensemble-based filter, such as the ensemble Kalman filter (EnKF) (Evensen 1994, 2003;2

Burgers et al. 1998; Houtekamer and Mitchell 2001) and ensemble square root filter (EnSRF) – a3

variant of the EnKF (Anderson 2001; Bishop et al. 2001; Whitaker and Hamill 2002; Tippett et4

al. 2003), the probability density function of the model state is represented by an ensemble of5

state vectors, so the mean and covariance are directly estimated from and updated through the6

ensemble. This makes the filter easier to code than the three-dimensional variational assimilation7

(3DVar) (Lorenc 1981; Parrish and Derber 1992; Cohn et al. 1998; Daley and Barker 2001), and8

much easier to code and implement than the four-dimensional variational assimilation (4DVar)9

(Lewis and Derber 1985; LeDimet and Talagrand 1986; Bennett 1992; Courtier 1997), especially10

if the model physics (Talagrand 1997) contain parameterized discontinuities (Xu 1996, 1997; Xu11

and Qiu 1997). Computationally, however, an ensemble-based filter is still very expensive for12

operational applications due to large ensemble sizes required by the Monte Carlo method that the13

filter is based on. Thus, how to reduce the computation cost is a major problem for14

ensemble-based filters especially when they are designed for operational applications.15

Another very challenging problem encountered by the EnKF concerns how to deal with16

model errors. The presence of unknown model errors, especially model biases, can cause the17

filter to diverge. To prevent the EnKF from filter divergence as a result of unknown model errors18

as well as other reasons, a variety of treatments, such as the covariance inflation, additive error19

and state augmentation method, have been proposed and examined. The covariance inflation and20

additive error treatments are empirical but effective if the unknown model errors are not large21
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(Anderson 2001; Hamill and Whitaker 2005). The state augmentation method appears to be1

promising as it can improve the filter performance substantially if the unknown true model errors2

can be adequately captured by the augmented state (Mitchell et al. 2002; Reichle et al. 2002;3

Baek et al. 2006; Zupanski and Zupanski 2006; Gillijns and Moor 2007). Nevertheless, the4

original model error problem remains largely unsolved. It is thus desirable to explore other5

possible approaches to alleviate this problem effectively from different perspectives.6

Lorenc (2003) reviewed EnKF in comparison with 4DVar, and suggested that a hybrid7

method may be attractive for mesoscale NWP systems. Previously, a hybrid EnKF-3DVar8

scheme was proposed by Hamill and Snyder (2000), and a more sophisticated hybrid approach9

that combines EnKF and 3DVar was elaborated by Zupanski (2005). Inspired by these previous10

studies, a hybrid method, called ensemble-based 4DVar or En4DVar for short, was developed by11

Qiu et al. (2007) based on the singular value decomposition (SVD) approach proposed by Qiu12

and Chou (2006) for climate data assimilation. The SVD is also often called the proper13

orthogonal decomposition (POD). The use of SVD in Kalman and ensemble Kalman filters for14

atmospheric data assimilations started a decade ago with Todling and Cohn (1996, 1998),15

Heemink (2001), and more recently Uzunoglu et al. (2007). These previous studies showed the16

effectiveness of SVD in reducing the rank of the background covariance and improving the filter17

computational efficiency. The SVD can be also used to reduce the control-variable dimension18

and improve the efficiency of 4DVar (Cao et al. 2007). In the En4DVar of Qiu et al. (2007), the19

SVD was used to extract the leading singular vectors from an ensemble of 4D perturbation fields20

produced by the model, and then a linear combination of the extracted singular vectors is used to21
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fit 4D innovation (observation minus background) data to produce an incremental analysis in1

each assimilation cycle. The involved least-squares fitting is similar to that in 4DVar, but the2

leading singular vectors are used in place of the representer solutions (Bennett 1992), so the3

fitting is computationally much less expensive than 4DVar. As shown by the assimilation4

experiments performed with a shallow-water equation model in Qiu et al. (2007), the En4DVar5

can be also effective in reducing problems caused by model biases.6

In the original En4DVar (Qiu et al. 2007), the analysis increment is a linear combination of7

leading singular vectors extracted from an ensemble of gridded 4D perturbations sampled from8

perturbed integrations of the prediction model, and this linear combination is projected into the9

observation space to fit the 4D innovation data in the costfunction. Note that the observation10

space dimension is often much smaller than the dimension of the gridded model state vector, and11

the gridded analysis increment is needed only at the ending time in each assimilation cycle to12

initialize the model integration into the next assimilation cycle. It is therefore not really13

necessary and can be wasteful to use fully-gridded 4D perturbations to construct the ensemble14

perturbation matrix and extract leading singular vectors. This implies that the dimension of the15

4D perturbation fields sampled in the original En4DVar can be reduced substantially.16

Specifically, we can project the sampled perturbation fields into the 4D observation space and17

retain gridded perturbations only in a 3D subspace at the ending time of each assimilation cycle.18

The retained 3D perturbations and projected 4D perturbations can be combined into hybrid 4D19

perturbations to construct the ensemble perturbation matrix and extract leading singular vectors20

in a hybrid space. Since the hybrid-space dimension can be much smaller than the gridded 4D21
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space dimension in the original En4DVar, the computational efficiency can be improved. In1

addition, as will be demonstrated by the assimilation experiments in this paper, further2

improvements can be made to the En4DVar by refining the background error covariance model3

[see (8) in section 2.2] and by shifting the analysis time window backward to avoid its caused4

forecast delay (see the explanation at the end of section 2.1) and shortening the window to avoid5

repeated uses of observations (see the explanation at the end of section 2.2).6

The hybrid-space approach considered in this study is similar to that proposed in Qiu and7

Chou (2006) but the ensemble is generated by a large number (about 150) of perturbed8

integrations and the background term is included in the costfunction, while the ensemble9

considered in Qiu and Chou (2006) was a time series sampled from a single integration of the10

model over a long time period and the background constraint was not considered explicitly. In11

this regards, the current hybrid-space approach is an extension of the original En4DVar (Qiu et al.12

2007) for mesoscale and synoptic-scale data assimilation, while the hybrid-space approach in13

Qiu and Chou (2006) was proposed mainly for climate data assimilation and their proposed14

approach has not been tested numerically. The detailed method is described in the next section.15

Assimilation experiments are designed in section 3. The experiment results are presented in16

section 4 to demonstrate the potential merits of the new scheme in comparison with the original17

En4DVar. Conclusions follow in section 5.18

19

2. Description of the method20

2.1. Original En4DVar21
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In the original En4DVar, the ensemble perturbation matrix, denoted by A = (a1, a2, … aM), is1

composed of M column vectors, where M is the ensemble size. Each column vector in A is a 4D2

perturbation field (with respect to the ensemble mean field) produced by the model on the3

analysis grid over the analysis time window for each assimilation cycle. Each variable (height or4

velocity) field in A is normalized by its spatially averaged ensemble spread (RMS amplitude)5

computed at each observation time level in the analysis time window. The dimension of each6

column vector is Nv�Nx�Nt, where Nv is the number of the model variables, Nx is the number of7

model spatial grid points, and Nt is the number of observation time levels in each assimilation8

cycle. The singular vectors decomposition (SVD) of A yields9

10

A = B��V
T
, (1)11

12

where �� is a diagonal matrix composed of the singular values of A with �1 � �2 � ... � �r > 0 and13

�r+1 �= �r+2 = … = �M = 0, r = rank(A) is the rank of A, and B and V are orthogonal matrices14

composed of the left and right singular vectors of A, respectively (see theorem 2.3-1 of Golub15

and Van Loan 1983).16

The background mean state, denoted by vector ub, is a gridded 4D field at the Nt observation17

time levels. The analysis state, denoted by vector ua, is also a gridded 4D field at the Nt18

observation time levels. The analysis increment, defined by �ua = ua - ub, is expressed by a linear19

combination of the leading singular vectors in B, that is,20

21

�ua = �
k=1

p
bkßk = Bß, (2)22
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1

where ß = (ß1, ß2, … ßM)
T
with ßp+1 = ßp+2 = … = ßr = 0 is a vector coefficient for the linear2

combination and p is the truncation number. For practical applications, we consider M < or <<3

Nv�Nx�Nt and thus p < r = rank(A) � min(M, Nv�Nx�Nt) = M.4

The truncated expansion in (2) is used to fit the observations at the Nt time levels by5

minimizing the following costfunction:6

7

J = Jb + Jo = �ua
T
P
-1
�ua + (H�ua - �y)

T
O
-1
(H�ua - �y), (3)8

9

where Jb and Jo denote the background and observation terms, that is, the first and second terms,10

respectively, on the righthand side, �y = y – Hub is the normalized 4D observation innovation, y11

is the normalized 4D observation vector, H denotes the normalized 4D observation operator, and12

H is the tangent-linearization of H at ub. These normalizations are done in the same way as A is13

normalized by scaling each variable (height or velocity) field with its spatially averaged RMS14

amplitude at each observation time level. For the experiments presented in Qiu et al. (2007) and15

in this paper, H is linear and thus H = H. P is the normalized background error covariance matrix,16

and O is the normalized observation error covariance matrix. In the original En4DVar, the17

normalized background error covariance was modeled by P = BB
T
, which assumed that the18

background error structures could be represented by the singular vectors of A. As the19

background error variances were properly tuned (estimated and inflated) based on the true20

forecast RMS errors, the tuned background error variances should be close to the true error21

variances. Because of this, the original En4DVar appeared to be not very sensitive to the above22
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covariance model and performed better than the EnKF and EnSRF for the imperfect-model case.1

Substituting (2) with P = BB
T
into (3) gives2

3

J = ß
T
ß + (HBß - �y)

T
O
-1
(HBß - �y), (4)4

5

where the vector coefficient ß is the control variable for the minimization of J. Once ß is6

determined by minimizing the costfunction in (4) and then substituted back into (2), the analysis7

increment becomes available for the model integration into the next assimilation cycle. Each8

assimilation cycle is performed and completed in three steps, and the detailed steps are described9

below (see sections 2 and 3.2 of Qiu et al. 2007).10

I. Integrate the model by using the initial condition provided by the analysis at the ending time11

of the previous cycle to produce the 4D background field over the analysis time window of12

the current assimilation cycle. Generate M random perturbation fields that are not only13

homogeneous and isotropic but also spatially correlated for each variable (with a14

de-correlation length of 3d = 900 km), so they are spatially smooth fields with short-wave15

noise largely filtered. Add each of these perturbation fields to the same initial condition that16

produces the 4D background field, and then integrate the model to produce M perturbed 4D17

fields over the analysis time window. Obtain the perturbation ensemble matrix A by18

subtracting the 4D background field from each of the 4D perturbed field, and normalize each19

variable field in A (as described at the beginning as this subsection). In addition, a proper20

diagnostic should be done to detect and correct significant biases (see section 4.4).21

II. Perform the SVD to extract the singular vectors from the normalized A and select the first p22
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singular vectors (with M > p � M/2). Use the selected first p basis vectors for the truncated1

expressions of the analysis increment field in (2). Use the limited memory quasi-Newton2

method (Liu and Nocedal, 1989) to find the optimal ß that minimizes the costfunction in (4).3

Because the truncated system dimension is relatively small (p � 100) in all the experiments,4

the descending algorithm converges rapidly (in less than 10 iterations).5

III. Substitute the obtained ß into (2) to obtain the analysis increment field and then add it with6

the background field to obtain the analysis field.7

In the original En4DVar, the analysis time window is centered at the ending time of the8

assimilation cycle, and the algorithm flow chart is plotted in Fig. 1a. For the j-th cycle ended at t9

= jT, the analysis time window is set over the time interval of jT - �/2 � t � jT + �/2, where � is10

the time length of the analysis time window, and T is the time length of each assimilation cycle.11

With this setting, the analysis has to wait for observations collected from t = jT to jT + �/212

beyond the ending time of the assimilation cycle, so the forecast is delayed by �/2 from the initial13

time of the forecast integration (that is, the ending time of the assimilation cycle). For � = T = 1214

hours used in Qiu et al. (2007), the forecast delay is �/2 = 6 hours. This is clearly undesirable and15

disadvantageous for operational applications. To avoid such a delay, we need to shorten shift16

backward the analysis time window in the next subsection.17

18

2.2. New scheme19

As explained in the introduction, the original En4DVar can be improved if the ensemble20

perturbation matrix A is constructed by ensemble perturbations in a hybrid 4D space that21
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contains only a gridded 3D subspace in addition to the 4D observation space. In this case, the1

m-th column vector of matrix A is given by2

3

am = (�um
T
, �dm

T
)
T
. (5)4

5

Here, �um = um - ub is the m-th perturbation field in the gridded 3D subspace at the ending time6

of the current assimilation cycle and the starting time of the next assimilation cycle. �dm
T
=7

(�dm,1
T
, �dm,2

T
, … �dm,Nt

T
) is the m-th perturbation field in the 4D observation space. �dm,n =8

Hum(tn) - Hub(tn) is the m-th perturbation field in the 3D observation subspace at the n-th9

observation time level (t = tn), while um(tn) and ub(tn) denote the m-th perturbed field and the10

ensemble mean field, respectively, on the model grid at the n-th observation time level. The11

dimension of each column vector is Nv�Nx + No�Nt, where No is the number of observations12

(assumed to be the same) at each observation time level. Since No << Nv�Nx and Nt > 1, the13

column dimension (= Nv�Nx + No�Nt) of the ensemble perturbation matrix A is now much14

smaller than that (= Nv�Nx�Nt) in the original En4DVar.15

The SVD of matrix A is performed in the same way as in the original En4DVar but the space16

dimension is reduced and so is the computational cost due to the use of the hybrid space. From17

(1), it is easy to see that B= AV��
-1
or, equivalently, bk = Avk/�k for the k-th column vector of B,18

so each column vector of B is a linear combination of (a1, a2, … aM). Thus, similar to the m-th19

column vector of A in (5), the k-th column vector of B can be written into the following20

partitioned form:21

22
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bk = (b
u
k
T
, b

d
k
T
)
T
, (6)1

2

where b
u
k and b

d
k correspond to �um and �dm in (5), respectively.3

With the partition in (6), the expression of the analysis increment vector in (2) is now4

reduced to the following form in the gridded 3D subspace:5

6

�ua = �
k=1

p
b
u
kßk = Buß, (7)7

8

where Bu = (b
u
1, b

u
2, … b

u
M). Based on the partition introduced in (5), the background error9

covariance matrix is constructed directly in this paper by the partitioned ensemble perturbation10

sub-matrix Au = (�u1, �u2, … �uM) essentially in the same way as in the conventional EnKF,11

which gives P = Bu��p
2
Bu
T
/(M - 1) � Bu��

2
Bu
T
/(M - 1) = AuAu

T
/(M - 1), where ��p = diag(�1, �2, ...12

�p) denotes the truncated ��. Substituting this result with (7) and into (3) gives13

14

J = Jb + Jo = (M - 1)ß
T
��p

-2
ß + (Bdß - �y)

T
O
-1
(Bdß - �y), (8)15

16

where Bd = (b
d
1, b

d
2, … b

d
M) and thus Bdß = �

k=1

p
b
d
kßk. The vector coefficient ß is the control17

variable for the minimization of J. The similarities and differences between the costfunction18

formulation in (8) and the conventional perfect-model 4DVar costfunction formulation [see (18)19

of Courtier 1997] are examined below.20

When (8) is derived from (3), the sub-matrix Au = Au(tNt) is constructed by the gridded 3D21

ensemble perturbations at the ending time t = tNt of each assimilation cycle and the background22

error covariance is modeled by P = P(tNt) � Au(tNt)Au(tNt)
T
/(M – 1), so the background term Jb in23
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(8) corresponds to �ua(tNt)
T
P(tNt)�ua(tNt). If Au is constructed at the beginning time t = t1 of each1

assimilation cycle, then the resulting costfunction will have the same form as in (8) but the2

background term will correspond to �ua(t1)
T
P(t1)�ua(t1), as the background term in the3

conventional perfect-model 4DVar. This implies4

5

Jb = �ua(tNt)
T
P(tNt)�ua(tNt) � �ua(t1)

T
P(t1)�ua(t1) (9)6

7

for the background term in (8). The approximate equivalence in (9) can be verified by8

substituting P = M(tNt, t1)P1M(tNt, t1)
T
and �ua(tNt) � M(tNt, t1)�ua(t1) into �ua(tNt)

T
P(tNt)�ua(tNt).9

Here, M(tNt, t1) is the matrix operator that maps Au(t1) to Au(tNt) and its inverse exists in the10

ensemble space to map Au(tNt) back to Au(t1), while �ua(tNt) � M(tNt, t1)�ua(t1) involves the11

following approximation. From (1) and (7), it is easy to see that �ua(tn) = Au(tn)��(tn), where12

��(tn) = V��
-1
ß depends on the time level t = tn at which the sub-matrix Au(tn) is constructed for13

the SVD of A = (Au, Ad) in (1) and Ad = (�d1, �d2, … �dM) according to (5). Note that Ad is14

invariant to tn and is dissimilar to Au(tn) for any tn, but Au(tNt) is similar to Au(t1) since Au(tNt) =15

M(tNt, t1)Au(t1). This implies that ��(tNt) � ��(t1), which leads to16

17

�ua(tNt) =M(tNt, t1)Au(t1)��(tNt) �M(tNt, t1)Au(t1)��(t1) =M(tNt, t1)�ua(t1). (10)18

19

This approximation is used in the derivation of (9). The approximate equivalence in (9) provides20

a formal link between the background term in (8) and the background term in the conventional21

perfect-model 4DVar.22

If the sub-matrix Au is constructed by the gridded 3D ensemble perturbations at both t1 and tNt,23
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then �� = V��
-1
ß will be invariant to tNt and t1, so �ua(tNt) = Au(tNt)�� = M(tNt, t1)�ua(t1) can be1

derived precisely. This implies that constructing Au at both t1 and tNt can be redundant for the2

background term (unless the model error is considered explicitly in the ensemble integration), so3

it will not necessarily improve the analysis accuracy (for the current perfect-model En4DVar)4

but will increase the computational cost. By formulating the background term and associated5

analysis increment at the ending time tNt only, the costfunction formulated in (8) will not only6

facilitate the model integration into the next cycle but also improve the computational efficiency.7

This is a major difference between the background term in (8) and the background term8

formulated at t1 in the conventional perfect-model 4DVar. If the background term is formulated9

at t1 and the minimization is achieved by adjusting the initial state at t1, then the adjusted state10

�ua(t1) must be integrated to tNt to provide an initial background state for the assimilation in the11

next cycle. According to (10), this integrated state, that is, M(tNt, t1)�ua(t1) is close to �ua(tNt) but12

subject to additional errors in the perfect-model integration [represented byM(tNt, t1)] after �ua(t1)13

is optimally adjusted at t1. By formulating the background term at tNt, �ua(tNt) can be optimally14

adjusted at tNt and then used directly to initialize the model integration into the next cycle, so the15

analysis is not subject to the aforementioned additional errors and hence can have an improved16

accuracy.17

The observation term Jo in (8) is derived from the observation term Jo = (H�ua -18

�y)
T
O
-1
(H�ua - �y) in (3), while the latter with H linearized to H has the same form as the19

observation term in the conventional perfect-model 4DVar. Noted again from (1) that �ua(tNt) =20

Au(tNt)�� and Bdß = Ad��, where �� = V��
-1
ß is obtained with Au constructed at t = tNt for the SVD21
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of A = (Au, Ad) in (1). Substituting Ad = (�d1, �d2, … �dM) with dm = (�dm,1
T
, �dm,2

T
, …1

�dm,Nt
T
)
T
and �dm,n = Hn�um(tn) = HnM(tn, t1)�um(t1) into Bdß = Ad�� gives Bdß = HM�ua(t1),2

where HM = [H1, H1M(t1, t1)
T
, H2M(t2, t1)

T
, … HNtM(tNt, t1)

T
]
T
. Substituting Bdß = HM�ua(t1)3

into the observation term Jo in (8) gives4

5

Jo = (Bdß - �y)
T
O
-1
(Bdß - �y) = [HM�ua(t1) - �y]

T
O
-1
[HM�ua(t1) - �y]. (11)6

7

When H is linear or tangent-linearized to H, the righthand side of (11) recovers the observation8

term in (3). When H and M are both tangent-linearized, the righthand side of (11) becomes9

formally the same as the observation term in the conventional perfect-model 4DVar. In general,10

the observation increment HM�ua(t1) is a nonlinear function of �ua(t1) but is linearized in the11

conventional 4DVar. As the entire tem HM�ua(t1) is expressed in (8) by a truncated linear12

combination of the singular vectors, that is, Bdß in the space spanned by Bd = (b
d
1, b

d
2, … b

d
M),13

the nonlinearity is fully retained. Since HM is used and embedded in the computation of the14

ensemble perturbations in the observation space – a subspace of the hybrid-space, there is no15

need to linearize HM and code its adjoint. This simplifies the minimization algorithm. As in the16

original En4DVar, the vector coefficient ß is the only control variable for the minimization, but17

here it is given more explicitly in conjunction with the much reduced matrix Bd in the new18

costfunction in (8). Once ß is determined by minimizing the costfunction in (8) and substituted19

back into (7), the analysis increment becomes available on the model grid at the ending time20

level of the current assimilation cycle and thus can be used for the model integration into the21

next cycle.22
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By using the new formulations (7)-(8) in place of the original (2)-(3), each assimilation1

cycle can be performed with the new scheme through the same three steps as described in the2

previous subsection for the original En4DVar. The original analysis time window, however,3

needs to be shifted by �/2 = 6 hours to avoid its caused forecast delay (as explained at the end of4

the previous subsection). For the j-th assimilation cycle ended at t = jT, the shifted time window5

is over jT - � � t � jT. For the new test experiments in this paper, the analysis time window will6

be shortened to ensure that � = (Nt - 1)�� < T = 12 hours, and the algorithm flow chart is plotted7

in Fig. 1b. The shortening will avoid the observations at the ending time level of the current8

assimilation cycle being used again by the analysis in the next cycle. If � = T (= 12 hours) is used9

as in Qiu et al. (2007), then the analysis time window of the current assimilation cycle will end at10

the same time level as the analysis time window starts in the next cycle, so the observations at11

this time level (covered jointly by both the current and next analysis time windows) will be used12

twice. Repeated uses of observations are undesirable and should be avoided, as they reduce not13

only the computational efficiency but also the optimality of the analysis. In a realistic system,14

observations are distributed almost continuously in time, so using the observations in the interval15

of jT - � � t � jT does not cause the above problem.16

17

3. Design of assimilation experiments18

To examine the performance of the new scheme in comparison with the original En4DVar, it19

is convenient to design the assimilation experiments by using the same shallow-water equation20

model with the same parameter settings as in Qiu et al. (2007). In particular, the model domain is21
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a square with periodic boundary conditions at x, y = 0 and D, where D = 44d is the length of one1

side of the model domain and d = �x = �y = 300 km is the grid spacing. The terrain height is2

given by hs = h0sin(4�x/D)sin(�y/D) with the maximum height set to h0 = 250 m for the3

“true-state” run but to h0 = 0 for the imperfect model runs. The initial condition and ensemble4

perturbations are generated in the same way as described in section 3 of Qiu et al. (2007).5

As in Qiu et al. (2007), the observation errors are assumed to be uncorrelated between6

different variables and different points in space and time. Simulated observations are generated7

by adding random errors to the model-produced "true" fields with the observation error standard8

deviations set to 12 m for h and 1.2 m s
-1
for u and v. These simulated observations are available9

every �� = 3 hours on coarse grid points spaced every 3d = 900 km in the x- and y-direction. In10

Qiu et al. (2007), simulated observations were generated in three types: (i) both height and11

velocity observations (type-1), (ii) height h only observations (type-2), and (iii) velocity (u, v)12

only observations (type-3). Since the observation points were fixed, the number of observations13

was the smallest in type-2, which was only 1/3 of that in type-1 and 1/2 of that in type-2. The14

original En4DVar was previously tested with all three types of observations for both the15

perfect-model and imperfect-model cases. The results showed that the analysis RMS errors16

increased by nearly 70% from the perfect-model case to the imperfect-model case. With each17

type of observations, the original En4DVar performed significantly better than the conventional18

EnKF and EnSRF for the imperfect-model case. In view of the previous results, we only need to19

test and compare the new scheme with the original En4DVar for the imperfect-model case with20

type-1 observations in this paper.21
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As explained at the ends of sections 2.1 and 2.2, the analysis time window is centered at the1

ending time of the assimilation cycle in the original En4DVar and this time window needs to be2

shifted backward to avoid its caused forecast delay and shortened to avoid repeated uses of3

observations. The modified time window is over the range of jT - � � t � jT for the j-th4

assimilation cycle with � reduced to 6 hours < T (and thus Nt = 3). Note that this time window5

excludes the first observation time level (3 hours after the model initialization in each cycle).6

Expanding the time window to include the first observation time level should improve the7

analysis. This, however, is not always the case with the current En4DVar, because the ensemble8

integration is too short to generate significant flow-dependent covariance structures at the first9

observation time level (3 hours after the initialization). The situation can be improved (for10

example, the analysis RMS errors obtained by including the first observation time level can be11

reduced by 0.4% in height and by 10% in velocity for the control experiment TEN in Tables 112

and 2) if the ensemble integration is initialized earlier by 3 hours. This, however, will require the13

analysis time level (for the gridded 3D subspace in the hybrid 4D space) shift backward by 314

hours and hence will delay the forecast by 3 hours. To solve the problem effectively, we need to15

update not only the ensemble mean but also the ensemble perturbations in the En4DVar. This16

requires continued research beyond this study.17

Based on the above considerations, two groups of experiments are designed to compare the18

new scheme with the original En4DVar for the imperfect-model case with type-1 observations.19

The first group, called group 1, contains one pair of reference experiments and one pair of test20

experiments plus an additional test experiment. The paired reference experiments, called REO21
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and REN, are designed for the original and new schemes, respectively, in the same way as the1

control experiment 3.1 with type-1 observations in Table 3 of Qiu et al. (2007) except that the2

assimilation is cycled for 25 days (through 50 cycles) instead of the original 5 days (through only3

10 cycles). Note that REN is performed with the new scheme without modifying the original4

analysis time window. That is, the analysis time window is still over jT - �/2 � t � jT + �/2 for the5

j-th assimilation cycle with � = (Nt - 1)�� = T = 12 hours (and thus Nt = 5) in REO and REN.6

These paired reference experiments are used to test and compare the original and new schemes7

over a sufficiently long period of assimilation without modifying the original analysis time8

window.9

The paired test experiments in group 1, called TEO and TEN, are designed to examine the10

impact of the modified analysis time window. This pair is the same as the above pair of REO and11

REN but the analysis time window is modified as described earlier and the truncation number is12

increased from p = 75 to 100 (for M = 150). The additional (third) test experiment in group 1,13

called TEOa, is the same as TEO except that the normalized background error covariance matrix14

is modeled by P = AA
T
/(M – 1) = B��

2
B
T
/(M – 1) instead of P = BB

T
[used in (4) for the original15

En4DVar] without inflating the estimated background error variances (by 2.5 times for the16

imperfect-model case, as mentioned earlier for the original En4DVar). This covariance model is17

similar to that used in (8) for the new scheme in consistency with the covariance model in the18

conventional EnKF. This additional experiment TEOa is designed to examine the impact of the19

refined background error covariance model (without using the hybrid space) on the performance20

of the En4DVar.21
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The second group, called group 2, contains one pair of control experiments, called the control1

pair, and seven pairs of test experiments, called the test pairs for short. The control pair2

duplicates the above TEOa and TEN. The first five test pairs are designed, similarly to the test3

experiments 3.1-3.4 in Table 3 of Qiu et al. (2007), to examine the sensitivities of the new4

scheme to the ensemble size, observation errors and observation density in comparison with the5

original scheme (but the background error covariance model is refined as explained above).6

These five test pair are the same as the control pair (TEOa and TEN) except for the following7

changes: The ensemble size and truncation number are reduced from M = 150 and p = 100 (in8

the control pair) toM = 100 and p = 80, respectively, in test pair 1 and further reduced toM = 509

and p = 40, respectively, in test pair 2. The observation error standard deviations are increased by10

50% (from 12 m to 18 m for h and from 1.2 m s
-1
to 1.8 m s

-1
for u and v) in test pair 3. The11

observation spacing is increased from 3d (= 900 km) to 5d = (1500 km) in test pair 4, and further12

increased to 7d = (2100 km) in the x- and y-directions in test pair 5.13

The last two test pairs (6 and 7) in group 2 are newly designed in this paper to examine the14

sensitivity of the new scheme to non-uniformly distributed observations in comparison with the15

original scheme. In these two test pairs, the observation points are non-uniformly redistributed16

(from those in the control pair) with a 50% of the points randomly selected from the grid points17

in the southwest quadrant of the model domain while the other 50% of the observation points are18

randomly selected from the remaining three quadrants. The number of observation points is 22519

in test pair 6 (which is the same as that in the control pair) but is reduced to 112 in test pair 7.20

These two test pairs are designed to mimic the non-uniform distribution of operational21
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observations over the global continents and oceans.1

2

4. Results and discussions3

4.1. Analysis accuracy4

To evaluate the analysis accuracy of the new scheme versus the original En4DVar, spatially5

averaged RMS errors are computed from the height and velocity difference (analysis minus6

“true”) fields as functions of assimilation time. The two RMS errors are defined by7

8

	h � <(h – h
t
)
2
>
1/2
and 	v � <|v – v

t
|
2
>
1/2

(12)9

10

for the height h and velocity v = (u, v) fields, respectively, where < > denotes the spatial average,11

and ( )
t
denotes the “true” value of ( ).12

The RMS errors from the reference pair (REO and REN) and test pair (TEO and TEN) are13

plotted as functions of assimilation time (for the 50 cycles over the entire 25-day assimilation14

period) in Fig. 2. As shown, the analysis errors produced by the new scheme are notably smaller15

than that produced by the original En4DVar especially for the test pair (TEO and TEN). When16

the original analysis time window is modified (as explained at the end of section 2.2 and17

described in section 3) and the truncation number is increased from p = 75 to 100, the new18

scheme and original En4DVar both produce improved analyses, and the new scheme19

outperforms the original En4DVar significantly. Also, as we can see from all the four20

experiments in Fig. 2, the RMS errors decrease rapidly during the first six assimilation cycles (up21

to day 3) and then become stabilized in the subsequent cycles and keep nearly stationary during22
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the last 20 cycles (from day 15 to 25). This suggests that the analysis errors averaged over the1

last 20 cycles can provide the required statistics for evaluating the analysis accuracy produced by2

the new scheme versus the original En4DVar.3

The analysis RMS errors are averaged over the last 20 cycles (from day 15 to 25) of the total4

50 cycles and listed in Table 1 for all the five experiments in group 1. As shown by the results5

listed for the reference pair, the height RMS error produced by the new scheme in REN is6

slightly larger (by 8.90/8.71 - 1 = 2.2%) than that produced by the original En4DVar in REO, but7

the velocity RMS error is reduced significantly (by 1 - 0.55/0.69 = 20.3%). For the test pair, the8

height and velocity RMS errors are both reduced significantly (1 - 6.75/7.61 = 11.3% in height9

and 1 - 0.54/0.64 = 15.6% in velocity) by the new scheme in TEN compared with the original10

scheme in TEO.11

In the test pair, the analysis time window is modified with Nt reduced from 5 to 3, so the12

amount of observations used by the analyses is reduced (by 40%). Regardless of this reduced use13

of observations, the two schemes both produce more accurate analyses in the test pair than in the14

reference pair, as mentioned above and shown by the first two rows in Table 1. This15

improvement appears to be contradictory to the reduced use of observations but it can be16

explained by considering the following two factors: (i) The truncation number is increased from17

p = 75 to 100 in the test pair. (ii) The last two time levels of observations (that are used in the18

reference pair but not in the test pair) are beyond the ending time in each assimilation cycle, so19

their associated background states and ensemble perturbations have relatively large bias errors20

with significant deviations away from the true state as they are produced by integrating the21
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imperfect model (in which the maximum terrain height is reduced from the true value of h0 = 2501

m to h0 = 0) to the last two time levels (3 and 6 hours after the ending time of each assimilation2

cycle). Thus, shortening the analysis time window with the last two time levels removed can not3

only avoid their caused forecast delay (as explained in section 2) but also avoid to use seriously4

biased background states and ensemble perturbations on these last two time levels.5

As shown by the difference between TEO and TEOa in Table 1, the refined background error6

covariance model alone (without using the hybrid space) can improve the original En4DVar and7

the improvement is more significant than that produced by the use of the hybrid space (in TEN in8

comparison with TEOa). In particular, the RMS errors are reduced by 1 - 6.94/7.61 = 8.8% in9

height and 1 - 0.59/0.64 = 7.8% in velocity as the original background error covariance model10

used in TEO is refined in TEOa, and these error reductions are more significant than the11

reductions (1 - 6.75/6.94 = 2.7% in height and 1 - 0.54/0.59 = 8.5% in velocity) produced by use12

of the hybrid space in TEN in place of the original state space in TEOa.13

Note that the truncation number was set to p = 75 in the control experiment with the original14

En4DVar in Table 3 of Qiu et al. (2007) and this truncation retained 95.6% (or more) of the total15

variance of the ensemble perturbations obtained in the first assimilation cycle (or subsequent16

cycles). With the modified analysis time window and other changes made in the above test pair,17

the original truncation can no longer retain the desired percentage (� 95%) of the total ensemble18

variance and thus needs to be adjusted accordingly for the new scheme. To see this, the retained19

variance percentages, measured by ( �
k=1

p
�k2)/( �

k=1

r

�k2) as in Qiu et al. (2007), are plotted as20

functions of the truncation number p in Fig. 3 for the ensemble perturbations obtained in the first21
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cycle by the two schemes in the test pair. Here, �k is the k-the singular value of A computed by1

the SVD in (1), r is the rank of A and �
k=1

r

�k2 is the total ensemble variance. As shown in Fig. 3,2

with the original truncation number (p = 75), the retained variance percentages are only 87.5%3

and 88.0% in the first cycle of TEOa and TEN, respectively. When p is increased to 100, the4

percentages increase to 93.3% and 94.1%, respectively, in the first cycle. In the subsequent5

cycles, the retained variance percentages become even higher and reach 96.4% and 97.5%,6

respectively, in the 30
th
cycle (not shown). To retain the desired percentage (� 95%) of the total7

ensemble variance in TEOa and TEN, p = 100 is used (in place of p = 75) in the test pair.8

9

4.2. Sensitivity10

The averaged analysis RMS errors from the seven pairs of experiments in group 2 are listed11

in Table 2. These experiments are designed to examine the sensitivities of the new scheme to the12

ensemble size, observation errors and observation distributions in comparison with the original13

En4DVar (with the refined background error covariance model). As shown by the results of test14

pair 1, in response to the reductions of the ensemble size (from M = 150 to 100) and truncation15

number (from p = 100 to 80), the averaged RMS errors are increased by 22.2% (= 8.48/6.94 - 1)16

in height and 23.7% (= 0.73/0.59 - 1) in velocity for the original En4DVar, and increased by17

23.7% (= 8.35/6.75 - 1) in height and 27.8% (= 0.69/0.54 - 1) in velocity for the new scheme.18

Thus, compared with the original scheme, the new scheme is slightly more sensitive to the19

ensemble size reduction (to M =100) and truncation number reduction (to p = 80). This also20

implies that the error reductions made by the new scheme (with respect to the original scheme)21
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become slightly less significant in test pair 1 than in the control pair. In particular, the error1

reductions made by the new scheme in test pair 1 are 1.5% (= 1 - 8.35/8.48) in height and 5.5%2

(= 1 - 0.69/0.73) in velocity, while the error reductions made by the new scheme in the control3

pair are 2.7% (= 1 - 6.75/6.94) in height and 8.5% (= 1 - 0.54/0.59) in velocity. If the ensemble4

size is reduced more dramatically to M = 50 with the truncation number reduced to p = 40, then5

the averaged RMS errors will increase by 103% (= 14.10/6.94 - 1) in height and 108% (=6

1.23/0.59 - 1) in velocity for the original En4DVar, and increase by 90% (= 12.83/6.75 - 1) in7

height and 113% (= 1.15/0.54 - 1) in velocity for the new scheme, as shown by the results of test8

pair 2 in Table 2. In this case, both the new and original schemes perform poorly, but the new9

scheme still outperforms the original En4DVar.10

As shown by the results of test pair 3 in Table 2, when the observation errors are increased11

by 50% from the values used in the control pair, the analysis RMS errors are increased by 7.8%12

(= 7.48/6.94 - 1) in height and 10.2% (= 0.65/0.59 - 1) in velocity for the original En4DVar, and13

increased by 6.7% (= 7.20/6.75 - 1) in height and 11.1% (= 0.60/0.54 - 1) in velocity for the new14

scheme. Thus, with respect to such a degradation of observation accuracy, the new scheme is15

slightly less sensitive in the height analysis but slightly more sensitive in the velocity analysis16

than the original scheme. In this case, the new scheme still outperforms the original En4DVar,17

and the error reductions made by the new scheme are 3.7% (= 1 - 7.20/7.48) in height and 7.7%18

(= 1 - 0.60/0.65) in velocity.19

In test pair 4, the observation spacing is increased to 5d (= 1500 km) from 3d in the control20

pair. In response to this observation density reduction, the analysis RMS errors are increased by21
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22.2% (= 8.48/6.94 - 1) in height and 23.7% (= 0.73/0.59 - 1) in velocity for the original1

En4DVar, and increased by 22.8% (= 8.29/6.75 - 1) in height and 33.3% (= 0.72/0.54 - 1) in2

velocity for the new scheme. The new scheme is more sensitive than the original En4DVar to3

such a moderate reduction of observation density. In this case, the new scheme slightly4

outperforms the original En4DVar, and the error reductions made by the new scheme are 2.2%5

(= 1 - 8.29/8.48) in the height analysis and 1.4% (= 1 - 0.72/0.73) in the velocity analysis, as6

shown by the results of test pair 4 in Table 2. When the observation spacing is increased more7

dramatically to 7d (= 2100 km) in test pair 5, the RMS errors are increased by 68% (= 11.68/6.948

- 1) in height and 83% (= 1.08/0.59 - 1) in velocity for the original En4DVar, and increased by9

73% (= 11.69/6.75 - 1) in height and 113% (= 1.15/0.54 - 1) in velocity for the new scheme. In10

this case, the new scheme slightly underperforms the original En4DVar.11

When the observation points (uniformly distributed in the control pair) are redistributed12

non-uniformly in test pair 6, the RMS errors are increased by 20% (= 8.35/6.94 - 1) in height and13

22% (= 0.72/0.59 - 1) in velocity for the original En4DVar, and increased by 25% (= 8.44/6.75 -14

1) in height and 31.5% (= 0.71/0.54 - 1) in velocity for the new scheme. The new scheme is thus15

more sensitive than the original En4DVar to the observation non-uniformity. In this case, the16

new scheme slightly underperforms the original scheme (by 1.1% = 1 - 8.44/8.35) in the height17

analysis but outperforms the original scheme (by 1.4% = 1 - 0.71/0.72) in the velocity analysis,18

as shown by the results of test pair 6 in Table 2. When the non-uniform observation points are19

thinned from 225 (in test pair 6) to 112 in test pair 7, the RMS errors are increased by 84% (=20

12.77/6.94 - 1) in height and 95% (= 1.15/0.59 - 1) in velocity for the original En4DVar, and21
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increased by 99% (= 13.45/6.75 - 1) in height and 126% (= 1.22/0.54 - 1) in velocity for the new1

scheme. In this case, the new scheme clearly underperforms the original En4DVar (with the2

refined background error covariance)3

4

4.3. Computational efficiency5

As explained in the introduction and shown in section 2.2, the column dimension of the6

ensemble perturbation matrix A in the new scheme is substantially smaller than that in the7

original En4DVar, so the new scheme is computational more efficient than the original En4DVar.8

This is indeed seen from all the pairs of experiments in groups 1 and 2. In particular, as shown9

by the results from the reference pair (in group 1) listed in the first row of Table 3, the CPU time10

required by the new scheme in REN is only 26% of that required by the original En4DVar in11

REO. As shown by the second row in comparison with the first row of Table 3, when the12

analysis time window is modified (with Nt reduced from 5 to 3) and p is increased from 75 to13

100 in the control pair, the CPU time percentage is reduced from 100% to 59% for the original14

En4DVar in TEOa but is increased slightly from 26% to 28% for the new scheme in TEN. Note15

that the column dimension of the ensemble perturbation matrix A is Nv�Nx�Nt in the original16

En4DVar (see section 2.1). When Nt is reduced from 5 to 3 with the modified analysis time17

window, the column dimension is reduced by 40%, so the CPU time is reduced substantially18

although the row dimension of A is increased by 25% as p is increased from 75 to 100. With the19

new scheme, the column dimension of A is reduced to Nv�Nx + No�Nt. Since No � Nv�Nx/9 <<20

Nv�Nx in TEN, the column dimension is reduced merely by about 14% (= 2/14) when Nt is21
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reduced from 5 to 3 with the modified analysis time window. The row dimension of A, however,1

is increased by 25% as p is increased from 75 to 100, and this explains the slight increase of the2

CPU time percentage from 26% in REN to 28% in TEN, as shown in Table 3.3

The CPU time percentage for the original En4DVar in TEO is not listed in Table 3 because it4

is the same as that in TEOa. As shown by the third row in comparison with the first row of Table5

3, when the ensemble size and associated truncation number are reduced (to M = 100 and from p6

= 80) in test pair 1 of group 2, the CPU times required by the two schemes are both reduced, and7

the CPU time required by the new scheme is 43% of that required by the original En4DVar.8

When the ensemble size and associated truncation number are further reduced (toM = 50 and p =9

40) in test pair 2 of group 2 (see row 4 of Table 3), the CPU times required by the two schemes10

are both further reduced, and the CPU time required by the new scheme is still 43% of that11

required by the original En4DVar. The CPU times required by the two schemes in test pair 3 of12

group 2 are not listed because they are the same as in the control pair.13

When the observation spacing is increased (from 3d to 5d) in test pair 4 of group 2, the CPU14

times required by the two schemes are both reduced and, again, the CPU time required by the15

new scheme is still 43% of that required by the original En4DVar, as shown by row 5 in16

comparison with row 1 in Table 3. When the observation spacing is further increased (to 7d) in17

test pair 5 of group 2 (see the last row in Table 3), the CPU times required by the two schemes18

are both further reduced, and the CPU time required by the new scheme is about 40% of that19

required by the original En4DVar. The CPU times required by the two schemes in test pair 6 of20

group 2 are not listed because they are the same as in the control pair. Note that the number of21
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observation points in test pair 7 is the same as that (= 112) in test pair 5, so the CPU times1

required by the two schemes in test pair 7 are the same as in test pair 5 and thus not listed.2

3

4.4. Diagnoses of innovation statistics and optimality consistencies4

In the conventional 4DVar formulation, the background forecasts and observations are5

assumed to be free of bias, and this assumption has been adopted in both the original and new6

En4DVar schemes. The forecast model used in this paper, however, is not only imperfect but7

also biased (since it neglects the “true” terrain) and this can cause the conventional EnKF fail to8

converge (as shown in Fig. 3 of Qiu et al. 2007). The original En4DVar and new scheme can9

converge, but the forecasts and analyses may still more or less biased due to the model bias10

ignored in the En4DVar. In real applications, the true state is unknown, so the biases are hard to11

estimate, but the difference between the observation and forecast biases can be diagnosed in the12

observation space according to13

14

<�y> = bo - bb, (13)15

16

where <( )> denotes the expectation of ( ), �y = y – Hub is the innovation, bo and bb denote the17

observation bias and forecast bias, respectively, in the observation space (that is, the biases of y18

and Hub, respectively, with respect to the same true state in the observation space). Similarly, the19

expectation of �y - H�ua is the difference between the observation bias and analysis bias in the20

observation space, that is,21

22
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<�y - H�ua> = bo - ba, (14)1

2

where H�ua = Hua - Hub is the analysis increment in the observation space and ba denotes the3

bias of Hua. Note that H�ua = Bdß in the new En4DVar scheme. With the ergodicity assumption,4

the expectations in (13) and (14) can be computed by averaging over a large number of5

assimilation cycles. If the observations are bias-free or can be made bias-free through adequate6

quality controls (as assumed in this paper), then the forecast and analysis biases can be diagnosed7

from (13) and (14), respectively.8

As shown in Fig. 2, the RMS errors decrease rapidly in the first 10 cycles (the first 5 days)9

and then fluctuate around a constant level. Similar features are also seen for the minimized10

costfunction values in Fig. 4, so the ergodicity assumption may be valid for the subsequent 4011

cycles. By taking averages over the last 40 cycles, bb and ba are diagnosed from the left-hand12

sides (LHSs) of (13) and (14), respectively, for the two control experiments TEOa and TEN. The13

diagnosed forecast and analysis biases are found to be mostly within ±0.5 m for h and within14

±0.05 m s
-1
for u and v. These diagnosed biases are small but very noisy in the observation space15

as they are obtained by averaging over merely 40 cycles. Examples of the diagnosed height16

forecast biases in TEOa and TEN are plotted by thick dashed curves in Fig. 5a and 5b,17

respectively. Note that No = 225�3 is the number of observations at each observation time level18

and Nt = 3 is the number of observation time levels used in TEOa and TEN, so the vector19

dimension of bb and ba is No�Nt = 225�3�3= 2025. The dimension for each component vector is20

225�3 = 675, so each curve in Fig. 5 plots only the last 1/3 of the h-component vector, that is, the21
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height bias field over the 225 observation points at the last (third) observation time level. Similar1

noisy features are seen in the (u, v)-component fields of the diagnosed forecast and analysis2

biases for all the three observation time levels. These noisy structures appear to represent the3

uncertainties caused by the insufficient sample size (only 40 cycles) rather than the true bias4

variations in the observation space.5

Since the model-simulated “true” state is known in these experiments, the forecast and6

analysis biases can be also directly computed in the observation space by subtracting the “true”7

state from the forecast and analysis, respectively, and then averaging over the last 40 cycles. The8

computed height forecast biases are plotted by thin solid curves in Fig. 5 for TEOa and TEN.9

The RMS differences between the computed and diagnosed biases are around 0.3 m for h and10

0.03 m s
-1
for u and v in TEOa and TEN. These RMS differences are about 60% of the variability11

ranges (±0.5 m for h and ±0.05 m s
-1
for u and v) of the diagnosed biases, so the diagnosed biases12

are significantly different from the directly computed biases. Note from (13) and (14) that the13

differences the above computed and diagnosed biases are simply the observation errors averaged14

over the last 40 cycles. As revealed by the differences between the thick dashed and thin solid15

curves in Fig. 5, the averaged observation errors are very noisy and not close to the true zero16

observation bias. This suggests again that the sample size (40 cycles) is insufficient for the bias17

estimation. Further averaging over all the three observation time levels (with the sample size18

increased from 40 to 120) can reduce the averaged observation errors (revealed by the RMS19

differences) by a factor of about �3, but their spatial fluctuations remain to be significant. To20

filter the spurious fluctuations, we need to assume that the errors are statistically homogeneous in21
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the 4D observation space in addition to the ergodicity. This assumption is accurate for the1

simulated observations but very crude for the forecast and analysis errors. Under this assumption,2

the diagnosed forecast and analysis bias fields can be further averaged in the observation space,3

although their averaged values turn to be extremely small and the observation-space averaging4

appears to overly suppress the biases. As listed in Table 4, the averaged forecast and analysis5

biases in TEN are mostly smaller than those in TEOa. The true forecast and analysis biases and6

their spatial variations are difficult to diagnose, but their magnitude should not exceed the above7

estimated ranges (±0.5 m for h and ±0.05 m s
-1
for u and v). The biases are thus not very8

significant (relative to the forecast error standard deviations (listed in Table 5).9

For an optimal analysis, the expectation of the value of the costfunction at the minimum is10

proportional to the number of observations used in the analysis. This well-known criterion and11

its extension for partitioned observations have been used effectively for diagnosis and adaptive12

tuning of error parameters in variational data assimilation (Desroziers et al. 2001). For the13

costfunction defined in (3) or (8) (without multiplying �), this criterion requires that14

15

<Jmin> = No�Nt, (15)16

17

where No�Nt is the number of observations used by each En4DVar analysis. With the ergodicity18

assumption, the expectation of Jmin can be estimated by averaging Jmin over a large number of19

assimilation cycles, so the criterion in (15) can be conveniently used to check the averaged20

optimality of the analyses without additional computational cost. In Fig. 4, Jmin is plotted as21

functions of the assimilation cycle number for TEOa and TEN. As explained earlier, since Jmin22
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decreases rapidly in the first 10 cycles and then fluctuates around a constant level in each1

experiment, the ergodicity assumption can be valid for the subsequent 40 cycles. The averaged J2

over the 40 cycles gives <Jmin> = 2004.2 for TEOa and <Jmin> = 2062.4 for TEN. These3

estimated values are quite close to the optimality value of No�Nt = 2025. Thus, the optimality4

criterion in (15) is largely satisfied, although the forecast and analysis are not truly unbiased as5

estimated above.6

The criterion in (15) is only a necessary condition for the analysis optimality. In addition to7

this criterion, several additional consistency criteria have been proposed by Desroziers et al.8

(2005) for diagnosis of observation, background and analysis error statistics. In our notations,9

these consistency criteria can be expressed below:10

11

<�y’�y’T> = O+ Po, (16)12

<H�ua’�y’
T
> = Ph, (17)13

<(�y’ - H�ua’)�y’
T
> = O, (18)14

<H�ua’(�y’ - H�ua’)
T
> = Qh, (19)15

16

where �y’ = �y + bb, H�ua’ = H�ua - ba + bb, (13) and (14) are used with bo = 0, Ph and Qh17

denote the background and analysis error covariance matrices, respectively, in the observation18

space. As explained above, since ba and bb are small and hard to accurately estimate from (13)19

and (14), we will simply set ba = bb = 0 in (16)-(19) for the subsequent computations in this20

section. Note that Ph = Bd��p
2
Bd
T
/(M - 1) in the new En4DVar scheme, which is consistent with21

the background error covariance model P = Bu��p
2
Bu
T
/(M – 1) used in (8). The original22
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consistency criteria derived in (1)-(4) of Desroziers et al. (2005) require H to be linear or1

tangent-linearized to H. This tangent-linearization is avoided when the analysis is performed in2

the hybrid space as explained in section 2.2.3

The En4DVar-estimated Ph is flow-dependent and non-stationary, so the expectations on the4

LHSs of (16) and (17) should be also non-stationary. In order to use the ergodicity assumption,5

the variations of Ph must be treated as random fluctuations and the number of assimilation cycles6

sampled for the statistical averaging should be constrained by the time window during which the7

flow regime does not change substantially. When the expectation on the LHS of (16) or (17) is8

computed by averaging over the last 40 cycles, Ph should be also averaged over the last 40 cycles.9

In this case, the rank of the computed matrices on the LHS is limited by the number (= 40) of10

cycles used for the averaging and thus is much smaller than the full rank of No�Nt = 2025. The11

rank of Ph = Bd��p
2
Bd
T
/(M - 1) computed in each cycle is limited by the SVD truncation number12

(p = 100 for TEOa and TEN). As these matrices are highly rank-deficient, their off-diagonal13

terms contain more spurious correlations than useful information. Furthermore, the current14

En4DVar does not update the ensemble in the analysis step, so it provides no estimate of Qh to15

facilitate the use of the consistency criterion in (19) in real data assimilation. Due to the above16

limitations, we will only evaluate the diagonal parts of O and Ph diagnosed from the LHSs of17

(16)-(18), and compare them with the prescribed O and En4DVar-estimated Ph on the right-hand18

sides (RHSs). Note also that (16) is the sum of (17) and (18), so the three criteria in (16)-(18) are19

not independent and we will use (17) and (18) only. Since the diagonal terms of O and Ph are the20

observation and background error variances, respectively, in the observation space, it is21
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convenient to denote their associated standard deviations by vectors so and sb, respectively.1

From the LHS of (18), so can be diagnosed by averaging the diagonal part of the matrix term2

inside the expectation over the last 40 cycles and taking square root. The last 1/3 of the height3

component of the diagnosed so in TEOa is plotted in Fig. 6 to show how the diagnosed height4

observation error standard deviation varies as a function of the observation point at the last5

observation time level. As explained in section 3, the simulated observations are produced by6

adding random errors (generated independently in each experiment) to the simulated "true" fields7

with the observation error standard deviations set to soh = 12 m for h and sov = 1.2 m s
-1
for u and8

v, so the “true” O is diagonal and the “true” so is known. As shown in Fig. 6, the diagnosed soh is9

too noisy to match the “true” constant value of soh = 12 m. Similar noisy structures are seen for10

the diagnosed soh at the other two observation time levels and for the diagnosed sov at all the three11

observation time levels in both TEOa and TEN. Thus, as in the above bias estimation, we need to12

further average the diagnosed so in the observation space. The averaged values are soh = 12.14 m13

for h and sov = 1.224 and 1.221 ms
-1
for u and v, respectively, in TEOa. The averaged values are14

soh = 12.16 m for h and sov = 1.223 and 1.222 ms
-1
for u and v, respectively, in TEN. Clearly, the15

averaged values are very close to the “true” observation standard deviations (soh = 12 m for h and16

sov = 1.2 m s
-1
for u and v).17

From the LHS of (17), sb can be diagnosed by averaging the diagonal part of the matrix term18

inside the expectation over the last 40 cycles and then taking square root. From the RHS of (17),19

sb can be estimated by averaging the diagonal part of Ph = Bd��p
2
Bd
T
/(M - 1) in TEN or its20

equivalent in TEOa over the last 40 cycles and taking square root. The consistency criterion in21
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(17) requires the RHS estimated sb match the LHS diagnosed sb. The required match, however,1

cannot be verified locally due to the spurious noisy structures caused by under-sampling in both2

the LHS diagnosed and RHS estimated forecast error variances. Here, again, we have to further3

average the diagnosed and estimated forecast error variances in the observation space. The4

averaged values are listed in Table 5, where the consistency accuracy is computed in percentage5

for each case by the absolute value of the difference between the LHS diagnosed and RHS6

estimated values divided by the LHS diagnosed value. As shown in Table 5, the consistency7

criterion in (17) is closely satisfied by the averaged values and is more closely satisfied in TEN8

than in TEOa.9

10

5. Conclusions11

In this paper, the ensemble-based four-dimensional variational data assimilation (En4DVar)12

method of Qiu et al. (2007) is revisited, and a new scheme is developed to improve the13

computational efficiency and analysis accuracy of the En4DVar. In this new scheme, leading14

singular vectors are extracted from hybrid 4D ensemble perturbations to fit observation15

innovation data and construct the analysis increment simultaneously in a hybrid space. This16

hybrid space combines the 4D observation space with only a gridded 3D subspace at the ending17

time of the assimilation cycle, so its dimension can be much smaller than that of the gridded 4D18

space in the original En4DVar [see Eqs. (5)-(6)]. This improves the computational efficiency.19

The use of hybrid space also has two apparent advantages: (i) The background covariance20

matrix can be and only needs to be constructed in the 3D subspace [see the first term in Eq. (8)].21
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(ii) The analysis increment can fit the 4D innovation data in the observation space directly [see1

the second term in Eq. (8)] and also provide the necessary initial condition in the gridded 3D2

subspace directly [see Eq. (7)] for the model integration into the next assimilation cycle. In3

addition to the use of hybrid-space, the background error covariance model used in the original4

En4DVar is refined in consistency with the covariance model in the conventional EnKF [see Eq.5

(8) in section 3] and the analysis time window is shifted backward to avoid its caused forecast6

delay and shortened to avoid repeated uses of observations (as explained at the end of section 2).7

The new scheme is compared with the original En4DVar in ten pairs of assimilation8

experiments performed in two groups with simulated observations generated by the same9

shallow-water equation model for the imperfect-model case as in Qiu et al. (2007). The schemes’10

performances are evaluated by their analysis RMS errors averaged over the last 20 cycles (1011

days). The results show that the new scheme can significantly (or only slightly) outperform the12

original En4DVar if the original analysis time window is (or is not) modified. The modified13

analysis time window can improve the analysis accuracy (see Table 1) and computational14

efficiency (see Table 3) for both schemes. The refined background error covariance model can15

further improve the analysis accuracy (as shown by TEOa versus TEO in Table 1). The use of16

hybrid space can improve not only the computational efficient (see Table 3) but also the analysis17

accuracy unless the observations become too sparse and/or too non-uniform (see Table 2). The18

new scheme is slightly more sensitive than the original En4DVar to the ensemble size and19

truncation number and to the observation spacing and non-uniformity, and is about the same20

moderately sensitive to the observation errors as the original En4DVar (see Table 2).21
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As in Qiu et al. (2007), the forecast model used in this study neglects the “true” terrain, so1

the associated model bias can cause the conventional EnKF fail to converge (see Fig. 3 of Qiu et2

al. 2007). The En4DVar has no problem to converge but the forecast is still subject to bias and so3

is the analysis. By applying the ergodicity assumption to the last 40 cycles (after the assimilation4

is stabilized), the forecast and analysis biases are diagnosed in the observation space and found5

to be not very significant (see Fig. 5) relative to the diagnosed forecast error standard deviations6

(listed in Table 5). The diagnosed bias fields, however, are very noisy due to limited samples7

(merely 40 cycles) used in the averaging. The under-sampling problem is evidenced by spurious8

noisy structures in the observation bias (see Fig. 5) and error standard deviation (in Fig. 6)9

computed from the last 40 cycles. The optimality consistency criteria proposed by Desroziers10

and Ivanov (2001) and Desroziers et al. (2005) are used to examine the analysis optimality and to11

diagnose the observation and forecast error variances against the prescribed observation error12

variance and En4DVar-estimated background error variance, respectively. To filter the spurious13

noisy structures, the diagnosed error variances are further averaged in the observation space. The14

results show that (i) the optimality criterion [see (15)] can be largely satisfied by both the new15

scheme and original En4DVar; and (ii) the consistency criterion [see (17)] can be more closely16

satisfied by the averaged forecast error variances in the new scheme than the original En4DVar17

(see Table 5).18

For a given prediction model system, the gridded space dimension is fixed, so the dimension19

reduction due to the use of the hybrid space depends on the difference between the observation20

space dimension and model gridded space dimension. A similar situation is seen when a standard21
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3DVar (or 4DVar) is formulated in observation space versus model space. For conventional1

observations, the observations space dimension is much smaller than the model space dimension,2

so the new scheme can be more efficient than the original En4DVar. For remotely sensed3

observations (such as those from satellites and radars), the observation space can be very large4

and locally dense. There is no advantage to use the new scheme or any other schemes to directly5

assimilate such a huge amount observations due to the high degrees of information redundancy6

in these densely distributed observations (Eyre 1990; Huang and Purser 1996; Xu 2007).7

Redundant observations should be compressed into fewer super-observations before they are8

assimilated, and this will reduce the observation space dimension substantially to allow the9

hybrid-space approach to regain its computational advantages over the original En4DVar.10

In this paper, the hybrid-space approach is tested only with idealized observations simulated11

by the same two-dimensional shallow-water equation model as in Qiu et al. (2007). The potential12

merits and limitations of the new En4DVar scheme need to be further verified by testing with13

more realistic models. When the analysis time window reduces to a single time level of14

observations in each assimilation cycle, the new scheme reduces to an En3DVar. This En3DVar15

was tested recently with simulated temperature observations by the Pennsylvania State16

University-NCAR Mesoscale Model version 5 (MM5) for a real weather event and the results17

showed improved analyses due to the use of En3DVar instead of the original MM5 3DVar (Shao18

and Qiu, 2007). Similar experiments will be performed with MM5 to test the hybrid-space19

En4DVar to address issues (such as the need of covariance localization) in real data applications.20

In a standard ensemble-based data assimilation method, such as the EnKF or EnSRF, the21
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entire ensemble is updated by the analysis in each assimilation cycle and then is integrated1

forward to generate the forecast ensemble for the analysis in the next cycle. In this way, the2

method is able to learn about the forecast error covariance from the data. In the En4DVar3

developed in Qiu et al. (2007) and improved in this paper, the ensemble perturbations are not4

updated by the analysis and thus not relayed into the next assimilation cycle. Not updating the5

ensemble perturbations makes the En4DVar less venerable to model errors (especially systematic6

biases) and computationally more efficient than the standard ensemble-based data assimilation7

methods, but for a price of not being able to learn about the forecast error covariance from the8

data. This learning ability can be very important and useful for future data assimilation as the9

prediction models become increasingly accurate. It is thus desirable and eventually necessary to10

incorporate such a leaning ability into the En4DVar without excessively comprising its11

computational efficient. This problem is under our investigation.12

13

14
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Table 1. The RMS errors averaged over the last 20 cycles (from day 15 to 25) for the analyses1

produced by the original En4DVar and new scheme from the experiments in group 1 that2

includes the reference pair (REO and REN), test pair (TEO and TEN) and additional test3

experiment (TEOa). Here, 	h and 	v denote the averaged RMS errors for the height h and4

velocity v = (u, v) fields, respectively.5

6

Original En4DVar New Scheme

Experiment:

	h (m) 	v (ms
-1
) 	h (m) 	v (ms

-1
)

Reference pair (REO & REN):

� = 12 h (Nt = 5), M = 150, p = 75 8.71 0.69 8.90 0.55

Test pair (TEO & TEN):

� = 6 h (Nt = 3), M = 150, p = 100 7.61 0.64 6.75 0.54

TEOa (as TEO but with refined P) 6.94 0.59 N/A N/A

7

8
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Table 2. As in Table 1 but for the averaged analysis RMS errors from the experiments in group 21

that includes the control pair (TEOa and TEN) and seven test pairs. The control pair duplicates2

TEOa and TEN in group 1, so their RMS errors duplicate those listed for TEOa and TEN in3

Table 1.4

5

Original En4DVar New Scheme

Experiment

	h (m) 	v (ms
-1
) 	h (m) 	v (ms

-1
)

Control pair (TEOa & TEN):

M = 150, p = 100, Obs spacing = 3d
6.94 0.59 6.75 0.54

Test pair 1:M = 100, p = 80 8.48 0.73 8.35 0.69

Test pair 2:M = 50, p = 40 14.10 1.23 12.83 1.15

Test pair 3: Obs error 	1.5 7.48 0.65 7.20 0.60

Test pair 4: Obs spacing = 5d 8.48 0.73 8.29 0.72

Test pair 5: Obs spacing = 7d 11.68 1.08 11.69 1.15

Test pair 6: non-uniform obs, 225 pts 8.35 0.72 8.44 0.71

Test pair 7: non-uniform obs, 112 pts 12.77 1.15 13.45 1.22

6

7
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Table 3. Percentages of CPU times required by the original En4DVar and new scheme from1

different pairs of experiments relative to that required by the original En4DVar in REO from the2

reference pair in group 1.3

4

Experiment:

Original scheme

CPU in %

New Scheme

CPU in %

Reference pair (REO & REN) in group 1:

Nt = 5, M = 150, p = 75, Obs spacing = 3d
100 26

Control pair (TEOa & TEN) in group 2:

Nt = 3, M = 150, p = 100, Obs spacing = 3d
59 28

Test pair 1 in group 2:M = 100, p = 80 35 15

Test pair 2 in group 2:M = 50, p = 40 8.3 3.6

Test pair 4 in group 2: Obs spacing = 5d (225 pts) 58 25

Test pair 5 in group 2: Obs spacing = 7d (112 pts) 57 23

5

6
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Table 4. Observation-space averaged values of the forecast and analysis biases diagnosed from1

the LHSs of (13) and (14), respectively, for TEOa and TEN.2

3

forecast bias analysis bias

h (m) u (ms
-1
) v (ms

-1
) h (m) u (ms

-1
) v (ms

-1
)

TEOa -0.0139 -0.0002 0.0009 -0.0099 0.0010 0.0007

TEN -0.0093 0.0004 0.0003 -0.0070 0.0007 0.0008

4

5

6
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Table 5. Observation-space averaged values of the LHS diagnosed and RHS estimated forecast1

error variances from the two sides of Eq. (17) for TEOa and TEN. The consistency accuracy is2

computed in percentage for each data pair by the absolute value of the difference between the3

LHS diagnosed and RHS estimated values divided by the LHS diagnosed value.4

5

forecast error variance in h (m) forecast error variance in v (ms
-1
)

LHS

diagnosed

RHS

estimated

Consistency

accuracy

LHS

diagnosed

RHS

estimated

Consistency

accuracy

TEOa 7.15 6.25 14% 0.95 0.94 1.1%

TEN 6.89 6.27 10% 1.19 1.18 0.1%

6
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1
2

3

4

Fig. 1. Algorithm flow charts (a) for the original En4DVar used in Qiu et al. (2007) (as well as5

used by REO in this paper), and (b) for the new scheme (as well as the original scheme) used in6
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all the remaining experiments (except for REO) in this paper. Here, ub(t0) is the initial 3D1

background state vector (for the current cycle beginning at t = t0) and ub(tn) is the 3D background2

state vector at the n-th observation time level t = tn obtained by integrating the model from ub(t0)3

at t = t0; �um(t0) is the m-th member of the random perturbations generated initially at t = t0 and4

um(t0) = ub(t0) + �um(t0); �um(tn) = um(tn) - ub(tn) and um(tn) is the m-th ensemble state vector at t5

= tn obtained by integrating the model from um(t0) at t = t0; �yn is the 3D observation innovation6

vector at t = tn, and (�y1
T
, �y2

T
, … �yNt

T
)
T
= �y is the 4D observation innovation vector [see7

Eqs. (3) and (8)]; �dm,n is the m-th member of the ensemble perturbations in the 3D observation8

subspace at t = tn, and (�dm,1
T
, �dm,2

T
, … �dm,Nt

T
)
T
= �dm is the m-th member of the ensemble9

perturbations in the 4D observation space [see Eq. (5)].10

11

12
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Fig. 2. Spatially averaged (a) height RMS errors and (b) velocity RMS errors plotted as functions4

of assimilation time for the analyses obtained by the original scheme (thin dotted curves) in REO5

and new scheme (thick dotted curves) in REN in the reference pair and by the original scheme6
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(thin solid curves) in TEO and new scheme (thick solid curves) in TEN in the test pair (all for the1

imperfect-model case. The drop of the error curve at each analysis time (every 12 hours)2

corresponds the error reduction made by the analysis. In panel (b), the thin dotted and solid3

curves obtained by the original scheme (in REO and TEO) are largely overlapped, and the thick4

dotted and solid curves obtained by the new scheme (in REN and TEN) are also largely5

overlapped and nearly indistinguishable.6

7
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Fig. 3. Retained variance percentage, measured by ( �
k=1

p
�k2)/( �

k=1

r

�k2), plotted as functions of the3

truncation number p for the ensemble perturbations obtained in the first assimilation cycle by the4

original En4DVar (dotted curve) and new scheme (solid curve) in the test pair (TEO and TEN).5

Here, �k is the k-the singular value of A computed by the SVD in (1) and r = rank(A).6

7

8



Fig. 4. Jmin plotted as functions of the assimilation cycle number for the two
control experiments: TEOa with the original scheme but new background error
covariance model (dotted curve) and TEN with the new scheme (solid curve).
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Fig. 5. Height forecast biases diagnosed from LHS of (13) and plotted by thick dashed
curves as functions of the observation point at the last (third) observation time level
for TEOa in (a) and TEN in (b). The thin solid curves are the directly computed height
forecast biases by subtracting the “true” state from each forecast and then averaging
over the last 40 cycles. The difference between the thick dashed and thin solid curves
in each panel shows spurious observation bias caused by insufficient samples (from
merely 40 cycles) in the averaging.
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Fig. 6. Height observation error standard deviation diagnosed from LHS of (18)
for TEOa at the last (third) observation time level.
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