SENSITIVITY ANALYSIS OF ODE VIA AUTOMATIC DIFFERENTIATION

by
Adrian Sandu

A thesis submitted in partial fulfillment of the
requirements for the Master of Science
degree in Computer Science in the
Graduate College of The
University of Iowa

August 1997

Thesis supervisor: Professor Florian A. Potra

Copyright by
ADRIAN SANDU

1997
All Rights Reserved

Graduate College
The University of Towa
Iowa City, Iowa

CERTIFICATE OF APPROVAL

MASTER’S THESIS

This is to certify that the Master’s thesis of

Adrian Sandu

has been approved by the Examining Committee
for the thesis requirement for the Master of
Science degree in Computer Science at the
August 1997 graduation.

Thesis committee:

Thesis supervisor

Member

Member

To my mother and to the memory of my father

ii

ACKNOWLEDGMENTS

This work was supported in part by grants from DOE (DE-FG02-94ER61855),
NASA (NAGW-2428) and the Center for Global and Regional Environmental Re-
search.

I want to thank professors Florian Potra and Gregory Carmichael for open-
ing the issue of automatic differentiation as a sensitivity analysis tool in air quality
models.

My special thoughts go to my wife Corina for her understanding, encourage-
ment, support and affection, and to my daughter Andreea, for giving a purpose to

all this.

iii

ABSTRACT

Sensitivity analysis of numerical ODE solutions via automatic differentiation
is discussed. Black box approach is theoretically analysed and compared to other
techniques : indirect, direct and direct decoupled. Automatic differentiation tech-
niques are used in the sensitivity analysis of a comprehensive atmospheric chemical
mechanism. Specifically, ADIFOR2.0 software is used to calculate the sensitivity of
ozone with respect to all initial concentrations (of 84 species) and all reaction rate
constants (178 chemical reactions) for six different chemical regions. Numerical as-
pects of the application of ADIFOR2.0 are also presented. Automatic differentiation

is shown to be a powerful tool for sensitivity analysis in environmental models.

v

TABLE OF CONTENTS

Page
LIST OF TABLES e et e s vii
LIST OF FIGURES e e e viii
CHAPTER
1. INTRODUCTION e e 1
1.1 Preliminaries 1
1.2 Computational methods for sensitivity analysis 2
1.2.1 Indirect Method (“Brute-Force” Approach) 3
1.2.2 Direct Method (Variational Equations) 4
1.2.3 Green’s Function Method 5
1.2.4 Adjoint Equations Method 5
1.2.5 Automatic Differentiation 6
1.3 Thesis organization 7
2. AUTOMATIC DIFFERENTIATION 9
2.1 Automatic differentiation in FORTRAN 9
2.2 Benefits of automatic differentiation 10
2.3 Automatic differentiation
as a source transformation 11
2.3.1 Theforwmardmode 11
2.3.2 Thereverse mode 14
2.3.3 The hybrid approach 15
2.4 The ADIFOR2.0system 15
3. THEORY e 18
3.1 Applying automatic differentiation
on ODE integrators 18
3.1.1 Omneexample 20
3.1.2 Black-box approach 23
3.1.3 Stability 31
3.1.4 Black box forward automatic
differentiation of the QSSA method 34
3.2 Sensitivity calculation via
FAD-generated variational equations 38
3.2.1 General setting 38

3.2.2 Direct decoupled method

with dedicated algorithms 39
4. RESULTS e 40
4.1 Introduction Lo 40
4.2 Accuracy of different methods:
numerical comparisons Lo 41
4.3 Application of FAD to a comprehensive
atmospheric chemical mechanism 44
4.3.1 The Chemical mechanism 44
4.3.2 The IPCC scenarios 44
4.3.3 Numerical results and interpretation 48
5. CONCLUSIONS e 69
5.1 Resultsof thisthesis 69
5.2 Further research directions 71
APPENDIX
A. THE STEM
(LLOYD- ATKINSON- LURMANN)
CHEMICAL MECHANISM 74
B. CODES e 79
B.1 Brusselator example oL 79
B.2 Merson integratoro oL 80
B.3 Adifor generated - Merson integrator 82
B.4 Implicit Euler integrator 86
B.5 DDM - Implicit Euler 88
B.6 Adifor - generated Implicit Euler 90
REFERENCES o e 99

vi

Table

3.1

4.1
4.2
4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

LIST OF TABLES

Comparison of different methods for sensitivity calculation, brussela-
tor example. Direct decoupled method (DDM) is notably faster than
black box FAD. FAD time grows almost linearly with the number of
input parameters.o

Timings for different methods.
Initial Conditions for each of the six IPCC scenarios simulated. . . .

Normalized sensitivities of O3 with respect to initial values (at the
end of the fifth day); displayed are the values of modulus greater
than 1E-3. oo

Lumped sensitivities with respect to initial values (at the end of the
fifth day); displayed are the values of modulus greater than 1E-3.

Normalized sensitivities of O3 with respect to rate coefficients at the
end of the fifth day (Part 1); displayed are the values of modulus
greater than 1E-3.. Lo

Normalized sensitivities of O3 with respect to rate coefficients at the
end of the fifth day (Part 2); displayed are the values of modulus
greater than 1E-3..o oL

Lumped sensitivities with respect to rate coefficients at the end of
the fifth day (Part 1); displayed are the values of modulus greater
than 1E-3.

Lumped sensitivities with respect to rate coefficients at the end of
the fifth day (Part 2); displayed are the values of modulus greater
than 1E-3.

Normalized sensitivity coefficients w.r.t. temperature. Shown are the
values at the end of the fifth day for some selected species.

Normalised sensitivity coefficients w.r.t. emission source intensities,
Bio case. Shown are the values at the end of the fifth day.

vii

Page

31
43
45

o7

o8

29

60

61

62

63

Figure
2.1

3.1

3.2

3.3

3.4

4.1

4.2

4.3

4.4
4.5

LIST OF FIGURES

Page

Overview of Adifor2.0 system (from [8]). 17

Alternative ways of using automatic differentiation for calculating
chemical sensitivities. The black box approach (upper figure) is com-
pletely automatical, while the variational equation approach (lower
figure) requires user intervention. L. 19

Exact solution of brusselator (upper figure); y; (solid) and y, (dashed).
Exact absolute sensitivities (lower figure); the lines are dy; /9y? (solid),
dy1/0ys (dashed), dy,/0y? (dash-dotted), dy./dyd (dotted). Note

that the peaks of the sensitivity w.r.t. initial values appear when the
solution is changing most rapidly. 21

Relative errors for absolute sensitivity coefficients computed by finite
differences. The perturbation of the initial values is 107¢ with d =
3,4,5,7 (from upper left to lower right). Smaller perturbations can
increase the error. o 22

Relative errors for the solution of brusselator (upper figure) and for
absolute sensitivity coefficients computed by Adifor2.0 (lower fig-
ure); the lines are dy; /0y? (solid), Oy, /0yS (dashed), dy,/dy? (dash-
dotted), 0y, /0yY (dotted). This illustrates the fact that the accuracy
of the sensitivity coeficients depends on the numerical method. . . . 27

Relative errors in computed concentration C (dots) and in brute force
0C/O[NOJy (solid) for C = O3 (left) and C = OH (right). 41

Relative errors in 0[0s]/0[NO], (left) and O[NO]/O[NO], (right)
with brute - force approach (dots), directly differentiated QSSA al-
gorithm (solid), and QSSA integrated variational equations (dash-
dashed). 42

The variations of ozone under different IPCC scenarios (see Table 2
for a detailed description). Lo oL 46

Variation of the most important species under IPCC scenarios. . . . 47

Marine case, lumped sensitivities w.r.t. initial values (left) and sen-
sitivities of ozone w.r.t. initial values (right). 49

viii

4.6

4.7

4.8

4.9

4.10

4.11

4.12

Absolute sensitivities of ozone with respect to initial NOx concen-
tration (upper plot) and with respect to initial NOj concentration
(lower plot). The variation in time is shown for different IPCC sce-
NATIOS. .+« & v v v e e e e e e e e e e e e e e e e e

Absolute sensitivities of ozone with respect to initial CO concentra-
tion. The variation in time is shown for different IPCC scenarios.

Scenario 3 (Bio). Absolute sensitivities of production term (left) and
destruction term (right) of ozone w.r.t. initial NO, concentration
(solid) and w.r.t.initial NO, concentration (dash-dot)..

Scenario 6. Absolute sensitivities of production term (left) and de-
struction term (right) of ozone w.r.t. initial NO, concentration
(solid) and w.r.t.initial NO, concentration (dash-dot)..

Plume-1 scenario. Time variation of O3 (solid), NOx (dashed, mag-
nified 4 times) and HOyx (dash-dots, magnified 10* times) (upper
plot) and absolute sensitivities with respect to initial NOx concen-
tration for O3 (solid) and HOx (dash-dots, magnified 10® times)
(lower plot).

Time derivative of ozone versus NOx for Marine (upper frame),
Plume-1 and Plume-2 (lower frame) scenarios. The parameters on
the curves represent the simulation time in hours. Since simulation
starts at 12:00 pm, multiples of 24 represent local noon, while multi-
ples of 24 plus 12 represent local midnight.

Bio scenario. Time evolution of the ozone sensitivities with respect
to the strength of NOy emission source (solid), and with respect to
the strength of the isoprene emission source (dashed). Normalized
coefficients are plotted.

X

95

26

26

65

66

67

CHAPTER 1
INTRODUCTION

1.1 Preliminaries

Consider the following initial value problem:

dCZ(t) = f(ta cl:"'acnaﬂla"'aﬂm)) (11)
dt
ci(ty) = c?, 1=1---n

where (3, j =1,...,m are the parameters of the system (for example, reaction rate
constants, etc).

For example, if ¢;(t) is the concentration of the " species, the kinetics of
a chemical system is described as an initial value problem in matrix production -
destruction form:

) _ ple) - Dlctt) - clt) (1.2
where P € R", D € ", D = diag(D;) are the production and the destruction
terms, respectively.

In many scientific applications it is of interest to calculate the derivatives of
the solution of (1.1) with respect to different parameters. Such derivatives depend
on time and are called sensitivity coefficients.

The local sensitivity coefficients are defined as:

si,i(t) = % (1.3)

where o represent either the initial values c? or the parameter 3;. The term local

refers to the fact that these sensitivities describe the system around a given set of
values for the parameters a. The system being considered to respond linearly for
small perturbations, s; ; measures the ratio between the effect (absolute variation of
the output Ac;) and the cause (absolute variation of the input Ac;).

It is sometimes useful to consider the ratio between the relative variation of

the output and the relative variation of the input:
¥ @ 8ln(cz) ACZ' A(l’j !
g Y 9ln(y) G\ qj

where s; ; is the normalized sensitivity coefficient. The normalized coefficients have

S

the advantage of being adimensional, hence useful when comparing sensitivities
with respect to parameters whose absolute values are orders of magnitude apart. If
Aaj = a; then o) = o + Aay = 2a; and we have the following interpretation: sj
is the relative variation in ¢; when the parameter «; doubles its value, if the system
responded linearly.

The disadvantage of the normalized coefficients is that they are not defined

for ¢; = 0. To overcome this drawback, one may consider the semi-normalised

|

sensitivities s; ;, representing the absolute variation in ¢; when «; doubles its value

(if the system responded linearly):

dc; Aa;\
+t — ... — ? ~ Ac: j
Fig = X S Jln(a;) € ()

1.2 Computational methods for sensitivity analysis
There are many ways to compute sensitivities. In this paper we employ three
different methods to compute the local sensitivity coefficients - namely indirect,
direct and forward mode automatic differentiation.

Conceptually, all three are equivalent, in the sense that a small perturbation

of a certain input is propagated forward through the system, and the corresponding
deviation of all outputs is estimated. Thus, all the methods described below may
be called forward propagation methods. They are effective when the sensitivity of

all (or many) outputs with respect to one (or few) entries are desired.

1.2.1 Indirect Method (“Brute-Force” Approach)

Equation (1.1) is solved for two sets of parameters o, ..., dj, ..., 4, and oy, ..., @, ..., Oy,

and the obtained outputs are ¢(t) and ¢(t), respectively.

e One-sided difference approach. If o;; = o and & = «; + € the following is an

approximation of the local sensitivity at the point s, ..., &, ...,
Oa; €

If the dependence c¢(«) is smooth enough, then this is a first order approxi-

mation of the sensitivity coefficient.

e Central difference approach. If &; = o; + € and &; = o; — € the following is

an approximation of the local sensitivity at the point ay, ..., o, ..., !
Oa; 2¢
If the dependence c(«) is sufficiently smooth, then this is a second order

approximation of the sensitivity coefficient.

The “Brute-Force” approach requires only one (for one-sided differences) or
two (for central differences) extra function evaluations for each independent variable
with respect to which sensitivities are desired. The main drawback is that the
accuracy of the method is hard to analyze. The smaller the perturbation e, the

lower the truncation error resulting from the omission of higher order terms (see

the expansion of finite difference formulas in Taylor series), but the higher the loss-
of-significance errors, resulting from subtracting two almost equal numbers. At the
very best, the brute force approach results in a sensitivity approximation that has

half the significant digits of f.

1.2.2 Direct Method (Variational Equations)
By differentiating (1.1) with respect to the vector of parameters we obtain the

variational equations:

%Vc(t) = f.(t,c, B)Ve+ Vf(t,c B) (1.4a)

Equivalently (1.2) gives

%Vci(t) = VP (c)—VD'(c)-¢c;—D"-V¢;, i=1,..,n (1.4b)

The fact that the sensitivities satisfy (1.4b) can be proved rigorously, see for

0A

B’ and

example [2]. The notation VA stands for the sensitivity coefficients vector
“ =7 represents a vector (element-by-element) assignment.

To obtain V¢;(t), one has to numerically integrate the large system obtained
by appending together (1.1) and (1.4b). This method is usually referred as the
direct approach. The initial values V¢;(0) must be set properly (if Vz = 86_2 then

Ve;(0) = 1, otherwise Ve;(0) = 0). There are two main drawbacks of this approach:
e The generation of the variational equations requires significant extra effort;

e The integration of the large appended system may be very time consuming.

1.2.3 Green’s Function Method

This method is based on the analytical solution of equation (1.4a). From the

solution of (1.1) one can construct the “Green matrix”
G(t1,t2) = exp (/; fe(s, c(s))ds)
The solution of (1.4a) can be expressed as
Ve(t) = Glt,to)Velto) + | "Gt 5)V £ (s, o(s))ds

Thus the computation of any sensitivit; coefficients is reduced to the computa-
tion of G(t, s). In other words once G(t, s) was calculated any number of sensitivity
coefficients can be easily determined; if a large number of such coefficients is needed
then the method may be efficient. We will not pursue further Green’s function

method in this thesis.

1.2.4 Adjoint Equations Method

In order to fix the ideas suppose we want to calculate sensitivities with respect
to inital values (this is no restriction of generality since sensitivities with respect
to any parameters can be viewed as sensitivities with respect to initial values for
an enlarged system). Equation (1.4a) propagates the derivatives of c(t) w.r.t. c(to)
(namely Ve(t)) forward in time from ¢, to tg; the results is Oc(ty)/0c(2o).

The adjoint approach is to consider the quantities Ac(t) = dc(ty)/0c(t) and
to propagate them backward in time from Z; to .

Supposing the flow of (1.1) is reversible we can invert the time by introducing

7(t) =ty +to — t. The change of variables t — 7 in (1.1) gives
l/l(T) = _f(Ta y(T))

y(to) = clty)

The sensitivities of y(7) w.r.t. y(¢y) are the solutions of the variational equa-
tion
Vy(r)' = —fy(r,y(7))Vy(7)
Vy(to) = 1
which, by coming back to ¢(t) is the adjoint equation
Ac(t) = —felt e(t))Ac(t)
Ac(ty) = 1
Integrating this system backwards gives Ac(to) which are precisely the quan-

tities of interest dc(ts)/0c(to).

1.2.5 Automatic Differentiation
Automatic differentiation (reffered throughout the thesis as AD). techniques
are based on the fact that any function (regardless of its complexity) is executed on
a computer as a well-determined sequence of elementary operations like additions,
multiplications and calls to elementary (intrinsic) functions such as sin, cos, etc.
By repeatidly applying the chain rule:

% (9(t)le=to = <ag—is)|s—g<to)> ' (a%(:) |t=to)

to the composition of these elementary operations one can compute, completely

automatically, derivatives of f that are correct up to machine precision.
According to how the chain rule is used to propagate derivatives through the
computation, one can distinguish two approaches to AD: the “forward” and the

reverse “modes” (see [7], [8] for a detailed discussion).

e The Forward Mode is similar to the way in which the chain rule of differential

calculus is usually taught. At each computational stage derivatives of the

intermediate variables with respect to input variables are computed. These
derivatives are propagated forward through the computational stages. From

now on we will refer to forward automatic differentiation as FAD.

e The Reverse Mode computes at each step adjoint quantities - the derivatives
of the final result with respect to intermediate variables. To propagate ad-
joints, one has to be able to reverse the flow of a program, and remember or

recompute any intermediate value that nonlinearly impacts the final result.

1.3 Thesis organization

The thesis is organized as follows.

In chapter 2 the principles of automatic differentiation are presented. The
Adifor2.0 system, which received the 1995 Wilkinson prize for numerical software,
is also briefly introduced.

Chapter 3 develops the theory for computing sensitivities of the solutions of
ordinary differential equations (ODE) via automatic differentiation. Both black box
approach and direct decoupled method (DDM) are studied. It is shown that the
most efficient algorithms are not obtained by black box differentiation, but by a
selective application of Adifor plus DDM integration.

In chapter 4 the theory is applied to a comprehensive, real-life chemical mecha-
nism used in the study of tropospheric pollution. Sensitivities with respect to initial
values, rate coefficients, temperature, emission rates etc. are computed and tabu-
lated. A qualiative discussion of the results shows the importance and effectiveness
of sensitivity analysis in air quality modeling.

Chapter 5 draws conclusions and pinpoints further research directions.

Finally, the chemical mechanism and some of the test codes used for exempli-

fying the theoretical conclusions are presented in the appendices.

CHAPTER 2
AUTOMATIC DIFFERENTIATION

2.1 Automatic differentiation in FORTRAN

A promising new implementation developed at Argonne National Laboratory
and Rice University over the last couple of years and which has recently been
awarded the 1995 Wilkinson Prize for Numerical Software is the package ADIFOR
(Automatic Differentiation in FORTRAN, see [8]). It adopts a hybrid approach
to computing derivatives that is generally based on the forward mode, but uses
the reverse mode to compute the derivatives of assignment statements containing
complicated expressions. The forward mode acts similarly to the usual application
of the chain rule in calculus. At each computational stage derivatives of the inter-
mediate variables with respect to input variables are computed and are propagated
forward through the computational stages. On the other hand the reverse mode is
based on adjoint quantities representing derivatives of the output with respect to
intermediate variables. The adjoints are computed at each node of the computa-
tional graph and they are propagated by reversing the flow of the program and by
recomputing intermediate values that have a nonlinear impact on the output. It
turns out that this approach is related to the adjoint sensitivity analysis used in
such various fields as nuclear engineering (see [13]), weather forecast (see [61]) and
neural networks (see [93]). Because assignment statements compute generally one

dependent variable in terms of several dependent variables, the reverse mode is very

10

efficient and can be implemented as in-line code.

2.2 Benefits of automatic differentiation
The ADIFOR (Automatic Differentiation in FORtran) system provides au-
tomatic differentiation for programs written in FORTRAN 77. According to its

authors [8] the ADIFOR approach provides four benefits:

e Ease of use. The user only supplies the source code and indicates the inde-

pendent and dependent variables.
e Portability. ADIFOR produces FORTRAN 77 code.

o Efficiency. ADIFOR-generated derivative code usually outperforms divided-

difference approximations.
e Extensibility. ADIFOR employs a consistent subroutine-naming scheme.

ADIFOR requires the user to supply the FORTRAN source code for the func-
tion value and for all lower level subroutines as well as a list of the independent
and dependent variables in the form of parameter lists or common blocks. ADIFOR
then determines which other variables throughout the programs are to be differen-
tiated, and augments the original code with derivative statements. The augmented
code is then optimized by eliminating unnecessary operations and temporary vari-
ables. The FORTRAN code generated by ADIFOR requires no run-time support

and therefore can be ported between different computing environments.

2.3 Automatic differentiation

11

as a source transformation

Traditionally two modes of AD (automatic differentiation) have been devel-
oped: the forward and the reverse modes. The forward mode accumulates the
derivatives of intermediate variables w.r.t. independent variables, whereas the re-
verse mode propagates the derivatives of the final values with respect to intermediate
variables. In either case automatic differentiation produces code that (in the ab-
sence of floating point exceptions) computes the values of the analytical derivatives
accurate up to machine precision.

We illustrate the differences on the following fragment of code (example taken

from [8]). We need to compute the derivatives dy(1 : 2)/0z(1 : n).

y(1) = 1.0
y(2) = 1.0
do i=1,n

if (x(i) > 0.0) then

y(1) = x(1)*y(1)*x2
else

y(2) = x(i)*y(2)%*2
endif

enddo

2.3.1 The forward mode
To apply automatic differentiation the code is first rewritten such that only

elementary unary and binary operations appear:

y(1) = 1.0

12

y(2) = 1.0
do i=1,n

if (x(i) > 0.0) then

temp = x(i)*y(1)

y(1) = temp*y(1)
else

temp = x(i)*y(2)

y(2) = tempx*y(2)
endif

enddo
The are n independent variables, so each derivative will be a n-dimensional

vector. The results is the matrix g_y (the “gradient” of y):

i
_ (1 e z(n
V7 oy 2y(2)

oxz(l) " 0dz(n)

The derivatives of z(1 : n) (which form a n x n matrix) are initialized to the

identity matrix. All other derivatives are initialized to zero. The generated code is

y(1) = 1.0 ! original initial value
do j=1,n

g_y(1,3) = 0.0 ! derivatives of y(1)
end do
y(2) = 1.0
do j=1,n

g_y(2,j) = 0.0 ! derivatives of y(2)
end do

C Initialize the derivatives of x

13

do i=1,n
do j=1,n
if (i.eq.j) then
g_x(i,j) = 1.0
else
g_x(i,j) = 0.0
end if
end do

end do

do i=1,n
if (x(i) > 0.0) then
do j=1,n | inserted code
g_temp(j) = g_x(i,j)*y(1) + x(i)*g_y(1,j) ! for derivatives
end do I of temp
temp = x(i)*y(1)
do j=1,n ! inserted code
g_y(1,3) = g_temp(j)*y(1) + tempxg_y(1,j) ! for derivatives
end do I of y(1)
y(1) = temp*y(1)
else
do j=1,n
g_temp(j) = g_x(i,j*y(2) + x(i)*g_y(2,j)
end do

temp = x(i)*y(2)

14

do j=1,n
g_y(2,3) = g_temp(j)*y(2) + temp*g_y(2,3)
end do
y(2) = temp*y(2)
endif

enddo

2.3.2 The reverse mode
The reverse mode of AD computes adjoints - the derivatives of the final result
with respect to an intermediate quantity.
Suppose that z is the independent variable, y is the result of some computa-
tions and v,w, s are intermediate quantities. Let £ = dy/0¢ denote the adjoint of

the variable £&. At some point in the program we have [8]

s= f(v,w)
Then

oy _0yos

v 0s v

which (considering the fact that y depends on v through multiple computational
channels) leads to the generated code

0s _
v+ =

Since 0s/0v is (in general) a function of some arguments, one must remember the
values of the operands in order to be able to compute it. Thus, in order to apply
reverse mode AD one needs to reverse the flow of the program, must remember
intermediate values that were overwritten and trace how branches were taken.

The example code prepared for reverse AD and the transformed code are

15

described in detail in [8]. Here we will just note that by the linearity of differentiation

the adjoints are related as

] i B I
x]_,...,.’L'TL = 17 2 - o
[), 2] = [y(0,6@)] | 70 a2

dz(l) ~°° 0x(n)

Reverse mode code allows to compute arbitrary linear combinations of the

rows of the Jacobian. If y is initialized to d then the result of the generated code is
0dy(z)
ox

It is a much more involved process to generate reverse mode code. FExtra
memory is required (in the first case as many locations as there are floating point
operations in the original source). However the running time is about m times that

of the function when computing m linear combinations of the rows of the Jacobian.

2.3.3 The hybrid approach

ADIFOR employs a hybrid approach to AD, namely for each statement it
accumulates the partial derivatives of the variable on the LHS with respect to the
RHS and then applies the forward mode to propagate the total derivatives according
to the chain rule. Instead of simply producing the Jacobian J ADIFOR computes
J xS where S is the “seed matrix”. The cost is proportional to the number of
columns of S that are computed in one run. Typically ADIFOR generated code runs
2-4 times faster than one-sided divided differences when more than 5-10 derivatives

are computed at one time.

2.4 The ADIFOR2.0 system

Adifor2.0 system has three major components:

16

e Preprocessor. Parses the code, performs certain node normalizations, de-
termines which variables have to be augmented with derivative objects and
generates derivative code with templates at call sites of F77 intrinsics and

calls SparseLinC routines.

e ADIntrinsics system. Expands calls to Fortran 77 intrinsic templates to For-
tran 77 code guided by a template library defining how each intrinsic is to be

translated.

e SparseLinC library. Provides transparent support of sparsity in derivative

computations.

The relations among these components is shown in figure 2.1 (from [8]).

Fortran
Analysis
Code

Derivative
Computing
Code

Adifor 2.0
Preprocessor

ADIntrinsics Fortran
Derivative
Template
Code
Expander

Compile
and Link

T

User’s
Derivative

Driver

ADlIntrinsics SparsLinC
Library Library

Figure 2.1. Overview of Adifor2.0 system (from [8]).

17

18

CHAPTER 3
THEORY

3.1 Applying automatic differentiation
on ODE integrators

The numerical simulation of the chemical transformations consists in integrat-
ing (advancing in time) a system of coupled, stiff ordinary differential equations that
models the chemical rate equations. It is of interest to ask how automatic differen-
tiation can be used to obtain sensitivities of concentrations with respect to different
parameters, given the rate equations and a numerical routine that solves them.
The simplest approach would be to apply AD directly on the numerical integra-
tor; we will call this ”the black box approach”. A more refined technique, which
necessitates the expert (user) intervention, would be to generate the sensitivity
(variational) equations via automatic differentiation, then to integrate them using a
user-defined technique, for example employing the direct decoupled method. Figure
3.1 gives a visual description of these two possibilities. In short, black box FAD
computes the sensitivities of the numerical solution, while the variational approach
gives a numerical solution to the sensitivity equations.

The black box approach is simpler, while the variational equations approach

is more flexible. In the next sections we will investigate both approaches.

Concentration
Solver
— Concentrations
Rate Eqn AD
ADIFOR Generated
Code
Numerical — Sensitivities
Integrator
Rate Eqn — Concentrations
Numerical
Integrator
ADIF
OR (DDM)
Sensitivity L
Eqn —— Sensitivities

Figure 3.1. Alternative ways of using automatic differentiation for calculat-
ing chemical sensitivities. The black box approach (upper fig-
ure) is completely automatical, while the variational equation
approach (lower figure) requires user intervention.

20

3.1.1 One example
Consider the following system (the “Brusselator” from [45], modeling a chem-

ical system with a limit cycle)

Y = 1495y —4n
vh = 3y — Yy
yi(te) = 1

Yalte) = 1
We will denote by ¥ the derivatives with respect to initial values
4 t
\I’(t) _ a[yl():yZ()]
Ay1(to), y2(to)]

U satisfies the variational equations

2y1yo — 4 Y}
v(t) = W(t
() v
3=2y1y2 —uyi

In figure 3.2 exact solutions are plotted, together with the absolute sensitivity

coefficients ¥ computed by the direct method (i.e. the equations for y and W
were integrated together as a six-dimensional system). The numerical solver used is
VODE with very tight tolerances atol = rtol = 1072

Sensitivities were estimated using the indirect approach with different pertur-
bations of the initial values ranging between 1072 — —10~" (recall that the initial
values are equal to 1). Results are reported in figure 3.3; it shows that the value
10~* gives optimal accuracy while for other perturbations the error is much larger.
Thus, the results of the indirect method are influenced by the interplay between
asymptotics and numerical errors; more exactly, the smaller the perturbation the
better the asymptotic approximation of the sensitivities, but also the larger loss-of-

significance numerical errors.

Y1, Y2

Absolute sensitivities

Brusselator

o 1 2 3 4 5 6 7 8 9 10
Time
Brusselator
15
10— I .
n
I
sk
o= e
v
sl L i
Y
10} i
—-15 L L L L Il Il Il Il Il
o 1 2 3 4 5 6 7 8 9 10
Time
Figure 3.2. Exact solution of brusselator (upper figure); y; (solid) and o

(dashed). Exact absolute sensitivities (lower figure); the lines
are 0y;/0yY (solid), Oy,/0yY (dashed), dyo/0y? (dash-dotted),
Oy2/0yS (dotted). Note that the peaks of the sensitivity w.r.t.
initial values appear when the solution is changing most rapidly.

21

22

delta=1e-3 <10° deta= Le-4
002 . . . 3 . . .
00151)
001H
s
0.005 1
0
5 o 4 5
5 o 3
: g1
S 0005 1 H
Sl
-001h
af
0015
002 4
0025 "
) 1 2 3 5 6 7 8 9 10 0 1 2 3 4 5 7 8 9 10
Time Time
delta=1e-5 delta=1.e-7
002 . . . 2 . . .
001F 1 it

relative error
S
2
elative error
-

002 2
-0031 1 -3
008 4
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Time Time

Figure 3.3. Relative errors for absolute sensitivity coefficients computed by
finite differences. The perturbation of the initial values is 10~¢
with d = 3,4,5,7 (from upper left to lower right). Smaller pertur-
bations can increase the error.

23

3.1.2 Black-box approach
Given the initial value problem
d=f(tca), c(to) = co (3.2)
one would like to numerically compute the solution in time ¢(¢) and also to find the
sensitivity of this solution with respect to the parameters o € R™. Note that with
the transformation:
z=c—cy,

the system (3.2) can be rewritten as

2= f(t,z+ o) = f(t,2,¢0), z(ty) =0 . (3.3)

In other words the dependence of the solution w.r.t. the initial values can be reduced
to the dependence of solution w.r.t. a parameter.

Similarly the dependence of the solution of (3.2) w.r.t. the parameter o can

be reduced to a dependence of initial values by adding differential equations for «
d = f(t,e,a), clty) =co

ad = 0, a(ty) = .

Since the derivatives of the solution w.r.t. the initial values and w.r.t. parameters
are conceptually the same thing we will consider in what follows that the system
depends explicitly on a.
Suppose for the sake of discussion that we solve (3.2) numerically with a one-
step, first order consistent method, expressed in Henrici notation as:
Cni1 = Cp + hy - ®(ty, Cp, Cuy1, @, hy) (3.4)
where ¢, = c(ty) = ¢(to + X; hi) and @ is supposed to be smooth. The method is

applied with a predefined selection of the stepsize h; (either using a constant step

24

or a prescribed step — for example, take smaller steps during sunrise and sundown
intervals; it is essential that A does not depend on ¢, as is the case with inline step
controllers, typical for all popular variable step-size codes). The consistency of the
method implies that ®(t, ¢, ¢, ,0) = f(¢, ¢,) and hence, since ® is supposed to be

smooth in all its arguments we have:

Hm V®(t, cp, Cpir,,h) = V1im ®(t, ¢y, cpir, o, h) (3.5)
h—0 h—0
= V(¢ cp,cn,a,0)

= fo(t,cn,a) - Ve + folt, en, @)

The sensitivities Ve = 0c/da obey the variational equations:

%Vc = felt,c,a) - Ve+ folt, ¢,) (3.6)
= V&(t,cca,0)

Forward automatic differentiation applied on (3.4) will generate:

Venir = Veg+ hy - @ (tn, Coy Cry1, @, hy) - Ve, (3.7)
+hy, - (I)cn+1 (tna Cn) Cnt1, & hn) - Vepi

+hy - @o(tn, Cny Crv1, hy)
The idea is to consider (3.7) a numerical method applied to (3.6). By devel-

oping (3.7) in power series over h,, we get

Veppn = Ve, + hn, - ((Dcn + (I)cn+1)(tna Cn, Cn, O, 0) -Vep +
hn) (Pa(tna Cny Cn,y O 0) + O(hi)
= Ven + hyVO(ty, Cy,cn, a,0) + O(h2)

d
= Ve, + hy, - EVCH + O(h2)

25

Hence by forward automatic differentiating (3.4) we obtain (3.7), a first order con-
sistent method for solving the variational equation.

The above remark leads us to the following conclusion: Black box automatic
differentiation implicitly generates the sensitivity equations. More exactly, suppose
we start with a code that solves (3.2) using a numerical method A. The time dis-
cretization A of the initial equation (3.2) is transformed by black box FAD into a
time discretization of the variational equation (3.6). This represents a new integra-
tion method B. We say that B is the derivative of the method A. If the method
B is convergent, then the resulting code will be able to consistently calculate sen-
sitivities. Thus, the black box FAD is equivalent to the direct method, since the
resulting code applies a numerical integrator (B) to the variational equations (3.6).

In the above we proved that, if the method A is consistent with (3.2) then the
differentiated method B is consistent with (3.6).

In addition, the accuracy of the computed sensitivity coefficients will be given
by the accuracy of the method B (which integrates the variational equations); this in
its turn depends on the method A; hence, although ADIFOR, generates derivatives
accurate up to machine precision, the accuracy of the sensitivities will be limited
by the accuracy of the underlying numerical method.

As a numerical illustration, we have computed the errors in the numerical
solution obtained with Merson’s method and the sensitivities obtained by applying
ADIFOR on Merson’s integrator. Results are presented in figure 3.4. The reference
solution is given by VODE, applied on the variational equations with very tight
tolerances (atol = rtol = 107'?). The relative errors in the numerical solution
are of the order 10~*, while the relative errors in the sensitivity coefficients are of

the order 1073, This illustrates our conclusion that the accuracy of the sensitivity

26

coefficients depends on the underlying numerical method.

3.1.2.1 Variable step size algorithms
If the algorithm uses an error controller that adjusts the stepsize based on
local error estimates, then h, depends on ¢ (and hence on «) and (3.7) becomes:
Ve = Veu + hy - @ (tn, Cay Cnrt, @, hy) - Ve,
+hn - @, (tns Cry Cogts @ hy) - Vepia + by - o (tn, Cny @, hy)
(o * @i, 0, 0) + Bt 0,) - T
The last term, and the eventual stepsize rejections may create problems when the
algorithm is automatically differentiated. This is so because of the extra term

implying the sensitivity of the stepsize. Consider for example the asymptotic step

1
— A p+1
hn = hn—l'(ch Cﬂ”)

tol
1
_ 2 p+1
Vh, = Vh,_,. (o=l
tol
Rp_q - tOlil/p+1

p+1
Numerical experiments with the variable step-size Merson’s method applied

controller:

“(llen = &lD777 - V([len — éal])

on brusselator did not reveal this problem. In fact, setting VA = 0 at each step
increased the numerical error in the sensitivities. I do not understand at this point

why it is so.

3.1.2.2 Implicit methods
If an implicit method is used for solving (3.2) then at each time step a nonlinear

system of algebraic equations has to be solved. This is usually done by simplified

Relative error

Relative errors

Relative error in solution

2 3 4 5 6 7 8 9 10
Time

Relative errors in sensitivities

—4 L

Figure 3.4.

Relative errors for the solution of brusselator (upper figure) and
for absolute sensitivity coefficients computed by Adifor2.0 (lower
figure); the lines are dy;/9y! (solid), dy;/0yy (dashed), dys/0y!
(dash-dotted), Oy./0y9 (dotted). This illustrates the fact that
the accuracy of the sensitivity coeficients depends on the numer-
ical method.

27

28

Newton iterations.

Black box FAD will transform the nonlinear system in concentrations into a
nonlinear system in concentrations and sensitivities, and will add to the iterative so-
lution for concentrations an iterative solution for sensitivities. For example consider

the fixed step-size method

Cni1 = Cn+ h®(t,cpg, oy Coat1, @, h) (3.8a)
i=k

Venir = Ve, +h Z D, _(t, Cnty ey Cny1, 0, h) - Ve, (3.8b)
=1

+h®y(t, Crnky ey Cry1, @, B)
Both formulas (3.8a-3.8b) are implicit since they involve ®(..., ¢, 41) and ®.(¢p41),
respectively. The code generated by black box FAD will consist of an iterative so-
lution of (3.8a) and (3.8a) coupled together. An implicit solution of (3.8a-3.8b)

requires the factorization of the matrix

I, — hd,,,, 0 0 - 0
_<I)Cn+1,cn+1 (VC)l - (I)Cn+1,041 (In - h(I)Cn-H) 0o --- 0 (39)
_(I)Cn+1,cn+1 (Vc)m - @Cn+lyam 0 o .- (Iﬂ - h@an)

(where n is the dimension of the initial system and m is the number of coefficients
to be calculated). Solved directly, this factorization requires O (n®(m + 1)3) opera-
tions. Of course, the inverse of (3.9) involves only the matrix
-1
(I, — ho.,.,)
so the factorization should really require only O ((m + 1)n3) operations.
If (3.8a) is solved first, and the obtained value for ¢, is then used in (3.8b),

this becomes a linear system in Ve, ;1; hence the sensitivities can be obtained with

29

only one matrix decomposition (of I —h®,, 4, for all «;) and without any iterations
(the Direct Decoupled Method from [34]).

To fix the ideas, consider the model problem (with y € R™)

v =f(y)
together with the variational equations
V=1 J(y)¥

where U = dy(t)/dy(to) and J = f,.

Implicit Euler discretization of the above equations reads

Yni1 = Yo+ hf(Yni1)

‘I]n—kl = \Iln + hIn ® J(yn—kl)‘lln—kl
The direct decoupled method solves the nonlinear equation in ¥, first using

quasi-Newton, then evaluates .J (Yn+1) and solves the linear variational equation.
Factorize S =1— hJ(yn,)
do (until ||Ay|| small enough)
SAY = yp1 — Yp — hf (Yns1)
YUnii =Y — Ay
k=k+1
enddo
Factorize S =1—hJ(Yni1)

Solve I,QSV,., =1,
Note that the solution for ¥, requires only n (or in general m) backsubsti-

tutions with the same matrix S; the decomposition of S will be used in the next
step for solving the equation in y, .
The direct (coupled) method will attempt to solve the big, nonlinear system

together, iterating for both the concentrations and the sensitivities.

30

With FAD the following takes place. For a system
Ax =b
the sensitivities obey
A(Vz) =Vb— (VA)x
The fact that both systems share the same matrix is exploited with DDM. On the
other hand Adifor will generate code for each component of Vz, which is equivalent
to repeating the decomposition of A m times (in our example n times).

Thus, we may conclude that black boxr FAD is more effective than the di-
rect (coupled) method, but less effective than the direct decoupled method (DDM).
Formally the cpU times of the three methods obey the inequality

Tpirect = Tadifor = TopMmr -

To illustrate this we have employed the Brusselator example discretized with
the implicit Euler method. We considered the solution of the sensitivities by the
Adifor generated code and using the direct decoupled method. The results are given
in table 3.1. While with DDM the computation of the 4 sensitivity coefficients
increases the cPuU time by only 50%, with Adifor the cPU time increases linearly
with the number of independent parameters (more than this in our small example).

Since the AD generated code uses iterations for the sensitivity coefficients also,
the convergence of the sensitivity iterations adds to the problems mentioned above.
The aspects of derivative convergence are thoroughly examined in [42]; it is shown
that, if the concentration iterations are convergent, under natural hypothesis, the

new sensitivity iterations are also convergent.

31

Table 3.1. Comparison of different methods for sensitivity calculation, brus-
selator example. Direct decoupled method (DDM) is notably
faster than black box FAD. FAD time grows almost linearly with
the number of input parameters.

Method Mflops | cPU time | max Conc err | max Sen err
Impl Euler | 24 3.6 sec 5E-4 -

Indirect 72 10.8 sec | — 4.E-3
Adifor 120 12.3 sec | 5E-4 4E-3

DDM 34 4.8 sec 5E-4 5E-3

3.1.3 Stability
The equations and the variational equations share the same subset of eigen-
values. This can be seen from the fact that the variational system (with a one-

dimensional parameter o and ¥ = Jy/d«)

vy = f(y)

¥V o= f,(y)T+ faly)
has the Jacobian

fy(y) 0
Sy (W, 0) + fay(y) fy(y)

Thus, it is reasonable to conjecture that, if the original method is stable, the
differentiated method is also stable. This is certainly true for linear multistep and
Runge Kutta methods which are invariant under differentiation, as we shall see

shortly.

32

3.1.3.1 One step methods
Let A be a one-step method consistent of order p; its local error has an

asymptotic expansion of the form:
N+1

c(t+h)—c(t)—h-(t c(t = Y di(t,a) hi—l—O(hN“)
i=p+1
By differentiating the above relation:
N+1
Ve(t+h) = Ve(t) — h-VO(te(t),h) = Y Vdi(t,a) - hi + 0 (K2
1=p+1

which shows that, if the d; are smooth in «, the differentiated method B has the
same order of consistency.

Also, if the global error of the method satisfies

N+1
clto+nh) —cn =Y (bi(t,e) + B;) - h' + O (AN*?)
1=p+1
then
N+1 .
Ve(to +nh) — Vea®(t c(t),h) = Y V (bit, @) +) - b + O (KN F?)
i=p+1

Thus if the initial method is convergent of order p and if the expansion coeffi-
cients b; and the perturbations (; are smooth in «, then the differentiated method
converges with the same order.

The above considerations show that although automatic differentiation pro-
duces derivatives that are exact up to the machine precision, the accuracy of the
sensitivities computed by the black box FAD depends on the accuracy of the under-

lying numerical integration method (in particular depends on its order).

3.1.3.2 Runge-Kutta methods

A s-stage Runge-Kutta method is defined as

yio= Yo+ > biki

=1

33

k‘i = hf to +Cih, Yo + Zaijkj, a)
j=1
Applying FAD yields
Vy1 = Vyo + Z b;VEk;

i=1

sz = hfy (t() +Cz'h, Yo + Zaijkj, a) (Z CLiij])
7j=1

=1

S
+hfa to + Cih, Yo + Z aijkj, [0
7j=1
This relation is exactly the original Runge-Kutta method applied to the variational
equations.

Two aspects of black-box FAD of RK methods are worth mentioning:
e The system in k;, Vk; has dimension s(m + 1)n;

e The error control of the resulting code will adjust the stepsize according to
the error in the concentrations only; user intervention is needed to control the

sensitivity errors also.

3.1.3.3 Linear Multistep methods
By differentiating the linear multistep method applied on the rate equation

(3.2) one obtains the same method, applied on sensitivity equations (3.6):

k k
Z QG Cpyg = h- Zﬁz “ fnti (3.10a)
1=0 =0
k k
Zai : Vcn+i = h- Zﬂz : ((fc)n+ivcn+i + (fa)n+i) (310b)
1=0 i=0

Hence, the following diagram commutes for multistep methods (provided that

sensitivity iterations converge if the multistep method is implicit).

34

.. MS
Kinetic Eqn Concentrations
ADIFOR ADIFOR
. M
Variational Eqn 5 Sensitivities

3.1.4 Black box forward automatic

differentiation of the QSSA method
As an illustration, we consider in detail the integration of (1.2) using the
Quasi- Steady- State- Approximation (QSSA) technique (see [49]). This method

solves (1.2) with the first order consistent formula:

cto + h) = e Dol (co - D;t- PO) +D;' P, (3.11)
where (3.11) is applied on the typical integration interval [to,to + h], co = c(to),
Py = P(cy) and Dy = D(cp). Because of the diagonal form of D, (3.11) can be
decomposed componentwise, and the implementation of the QSSA step looks like

this:

call compute (in : 1y, a, co; out: Py, Do) (3.12)
do 1=1,n

— ,—Dg-h P P}

ci(tO + h/) =€ 07" . (Co,i — 5%) + 5(3_

end do

35

The subroutine compute calculates the production and destruction terms at ¢, c.

From (3.12), the FAD will generate the algorithm:

call g_compute (in : ty, a, co, Veg; out : Py, Do, V Py, VD)

do 1=1,n
§ P P
ci(to+ h) = e_DO'h-<c i——°.>+—0. 3.13a)
(to +h) g)+ 5 (
: i P!
Vci(t() + h) = —h- VDE . G_Doh . <C()’z' - Fa) (313b)
0
; VP: Pi:.VD;
LeDih (Vc i 0 0\ 0)
"D T (D)
+VP§ _ P} - VD@
Dy (Dg)?
end do

Equation (3.13b) is a numerical method applied to (1.4b). From (3.13b) it is

clear that:

VC(h) |h:0 = VC()

d : P!
%Vci(to + h)|h:0 = —VD(Z) . (CO,i — 3%)
. VP P! . VD
—Dt. _ .O 0 . 0
’ (VCO Dj) (D})?

= —VD(Z) < Coi — D(Z) . VC()’Z' + VPS
and by comparing this with (1.4b) we conclude that (3.13b) is an order 1 consistent

method applied to the variational equations.

36

3.1.4.1 The steady-state equations
Many codes use the steady-state approximation for the radical differential
equations. More exactly, let ¢ = [, r| with [denoting the long-lived species and r
the radical species and let TI(,7), A(l,7) be the production and destruction terms
for radicals:
T 1), @) - A, (1) -7

Consider the radicals to vary so rapidly, that they are at steady state. Then

dr(t)

o ~ (0 and

0.
"0~ K@@, r0)

This algebraic equation is commonly solved by fixed-point (functional) itera-

(3.14)

tions, keeping [(t) = lp = constant:
do k =1, No_of _iterations
call radical (in : «, B, r*, ly; out : TIF, AF)

doi=1,No_of _radicals

k+1 _ IO

i = AR
1

end do i

end do k

where the superscript k refers to the iteration number.

By forward automatic differentiation, this becomes:

do k =1, No_of _iterations
call g_radical (in: o, B, r*, 1y, V B, Vr¥, Vip;
out: IIF, AF VII¥, VAF)

doi=1,No_of_radicals

37

T1%
ritl = A—; (3.15a)
VIIE TIEVAF
k+1 - 7 1 1
end do 1
end do k

It is interesting to look at (3.15b) in relation with (1.4b). Since the radicals
are supposed to be at steady-state, the sensitivities Vr are constant in time and

hence (1.4b) becomes:
VI1I; VA; . VI, 1ILVA; .
ity = - S oi=1,... 1
Vr A T A A, A? i n (3.16)

This reveals that the FAD generated (3.15b) is a fixed point iteration to solve

the nonlinear system (3.16). For the conditions under which these iterations con-

verge we refer again to [42].

3.1.4.2 Conclusions for automatically

differentiated QSSA
Black box application of forward automatic differentiation on a fixed step-size
QSSA algorithm (3.11) is equivalent to solving the variational equations (1.4b) with
the first order method given by the formula (3.13b). If the steady state approxima-
tion is used for radicals, and the resulting nonlinear equations are solved by fixed
point iterations, then forward automatic differentiation will result in an algorithm
that uses the steady state assumption on the variational equation and solves the

nonlinear equations for Vr by a fixed point scheme.
We point out again here that the errors of the numerical scheme (3.13b) will
dominate those induced by the automatic differentiation process. Hence, it is rea-

sonable to expect that the computed sensitivity coefficients are at most as accurate

38

as the computed concentrations.

3.2 Sensitivity calculation via

FAD-generated variational equations

3.2.1 General setting
As shown by our previous considerations, automatic differentiation implicitly
generates the linearized equations (1.4b). To be more precise, let the rate equations

be described by the subroutine:
subroutine compute (in : t, «, ¢; out: cdot)

where « are the parameters, c is the vector of concentrations and cdot = dc/dt at

given input arguments. Forward automatic differentiation will generate:
subroutine g_compute (in : t, «, ¢, Ve; out : cdot, Vedot)

Under the assumptions that sensitivities obey (1.4b) and that dc/dt is a smooth
function of ¢ and « the subroutine g_compute completely describes (1.4b) because:
de d
Vedot =V — = —Ve.
T
It is therefore possible to combine the advantages of FAD with efficient numerical
schemes if we firstly generate (1.4b) via automatic differentiation, then solve the

variational system using an integrator of choice. This approach should work:

e better than the black box automatic differentiation, which is in principle equiv-
alent to the direct approach, with a fixed method for integrating the system;
the hybrid approach allows the use of variable step-size algorithms and enables

the decoupled integration of sensitivity equations ([34]);

39

e casier than the usual implemention of the direct (decoupled) method where
the variational equations are derived either by hand or by using symbolic

manipulation.

3.2.2 Direct decoupled method
with dedicated algorithms

Dedicated algorithms are explicit methods for the numerical solution of the
rate equations (3.2) which make use of their special (production-destruction) form;
examples of dedicated methods are QSSA, Young and Boris and Two-Step (see
[91]).

Looking at the variational equation (1.4b) we remark that it is also formulated
in production - destruction form:

%Vq(t) = Pi(c)-D"-V¢, i=1,..,n, where:
Pi(c) = VP (c)—VD(c)-¢;, i=1,...,n,
Di(c) = D), i=1,..,n.

Since dedicated integrators perform the computations in a componentwise
manner, their use leads to a natural decoupling between the concentration and the
sensitivity equations. Thus, we can extend the direct decoupled method of [34] to
dedicated integrators.

In the case of using QSSA-type methods, since their main computational load
(besides function evaluation) consists of calculating the exponentials exp(—D" - At)
and since D(c) = D*(c), ¢ = 1,...,n, the algorithm can be optimized, in the sense
that the exponentials have to be evaluated only once per component per time step

(and not once per sensitivity coefficient per time step).

40

CHAPTER 4
RESULTS

4.1 Introduction

In this chapter we demonstrate the use of ADIFOR in the sensitivity analysis
of a comprehensive gas phase chemical box model. Automatic differentiation is used
to calculate first order sensitivities with respect to initial conditions and chemical
reaction rate constants for a wide range of chemical conditions corresponding to the
IPCC (Intergovernmental Panel on Climate Change) Chemistry Intercomparison
study (see [70]).

Dedicated algorithms are explicit methods for the numerical solution of the
rate equations (3.2) which make use of their special (production-destruction) form;
examples of dedicated methods are QSSA, Young and Boris and Two-Step (see
91]).

Looking at the variational equation (1.4b) we remark that it is also formulated
in production - destruction form:

%ch-(t) = P(c)—D"'-V¢, i=1,..,n, where:
Pi(c) = VPi(c)—VDi(c)-c;, i=1,...,n,
Di(c) = D'(c), i=1,..,n.

Since dedicated integrators perform the computations in a componentwise

manner, their use leads to a natural decoupling between the concentration and the

sensitivity equations. Thus, we can extend the direct decoupled method of [34] to

41

dedicated integrators.

In the case of using QSSA-type methods, since their main computational load
(besides function evaluation) consists of calculating the exponentials exp(—D* - At)
and since D(c) = D¥(c), i = 1,...,n, the algorithm can be optimized, in the sense
that the exponentials have to be evaluated only once per component per time step

(and not once per sensitivity coefficient per time step).

4.2 Accuracy of different methods:
numerical comparisons
In this subsection we display some numerical results obtained by integrating
variational equations with Plain QSSA, Extrapolated QSSA and Symmetric QSSA
methods (as described in [55]). We have employed VODE (see [11]) to accurately
solve the system of ordinary differential equations, as well as the corresponding vari-
ational system. We consider the “exact” solution to be that obtained by integrating

the variational system with VODE, rtol=10"%, atol=10"18.

\/ WW

Telative ermor
Telative ermor

10 4 10 i
g - 10 & 3
10°° E 10°° E
10°° 10°°

o S50 100 o S50 100

time [hours] time [hours]

Figure 4.1. Relative errors in computed concentration C (dots) and in brute
force 0C'/O[NO], (solid) for C = O3 (left) and C = OH (right).

42

Figure 4.1 compares the relative errors in the computed concentration and
the corresponding brute-force sensitivity coefficient 9/0[NO],. The integration was
done in double precision with VODE (rtol=107°). Figure 4.1 illustrates a point
that we made earlier, namely that, for the brute force approach, the number of
significant digits in the computed sensitivity coefficient is at most half of the number

of significant digits in the value of the function (here, the value of the concentration

c).

Telafive error
relafive error

50 50
time [hours] time [hours]

Figure 4.2. Relative errors in 9[03]/9[NO], (left) and d[NO]/I[NO], (right)
with brute - force approach (dots), directly differentiated QSSA
algorithm (solid), and QSSA integrated variational equations
(dash-dashed).

Figure 4.2 compares the relative errors in the sensitivity coefficients 8/0[NO],
computed by directly differentiating the QSSA code (solid lines), by integrating
the variational equations with QSSA (step-size 10 seconds, dash-dashed line) and
by brute-force estimating them from the outputs of the QSSA code (step-size 10
seconds). This comparison illustrates the fact that the number of significant digits
in the computed sensitivity coefficients is given by the precision of the integration

scheme (here QSSA) and not by the precision of automatic differentiation process

43

(which is of the same order as machine precision). As expected, the brute force
approach is the least accurate, while the integration of variational equations seems to
be the right choice. The CPU timings corresponding to these numerical experiments
are shown (the timings may depend on the size of the code and the amount of
memory available. Results presented here were obtained on a HP-UX A 9000/735
workstation with 128 M RAM, using level 1 of optimization) in Table 4.1. The
calculation of the sensitivities of all species with respect to one parameter implies
the calculation of 84 coefficients (since the model has 84 variable species); the
calculation of the sensitivities of all species with respect to all initial values implies

the calculation of 84*84 coefficients.

Table 4.1. Timings for different methods.

Method No of sensitivity Normalized
coefficients time
QSSA concentrations only 1
Direct FAD on QSSA 84 x 84 105
Variational eqns with QSSA 84 x 84 82
Variational eqns with Extrapolated QSSA 84 % 84 50
Variational eqns with Symmetric QSSA 84 x 84 58

44

4.3 Application of FAD to a comprehensive

atmospheric chemical mechanism

4.3.1 The Chemical mechanism

The chemical mechanism used in this study is that presently used in the
STEM-II regional scale transport/ chemistry/ removal model (see [14]). This mech-
anism consists of 86 chemical species and 178 gas phase reactions. The mechanism,
based on the work of Lurmann et al. ([58]) and Atkinson et al. ([5]) is representative
of those presently being used in the study of chemically perturbed environments.
The mechanism represents the major features of the photochemical oxidant cycle
in the troposphere and can be used to study the chemistry of both highly polluted
(e.g., near urban centers) and remote environments. The photochemical oxydant
cycle is driven by solar energy and involves nitrogen oxides, reactive hydrocarbons,
sulphur oxides and water vapour. The chemistry also involves naturally occuring
species as well as those produced by anthropogenic activities. Many of the chemical
reaction rate coefficients vary with the intensity of solar radiation (photolysis rates),

and thus follow a strong diurnal cycle. Others vary with temperature.

4.3.2 The IPCC scenarios
To test the robustness of the above numerical algorithms, we have employed
six different scenarios (summarised in Table 4.2). These conditions represent vari-

ous chemical environments ranging from: low NO, oceanic boundary layer regions

Table 4.2. Initial Conditions for each of the six IPCC scenarios simulated.

45

Scenario 1 2 3 4 5 6
Elements Units Marine | Land Bio Free Plume 1 | Plume 2
Altitude [Km)] 0 0 0 8 4 4
Temp K] 288.15 | 288.15 | 288.15 236.21 | 262.17 262.17
Pressure [mbar] 1013.25 | 1013.25 | 1013.25 | 356.5 | 616.6 616.6
Nitrogen [10%%em ™3] | 2.55 2.55 2.55 1.09 1.70 1.70
H,0 [ppb] 10000 10000 10000 500 2500 2500
H, [ppb] 500 500 500 500 500 500
Hy0, [ppb] 2 2 2 2 2 2
Os [ppb] 30 30 30 100 50 50
NO, [ppb] 0.01 0.2 0.2 0.1 10 10
HNO; [ppb] 0.1 0.1 0.1 0.1 0.1 0.1
co [ppb] 100 100 100 100 600 600
CH, [ppb] 1700 1700 1700 1700 1700 1700
NMHC [ppb] 0 0 1 (ISOP) | 0 0 117.5

o3

130 - e ‘ 4

120} -

110} . -

o ———ni——— 000 4
! s T T =

90} , |

80 / -

conc [ppb]

504 \ / i

a0t 4

time [hours]

Figure 4.3. The variations of ozone under different IPCC scenarios (see Table
2 for a detailed description).

46

conc | ppb]

conc | ppb]

conc ppb]

conc ppb]

Figure 4.4. Variation of the most important species

10

R
o]

10

10

10

o

HCHO
(<3

[~==2_3 1
| S o - _ Loz g e~ A
~ 4
~ T T T e

/ v
/\7“/5 E
- Bl

50
time [hours]

100

0,

50
time [hours]

100

50
time [hours]

100

H202
sl &)
)
- L i
6 i
=5 B
=2
=
=
g ar -
8

50
time [hours]

NO2
N
NN
NS
s
AN
N
10° Y B
N o
N \
NNA -
— NN
=
=5
=
10t B
8

50 - 100
time [hours]

HNO4a

conc ppb]

50 100
time [hours]

HOZ2

conc ppb]

50 100
time [hours]

under IPCC scenarios.

47

48

(Marine); high NO, continental boundary layer regions without (Land) and with
isoprene (Bio); dry upper tropospheric regions (Free); biomass burning plumes with-
out (Plume 1) and with (Plume 2) reactive hydrocarbon species. Further details are
presented in Chapter 7 of the current WMO Ozone Assesment (see [70]). ADIFOR
was used to calculate sensitivities of ozone with respect to initial conditions and
reaction rate parameters. In the simulations of these cases the QSSA method with
a fixed stepsize of 10 seconds was used. This algorithm is suited for direct auto-
matic differentiation, and is easy to implement when solving (1.4b). Its use leads
to results having 1-2 significant digits. The calculated ozone concentrations for the
five cases are presented in Figure 4.3, and all other important species in Figure
4.4. In the marine boundary layer case, ozone is continuously destroyed throughout
the 5 day period. The land and bio conditions show initially ozone production,
followed by a net slight destruction of ozone over the simulation period. In the
dry free troposphere (Free) ozone values decrease very slowly. Both plume cases
show a large net ozone production. The case (Plume-1) without non-methane hy-
drocarbons (NMHC) shows a much slower net ozone production rate, and a distinct
diurnal behavior. The Plume-2 case (with NMHC) shows a very rapid increase in

ozone, followed by a period of slow ozone destruction.

4.3.3 Numerical results and interpretation
The calculated local sensitivities of ozone with respect to the initial condi-
tions of each species for the Marine case are shown in Figure 4.5. Plotted are the
normalized sensitivities at 120 hours of simulation. Also shown are the 8 largest

(+) sensitivities (indicating ozone production) and (-) sensitivities. Under these

Lumped sensitity
H
0]
Normalized d [03]/d[Clo

LUMPED OZONE

Species Sensitivity | Species Sensit > 0 | Species Sensit < 0
HNO;3 3.0591 O3 8.1813E-1 | H50, -1.12491E-2
O3 2.9348 CH, 5.4110E-2 co -1.04765E-2
CH, 2.1060 HNO; 4.8292E-2 | PRN1 ~1.17844E-6
RAO2 1.8158 NOy 1.1494E-2 | M RO2 -3.33028E-7
R30, 1.6063 NO 1.1475E-2 | VRO2 -2.68546E-7
PRN1 1.4141 MAO3 3.6442E-7 | RAO2 -1.52807E-7
CRO?2 1.2698 KO2 3.0516E-7 | MVKO -8.79144E-8
MCRG 1.1467 MCO3 2.6008E-7 OH -7.02106E-8

Figure 4.5. Marine case, lumped sensitivities w.r.t. initial values (left) and
sensitivities of ozone w.r.t. initial values (right).

50

conditions ozone concentrations are most sensitive to the initial concentration of
ozone (as expected since this case has a net destruction of ozone). Ozone levels
increase with increases in CHy, NO, = NO+ NOy and HNOs, species which both
lead to the production of ozone and also help to modulate the HO, concentrations
which is the principal lose mechanism for ozone under these conditions. Note also
that HNQOj is the principal source of NO, in this case since its initial condition is
an order of magnitude higher than NO,. The largest negative sensitivity is that
with respect to HyOs, which is the dominant source of H(O, radicals.

Also shown are the lumped sensitivities. Lumped sensitivities can help de-
scribe the overall effect of a given perturbation. The lumped sensitivity of the

system with respect to parameter ¢; is defined as:

N 2
8CZ' (t)
L(a;) = 4.1
@ =% (5 @)
where ¢;, i =1,..., N are the concentrations of the component species. Since L(c;),
j =1,...,m are functions of time, and since we are interested in the global effect of

a; over the system, we employ the mean values of the lumped sensitivity coefficients

over the selected time horizon:

_ 1 2
L(aj) = —— / L(ay) - dt (4.2)
t2 - t1 t1
If the mean sensitivities:
E(oz-)
S; = J
I N

are far less then one, the system is considered stable with respect to the initial
conditions (see [18]).
Numerical experiments with the test problem showed that lumped sensitivities

are dominated by ozone sensitivity. This may happen because O3 concentration is

o1

larger than other variable species. To obtain a more accurate description of the
global response of the system with respect to perturbations of initial conditions, we
employ the lumped normalized sensitivities:
N 2
. a; 0c(t)
L(ay) = (C) (4.3)
j \IZ l6) Do)

where ¢;, =1, ..., N are the concentrations of the component species.

The lumped coefficients are thought of as measures of the global influence of
one parameter over the whole system. These quantities are a bit more difficult to
interpret. A large value can arise from a few very large individual sensitivities or
from many species being sensitive to changes in one individual parameter (as is the
case for the radical species). One drawback is that, when a parameter has a large
influence over a specific or small number of species, the lumped coefficient may be
large, although, from a chemical standpoint, the “global” influence is negligible. As
an example, look at Table 4.8. The large lumped sensitivity associated with DMS
can be explained by a strong influence of DMS initial concentration over itself,
although the effect of this parameter on important species is negligible.

Results for all the cases are summarized in Tables 4.3 and 4.4. The land,
bio and free cases are quite similar. One notable difference is the bio case where
isoprene is shown to have a large negative sensitivity. This highly reactive species is
an important source of peroxyl radicals. The Plume-1 and Plume-2 cases both show
large net ozone production and thus behave much differently than the previous cases.
In the Plume-1 case, ozone increases with increases in O3, CO, CHy, and H50,.
Under high NO, conditions these species are involved in reactions which increase the
peoroxyl radical pool, which in turn leads to net ozone production. Ozone decreases
with increases in NO,, because in the absence of NM HC' these species scavenge

the free radicals and shorten the chain propagation reactions. When sufficient

92

NMHC are present then ozone production is larger, and increases in NO, lead
to increases in ozone. The importance of reactive hydrocarbons appears both in
the production and destruction of ozone. At the time shown in Table 4.3, ozone
is in a period of net ozone destruction. Here ozone is being destroyed by reaction
with hyroperoxyl radicals. As shown in Figure 4.3, ozone production is very rapid
during the first day of the simulation. In this period ozone production is driven by
N M HC reactions involving alkenes, aldehydes, isoporene and aromatics. After this
initial period, those less reactive species which supply peroxyl radicals contribute to
ozone destruction (e.g., aldehyde2, and aromatics and alkanes). NO,, which both
produces ozone and scavenges peroxyl radicals, shows positive sensitivities. The
lumped sensitivities are much higher indicating the higher overall reactivity of the
system, and the importance of the NMHC's.

The amount of ozone produced in an air mass is a complex function of the
absolute amounts of NO,, the relative amounts (the value of NMHC/NO,) and
the meteorological conditions (solar actinic flux, temperature, water vapor, etc.). A

net ozone production efficiency ey has been defined by Lin et. al. (see [57]):
_00;

~ ONO,

where ey represents the net number of ozone molecules produced per molecule of

EN

NO, consumed. When the above equation is evaluated using observations or model
derived estimates of ozone, it represents a lower limit since ozone is deposited at
the earth’s surface. This metric can be used to help characterize the modeled ozone
production efficiencies . The relationships between model calculated O3 and NO,
are presented in Figure 4.4. The quantity NO, is defined as:

NO, = NO,—-NO,

= PRN,+ PRN;+ PRPN + HNO3+ HONO + PAN +

93

TPAN + R3Ny + RAN; + RANy; + NoOs + HNO, +

NO3 + MPAN + IPAN + INOy + MAN; + MV Ny
and is a metric which reduces variations arising from differences in the age of the
air masses being compared (see [67], [66]).

This ozone production efficiency is simply a local sensitivity. This efficiency
was calculated using ADIFOR for each of the studied cases. The results are shown
in Figure 4.6. The highest ozone production efficiencies occur for the marine case
followed by the land, bio and free conditions. For these cases ey ranges from 5 to
10. The plume with NMHC shows a value of = 2, while the plume without NMHC
has a very small ozone production efficiency. These values can be compared to those
measured in the eastern United States during the summer. Olsyzyna et al. ([66])
report a value of 12 (10 for NO,) at Harvard Forrest, MA, while Trainer et al. ([67])
report an average value of 8.5 at several rural sites.

ADIFOR was also used to calculate the sensitivity of ozone to variations in
the reaction rate constants. The results for the individual and lumped sensitivities
are shown in Tables 4.6 and 4.8 respectively. For the marine case the largest (+)
sensitivities occur for the photolysis reaction of NO, and H NO3 and consumption
reactions of HOy (i.e., the HOy + HOs reaction and the NO + HO, type reactions).
These reactions consume the peroxyl radical which by reaction with O3 destroys
ozone. The largest (-) sensitivities occur for the major ozone destruction reactions
(O3 + hv and O3+ HOs). Again the land, bio and free cases show similar behavior.
The bio case shows a much higher reactivity as measured by the magnitudes of
the lumped sensitivities. The plume cases show a different behavior. The case
without NMHC (Plume-1) shows that ozone is most positively sensitive to the

reaction rate constants for the NO, photolysis rate, the NO reaction with HO,, CO

o4

oxidation by OH and ozone photolysis. The largest negative sensitivities occur for
the NOy+ OH and O3 + NO reactions. The Plume-2 case shows the importance of
NM HC reaction rate constants. For example, ozone has a positive sensitivity with
respect to the reaction rate constant for the ethene and alkene oxidation by OH,
aldehyde photolysis, and reactions involving PAN (i.e., PAN — MCO; + NOy).
Ozone decreases with increases in reaction rate constants for the MCOs; + NOy
reaction, and other reactions similar to the Plume-1 case.

ADIFOR also easily yields the sensitivities with respect to other chemical ki-
netic parameters. For example the sensitivities with respect to changes in emissions
are presented in Table 4.10, and sensitivities with respect to temperature are shown
in Table 4.9 for the Bio, Free and Plume-2 cases. The Bio and Plume-2 cases show
similar behaviour with respect to temperature, with large positive sensitivities for
NOyx, HNOQOj3, and negative sensitivities for PAN and all PAN-like compounds.
The Free case shows the opposite behaviour, and PAN increases with increasing

temperature.

50

N w B
o o o

absolute d ozone / d NOx

i
(=}

0 20 40 60 80 100 120
time [hours]

absolute d ozone / d NOz
(63}
T
\
1

|
0 20 40 60 80 100 120
time [hours]

Figure 4.6. Absolute sensitivities of ozone with respect to initial NOx con-
centration (upper plot) and with respect to initial NO, concen-
tration (lower plot). The variation in time is shown for different
IPCC scenarios.

0.07 / i

©
o
a1
T
1

o©
o
D
T
1

0.03 b

absolute d ozone / dCO

0.02 A B

0.01 - b

0 20 40 60 80 100 120
time [hours]

Figure 4.7. Absolute sensitivities of ozone with respect to initial CO con-
centration. The variation in time is shown for different IPCC
scenarios.

d Production
R
o]
|

d Destructon

o 50 100 o 50 100
time [hours] time [hours]

Figure 4.8. Scenario 3 (Bio). Absolute sensitivities of production term (left)
and destruction term (right) of ozone w.r.t. initial NO, concen-
tration (solid) and w.r.t.initial NO, concentration (dash-dot).

Table 4.3. Normalized sensitivities of O3 with respect to initial values (at the
end of the fifth day); displayed are the values of modulus greater

than 1E-3.

% Marine Land Bio Free Plume 1 Plume 2
O3 8.18E-1 | 5.41E-1 | 6.40E-1 | 9.25E-1 | 3.93E-1 1.52E-1
CH, | 5.41E-2 | 1.16E-1 | 8.13E-2 | 9.27E-3 | 9.89E-2 8.70E-3
co -1.04E-2 | 3.41E-2 | 4.05E-3 | -5.04E-3 0.31 4.48E-2
HNQO; | 4.82E-2 | 2.84E-2 | 3.00E-2 | 5.74E-3 | 9.20E-4 1.55E-3
NOy 1.14E-2 | 7.08E-2 | 1.10E-1 | 1.52E-2 | -7.84E-2 3.23E-1
NO 1.14E-2 | 6.97E-2 | 1.09E-1 | 1.46E-2 | -1.17E-1 3.05E-1
HO, | -1.12E-2 | -7.63E-3 | -5.89E-3 | -7.32E-3 | 9.03E-2 -5.04E-3
ISOP - - -7.50E-2 - - -1.36E-2
ETHE - - - - - 1.64E-1
ALD., - - - - - -1.39E-1
ALKE - - - - - -9.34E-2
AROM - - - - - -6.36E-2
ALKA - - - - - -2.51E-2
Cs3Hg - - - - - -1.54E-2

Table 4.4. Lumped sensitivities with respect to initial values (at the end of
the fifth day); displayed are the values of modulus greater than

1E-3.
% Marine | Land | Bio | Free | Plume 1 Plume 2
HNO; 3.05 - 200 | - - -
O3 2.93 1.77 | 15 | 2.52 2.66 -
CH, 2.10 2.13 | 8.03 | 2.34 2.95 -
co 2.39 1.81 | 50.8 | 2.67 3.79 20
RAO, 1.81 1.70 | 1.51 | 1.36 - -
R;0, 1.60 1.59 - | 1.31 - -
PRN1 1.41 1.46 - | 1.36 - -
CRO, 1.25 - - - - -
MCRG 1.14 - - - - ,
NO - 1.63 | 4.31 | 1.66 3.95 15.9
NO, - 1.41 | 4.29 | 1.36 33 16
CyHg - 1.19 - - 1.25 -
ISOP - - 9.00 | - - 4.05
H,50, - - 216 | - 1.36 -
DMS - - - | 1.26 1.34
CHO, - - - - 1.39 -
ALKE - - - - - 9.52
ALD, - - - - - 9.46
AROM - - - - - 6.22
CsHg - - - - - 5.08
ALKA - - - - - 3.96

Table 4.5. Normalized sensitivities of O3 with respect to rate coefficients at
the end of the fifth day (Part 1); displayed are the values of mod-

ulus greater than 1E-3.

Reactants Marine Land Bio Free Plume 1 | Plume 2
NOs + hv 6.71E-2 | 1.84E-1 | 1.27E-1 | - 3.28E-2 | 3.58E-1 | 3.84E-1
CH,+ OH | 540E-2 | 1.16E-1 | 8.11E-2 | - 9.27E-3 | 9.88E-2
HO;, + HOy | 348E-2 | 2.17E-2 | 2.2TE-2 | - 1.08E-2 | -3.44E-2 -
HNOs; + hv | 2.94E-2 | 4.15E-2 | 2.59E-2 - 4.84E-2 -
NO + HO, 2.45E-2 | 8.06E-2 | 6.92E-2 | - 2.60E-2 | 2.02E-1 -
HNO3; + OH | 2.45E-2 | 3.38E-2 | 2.13E-2 | - 3.64E-3 - -
MOy + NO | 1.85E-2 | 2.74E-2 | 2.79E-2 - - -
HO; + MO, | 8.49E-3 - - - - -

O3 + hv -2.93E-1 | -2.87E-1 | -2.68E-1 | - -2.84E-2 | 2.67E-1 | -1.12E-1
O3+ HO, -1.09E-1 | -1.26E-1 | -1.15E-1 | - -3.97E-2 | -4.70E-2 | -1.89E-1
NOy,+OH | -5.79E-2 | -2.00E-1 | -1.29E-1 | - -1.24E-2 | -4.11E-1 | -9.10E-2

NO + O3 -3.87E-2 | -1.14E-1 | -6.98E-2 | - -2.20E-2 | -3.19E-1 | -1.90E-1

O3 +0OH -2.54E-2 | -2.75E-2 | -2.56E-2 | - -1.41E-2 -

HyOy + hv | -1.70E-2 | -2.35E-2 | -1.63E-2 | - -7.07TE-2 | 5.60E-2 -
MOy + MO, | -1.27E-2 | -1.01E-2 - - - -
CO + OH | -1.17E-2 | 3.66E-2 - - -6.14E-3 | 3.47TE-1 -
NOy + O3 - -1.14E-2 | -1.84E-2 - - -
ISOP + OH - - 1.52E-2 - - -

Table 4.6. Normalized sensitivities of O3 with respect to rate coefficients at
the end of the fifth day (Part 2); displayed are the values of mod-

ulus greater than 1E-3.

Reactants Bio Free Plume 1 Plume 2
PAN -1.44E-2 - - 6.77E-2
HNO,+OH - - 9.25E-3 | -2.68E-2 -
HO, +OH - - 6.49E-3 | -2.05E-2 -
HNO4+ hv - - 4.33E-3 - -
NOy+ HOq - - -1.61E-2 | -5.97E-2 -
HNO, - - 5.49E-2 -
HCHO + hv - - -2.34E-2 -
MCO;+ NO - - - 1.99E-1
ALDy + hv - - - 1.85E-1
ETHE + OH - - - 1.22E-1
ALKE + OH - - - 5.48E-2
HO; + MCO;3 - - - 4.82E-2
HCHO + OH - - - 4.07E-2
MCO; + NOy - - - -2.48E-1
ALDy, +OH - - - -1.64E-1
HCHO + hv - - - -4.64E-2
ETHE + O3 - - - -3.75E-2

Table 4.7. Lumped sensitivities with respect to rate coefficients at the end of
the fifth day (Part 1); displayed are the values of modulus greater

than 1E-3.
Reactants Marine | Land | Bio Free Plume 1 Plume 2
NOy,+ OH 2.47 2.60 | 5.66 -1.34 2.66 4.71
O3z + hv 1.93 1.58 | 13.9 -1.38 5.93 6.18

CH,+OH 1.77 | 1.86 | 7.94 | -2.11 2.77 -
NO,y + hv 1.71 | 1.78 | 6.68 | -2.02 1.81 15
CO + OH 159 | 1.54 | 8.05| -1.51 1.84 4.47

HNO; + hv 159 | 1.48 | - - - -

HNO;+OH | 156 | 1.75 | - . 2.07 -
HCHO +HO, | 136 | 1.49 | - - 1.39 1.41 _
MCO;+ NO, | 129 | 1.16 | 2.92 _ _ 12.8
NO; + hv 126 | 1.27 | - - 1.03 - -
RAN, +OH | 123 | 1.57 | - S 1.42 1.61 _
PAN 1.23 - 553 . - 4.35
RAO, + NO | 1.20 _ _ _ 1.19 _
NO + OH 1.15 _ _ - 1.02 _ _
HONO+hv | 1.15 : . - 1.02 ; ;

Rs05+ NO 1.11 - - - - -

Ny,O5 - 1.33 - - 1.08 - -
NOy;+ HOq - 1.28 - - 1.04 - -
HO; + HOq - 1.28 - | -9.78E-1 1.56 -

KET + OH - 1.17 - - - -

Table 4.8. Lumped sensitivities with respect to rate coefficients at the end of
the fifth day (Part 2); displayed are the values of modulus greater

than 1E-3.

Reactants Land | Bio Free Plume 1 Plume 2
MGLY +hv | 1.12 - - - -
MVK + OH - 19.6 - - 10.4

MPAN - 13.3 - - -
HAC + OH - 9.40 - - 5.00
MAO;3; + NO, - 6.20 - - -

H>05 + hv - 5.34 | -1.02 -

MACR + OH - 4.30 - - 10.6

NO + O3 - 4.16 | -1.37 1.54 6.82
MAO; + HO, - 3.61 - - ,
MAO; + NO - 2.84 - -

HCHO + hv - - -1.14 - -
ETO;+ NO - - | -9.71E-1 - -
MOy + NO - - - 1.33 -
AHOy+ NO - - - 1.19 -
TPAN - - - 1.18 -
ALD, + OH - - - - 10
MCOs; +OH - - - - 9.69
ETHE + OH - - - - 9.49
AROM + OH - - - - 8.85
HCHO + hv - - - - 4.91

Table 4.9. Normalized sensitivity coefficients w.r.t. temperature. Shown are
the values at the end of the fifth day for some selected species.

Species | Emission Bio Bio Free Plume-2

NO J119E+401 | -477E401 | -.103E+02 .280E+-02
NO, A34E+401 | -.355E+01 | -.412E+401 .314E+4-02
HNO; J100E+02 | -.212E+01 | .105E+01 423E4-01
O3 .162E+01 -.216E+01 | -.438E-01 101E+01
CyHg -.158E+01 | -.740E+00 | -.135E+400 -.678E+00
CsHg -.613E4+01 | -.169E+01 | -.457E+00 -.316E+401
ALK A -.513E4+01 | -.463E+00 | -.697E+00 -.985E+01
HCHO | -197E+401 |-.286E+00 | -.452E+00 -.211E+01
ALD, .146E4-01 151E4-00 | .309E+00 186E+02
H,0, 162E4+01 | -.165E+01 | .838E-01 H67TE+01
ROOH | -.360E+01 194E401 | .166E+02 -.136E+02
HONO 723E4+01 | -.593E401 | -.106E+02 .369E+02
PAN -437TE402 | -.140E+403 | .421E+01 -.210E+01
TPAN -.230E+401 -.331E-02 | .395E+01 -.164E+01
MPAN | -398E+02 |-.117E+03 | .360E+01 -.230E+4-01
IPAN -491E402 | -.124E+403 | .351E+01 -.323E+01
KET -.350E4+01 | -.138E+01 | -.365E+00 .140E+4-02
GLY X -.117E+401 -.387E-02 | .581E400 400E+-02
MGLY 370E+01 206E401 | .891E-01 .155E+02
N>Os .832E+01 | -.459E+401 | -.142E-03 .588E+-02
HNO, 675E+01 | -.434E+01 | .173E+01 .340E+-02
NOs 200E4+01 | -.103E4-01 | .439E~+00 2TTE402
ISOP -.401E+01 393E-18 | -.134E-13 -.494E-11

64

Table 4.10. Normalised sensitivity coefficients w.r.t. emission source inten-

sities, Bio case.

Shown are the values at the end of the fifth

day.
Species | E[NOx | | E[ISOP | | Species | E[NOx] E[ISOP |
NO 124E+01 | -.733E400 | N,Os .207E401 -.615E+00
NOy .144E+01 | -.805E+00 | HNO, .204E4-01 -.143E+01
HNO; A153E+01 | - 137E+01 || NO; .390E+00 .690E+00
O3 H27E+00 | -.230E400 | ISOP | -.942E+00 219E+01
CyHg -.114E4-00 | .176E+00 | MV K | -.898E400 222E4-01
Cs3Hg -.538E+00 | .833E+00 | MACR | -.126E+01 274E401
ALKA | -.521E4+00 | .806E+00 | HAC -.270E+00 .159E4-01
ACO, 272E4-00 | .715E+00 | MGGY | .407E+00 .7T41E4-00
ALD, |-.860E4+00 | .265E+01 | MPAN | .766E+00 .620E+400
H>0, A419E+4-00 | -.738E-01 | IPAN 122E+01 223E+00
ROOH | -102E401 | .199E401 || INO, -.286E+01 .520E4-01
HONO | .243E+401 | -.252E401 | MAN, | -.177E+01 408E4-01
PAN J102E+01 | .442E400 | MV Ny | -.141E401 356E+01
KET -.264E400 | .407E+00 || MACA | -.321E+401 .H60E4-01
MGLY | .127E+00 | -.298E+400 | PYV A | -.192E+00 .166E4-01
RAN, |-915E400 | .142E+01 | OH 114E+01 -.137E401
RAN; | -.623E+00 | .676E+400 | HO- 459E4-00 -.334E+00

d Destruction

—10

d Production

o 50 100
time [hours]

o 50 100
time [hours]

Figure 4.9. Scenario 6. Absolute sensitivities of production term (left) and
destruction term (right) of ozone w.r.t. initial NO, concentration
(solid) and w.r.t.initial NO, concentration (dash-dot).

65

Plume-1
120 T

I
100 I

concentration [ppb]

PR N N ~ \ : \ S
0 L W . J ! _ I N |
0 20 40 60 80 100 120
time [hours]
Plume-1
2 T
0
-2
-4
=
=
% 6
[
(2]
(]
5 -8
o
(72}
o
G
-10
-12
-14
-16 1 1 1 1 1
0 20 40 60 80 100 120

time [hours]

Figure 4.10. Plume-1 scenario. Time variation of O3 (solid), NOx (dashed,
magnified 4 times) and HOx (dash-dots, magnified 10* times)
(upper plot) and absolute sensitivities with respect to initial
NOx concentration for O3 (solid) and HOyx (dash-dots, mag-
nified 10? times) (lower plot).

Marine
T

T
Midnight

—0.05 -

|
ot
P

T

L

d03/dt[pph/hour]

—0.15- -
—0.2 i

—0.25 I I I I . .
3.5
NOXx [ppb] -3

Plume—-1
T

0.5

d03/dt[pph/hour]
[
T

15
5 6 7
NOXx [ppb]

0.05

—0.05

—0.1F

d03/dt[pph/hour]

—0.15

—0.2+

.
0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065
NOXx [ppb]

Figure 4.11. Time derivative of ozone versus NOx for Marine (upper frame),
Plume-1 and Plume-2 (lower frame) scenarios. The parameters
on the curves represent the simulation time in hours. Since
simulation starts at 12:00 pm, multiples of 24 represent local
noon, while multiples of 24 plus 12 represent local midnight.

67

Normalised sensitivities

0.6

Figure 4.12. Bio scenario.

68

Bio

20 40 60 80 100 120
time [hours]

Time evolution of the ozone sensitivities with
respect to the strength of NO, emission source (solid), and with
respect to the strength of the isoprene emission source (dashed).
Normalized coefficients are plotted.

69

CHAPTER 5
CONCLUSIONS

5.1 Results of this thesis

Automatic differentiation is a new and rapidly emerging software technology
that enables the computation of derivatives from any mathematical relation de-
scribed by a subroutine. The main strengths of AD are: calculation of derivatives
without user intervention (in fact the user can ignore completely the meaning of
the code at hand); accuracy limited by machine precision only; minimal number of
arithmetic operations.

The principles of automatic differentiation and the Adifor2.0 system are pre-
sented. Several example codes are shown, and the difference between direct and
reverse modes is discussed.

One problem of particular importance is the calculation of sensitivity coeffi-
cients: given an ordinary differential equation one needs the (partial) derivatives
of the solution with respect to parameters that influence the solution (e.g. ini-
tial values). If the differential equation is integrated numerically, then numerical
approximations of the sensitivities can be obtained via AD.

Two different strategies of using AD are analyzed in the thesis:

e Black box approach. The discretized differential equation is processed by
Adifor2.0; the resulting code is shown to be a consistent discretization of

the variational equations. The order of consistency and the convergence of

70

the resulting discretization are treated; several cases are studied in detail

(multistep, Runge-Kutta and QSSA);

e Decoupled approach. The derivative function is processed by Adifor2.0, giving
the variational equations; these are then discretized along the lines of the

direct decoupled method.

It is shown that the black box approach is more direct, but also leads to a more
expensive code (from the point of view of number of arithmetic operations) when
an implicit discretization is used. Thus we recommend (whenever possible) that the
decoupled approach be employed. The gains in efficiency might be critical for large
scale problems, like the ones resulting from air quality models.

Adifor2.0 has been succesfully used in the sensitivity analysis of a compre-
hensive tropospheric chemistry model. Automatic differentiation appears to be a
valuable tool for sensitivity analysis of atmospheric chemistry models. In this pa-
per we focused solely on the chemical equations. However the method applies to to
the coupled transport/ chemistry problems as well. We are presently applying this
technique to the STEM-II model ([14]).

A valuable aspect of employing automatic differentiation for sensitivity anal-
ysis studies is that the atmospheric chemistry/ transport/ removal models are per-
manently subject to modifications and improvements. For routinely performing
sensitivity analysis this means that, whenever a modification is performed in the
model, the corresponding adjustment be made in the variational equations. Since
the slightest mistake in the generation of variational equations could lead to useless

results, one needs to thoroughly check for their correctness. Both the issues of

e easily generating the sensitivity equations and

71
e making sure they are error free

can be directly and succesfully addressed by the use of automatic differentiation.

5.2 Further research directions

Sensitivity analysis is of utmost importance in the qualitative understanding of
the interdependencies arising in air quality models. There are a number of possible
(future) applications.

Consider the atmospheric mass balance equation

¢ + V(u(x)c) = V(K (x)Ve) + R(c) + E(x)
where c is the vector of concentrations, V(uc) the advective flux due to the windfield
u, V(KVc) the diffusive flux, R(c) the rate of chemical tranformations and F(x)
the intensity of emission sources.

A real-life problem is the following: pollutants emitted in one area (say, East
Coast) affect (via advection and chemical transformations) other areas (say Mid-
west). Thus, one would like to minimize the pollutant concentration at a point xg
by changing the emissions at several points y;, 1 <17 < n:

min c(xo)
low < E(y1), -+, E(yn) < high

To solve such an optimization problem one needs the derivatives of the solution
c(t,xg) with respect to the emission sources F(y1), -, E(ya); in the language of
this thesis, we need the derivative of the solution of a partial differential equation
(PDE) with respect to some parammeters of the equation. Automatic differentiation
can be very useful here; an extension of the theory from ODE to PDE is called for,

and should be done in the future.

72

A similar problem is the following: what is the cheapest reduction in emissions
E(y;) such that a certain environmental or health objective is attained. Here we
need to attach costs to emission levels and the constraints are put on concentration
values.

Another application to be explored in the future is uncertainty analysis. To
fix the ideas, consider a chemical kinetic model whose output depends on a number
of parameters. Among them are the rate coefficients; these coefficients are measured
in smog chambers and their numerical value is understood as being the mean value
of a certain confidence interval. In other words the value k£ is accompanied by
an uncertitude level ¢, such that the real value lies with a high probability within
(k — €,k + €). The question is, what is the uncertitude level of the result induced
by the uncertitude level €. A first order approximation gives

c € (c—n,c+mn), where
oc
N —€
T Bk
Again, to estimate the uncertainty 7 one needs the derivative of the solution with
respect to the parameter k, and automatic differentiation can be directly applied.
In the context of three-dimensional models, the impacts of uncertainties in
the meteorological data (temperature and wind fields), in the initial concentrations,
in the radiation levels, etc on the output can be quantified. Using this information
more effort can be put into improving the acccuracy of the critical quantities, thus
obtaining the maximum benefit for the accuracy of the whole model.
Automatic differentiation in general, and Adifor2.0 in particular are very pow-
erful techniques for sensitivity analysis; they can be used in black box mode, and

under reasonable conditions the resulting code will correctly compute the desired

derivatives; however, understanding AD, differentiating modules separately and

73

then assembling them together inteligently results in a more efficient sensitivity
code; and this efficiency is crucial for large scale models, e.g. the ones used in air

quality modeling.

{1}

{2}

{3}

{4}

{5}

{6}

{7}

{8}

{9}

{10}
{11}
{12}
{13}
{14}
{15}
{16}
{17}
{18}
{19}
{20}
{21}
{22}
{23}
{24}
{25}
{26}
{27}
{28}
{29}
{30}
{31}
{32}
{33}

APPENDIX A

THE STEM

(LLOYD- ATKINSON- LURMANN)
CHEMICAL MECHANISM

NO2 + hv = NO + 03 :
NO + 03 = NO2 + 02 :
NO2 + 03 = NO3 + 02 :
NO + NO3 = 2NO2 :

9.236E-3%SUN ;
ARR(2.2E-12,-1430) ;
ARR(1.2E-13,-2450) ;
ARR(1.7E-11,150) ;

NO2 + NO3 = N205 : 1.327E-12 ;
N205 = NO2 + NO3 : 2.013E-2 ;
NO2 + NO3 = NO + NO2 + 02 : ARR(2.5E-14,-1230) ;
NO3 + hv = 0.15N0 + 0.85N02 + 0.8503 + 02 : 3.039E-2%SUN ;
NO3 + HO2 = HNO3 + 02 : 0 ;

03 + H20 + hv = 20H : 9.34E-22%RC(1) ;

NO + OH = HONO : 7.35E-12 ;

HONO + hv = NO + OH : 1.893E-3*SUN ;

NO2 + OH = HNO3 : 1.2794E-11 ;

HNO3 + hv = NO2 + OH : 6.684E-T*SUN ;

HNO3 + OH = NO3 + H20 : ARR(9.4E-15, 778) ;
N205 + H20 = 2HNO3 : 0 ;

CO + OH = HO2 + CO2 :

03 + OH = HO2 + 02 :

NO + HO2 = NO2 + OH :

NO2 + HO2 = HNO4 :

HNO4 = NO2 + HO2 :

03 + HO2 = OH + 202 :

HO2 + HO2 = H202 + 02 :

H202 + hv = 20H :

H202 + OH = HO2 + H20 :

NO2 + H20 = HONO + HNO3 - NO2 :
HNO4 + hv = NO2 + HO2 :

HNO4 + OH = NO2 + H20 + 02 :
S02 + OH = S04 + HO2 :

HCHO + hv = 2H02 + CO :

HCHO + hv = CO + H2 :

HCHO + OH = HO2 + CO + H20 :

HCHO + HO2 = AHO2 :

2.22E-13 ;
ARR(1.6E-12,-1000) ;
ARR(3.7E-12,240) ;
1.333E-12;

0.02313;
ARR(1.4E-14,-600) ;
5.816E-12 ;
7.829E-6%SUN ;
1.57E-12 ;

4.00E-24 ;
1.11E-5%SUN ;
ARR(1.3E-12,380) ;
1.E-20 ;
1.569E-5%SUN ;
6.063E-5%SUN ;
1.00E-11 ;

1.00E-14 ;

74

{34} AHD2 + NO = ACO2 + HO2 + NO2 :
{35} AHO2 + H02 = AC02 + H20 + 02 :
{36} 2AH02 = AC02 + 2H02 + 202 :
{37} AC02 + OH = HO2 + H20 + C02 :
{38} NO3 + HCHO = HNO3 + H02 +CO :
OH = MCO3 + H20 :

NO3 = HNO3 + MCO03 :

hv = MO2 + HO2 + CO :

{39} ALD2
{40} ALD2
{41} ALD2
{42} ALD2
{43} MCO3

+
+
+
+
+

hv = CH4 + CO :
NO2 = PAN :

{44} PAN = MCO3 + NO2 :

{45} MCD3 + NO = M02 + NO2 + CO2 :
{46} M02 + NO = HCHO + NO2 + HO2 :

{47} CH4 + OH = MO2 + H20 :

{48} C2H6
{49} ETO2
{50} C3H8
{51} R302

+
+
+
+

OH = ET02 + H20 :

NO = ALD2 + HO2 + NO2 :
OH = R302 :

NO =

{52} ALKA + QOH = RAQ2 :

{---- IN THE NEXT REACTION
BETA 1...9 WHERE REPLACED BY NUMBERS,
AS READ FROM LILING STEM CODE ----}
{563} RAD2

{54} ALKA
{55} RAN2
{56} RAN1

{57} MO2 + M02 =
{58} 2ET02 = 1.6ALD2 + 1.2HO02 :
{59} R302 + R302 = 1.9ALD2 + 0.28KET + 0.37H02 :
MO2 = ROOH + 02 :

{60} HO2
{61} HOD2
{62} HO2
{63} HO2
{64} HOD2
{65} KET
{66} K02

{67} KET
{68} KET

+ 4+ + + 4+ + o+

+

ARR(4.2E-12,180) ;
2.00E-12 ;
1.00E-13 ;
3.20E-13 ;
6.00E-16 ;
ARR(6.9E-12,250) ;
2.70E-15 ;
2.383E-6%SUN ;
6.063E-5%3UN ;
4.70E-12 ;

ARR(2.2E+16,-13435) ;

ARR(4.2E-12,180) ;
ARR(4.2E-12,180);
ARR(2.4E-12,1710) ;

ARR(1.7E-11,-1232) ;

ARR(4.2E-12,180) ;

ARR(1.18E-11,-679) ;
0.03R3N2 + 0.46ALD2 + 0.97N02 +
0.97H02 + 0.49KET :

ARR(4.2E-12,180) ;
ARR(2E-11,-500) ;

+ NO = 0.9261N02 - 0.1892N0 + 0.263RAN2 +

+
+
+

1.0482ALD2 + 0.3KET +

0.1879ET02 + 0.1116M02 +

0.28H02 + 0.1057R302 + 0.06RAO02 :
+ NO3 = HNO3 + RAOD2 :

OH = RAN1 + H20 :

NO = 2.5N02 - 0.5NO + 0.8HCHO

2.1ALD2 :

ET02 = ROOH + 02 :
R302 = ROOH + 02 :
RAO2 = ROOH + 02 :
MCO3 = ROOH + 02 :
OH = K02 :

NO = 0.05RAN2 + 0.95N02 + 0.94ALD

0.94MC0O3 :

hv = MCO3 + ET02 + H20 :
NO3 = HNO3 + K02 :

1.4HCHO + 0.8H02 + 02 :

4.00E-17 ;
2.00E-12 ;

ARR(4.2E-12,180) ;
ARR(1.5E-13,220) ;
5.00E-14 ;
5.00E-14 ;
3.00E-12 ;
3.00E-12 ;
3.00E-12 ;
3.00E-12 ;
3.00E-12 ;
ARR(1.2E-11,-890) ;
2 +
ARR(4.2E-12,180) ;
2.401E-6*SUN ;
7.00E-16 ;

ARR(4.2E-12,180) ;

{69} K02 + HO2 = MGLY + M0O2 + H20 : 3.00E-12 ;
{70} ETHE + OH = E02 : ARR(1.66E-12,474) ;
{71} E02 + NO = NO2 + 2.0HCHO + HO2 : ARR(4.2E-12,180) ;
{72} ALKE + OH = P02 : ARR(4.1E-12,537) ;
{73} P02 + NO = NO2 + ALD2 + HCHO + HO2 : ARR(4.2E-12,180) ;
{74} ETHE + 03 = HCHO + 0.4CHO2 + 0.12H02 + 0.42C0 +

0.06CH4 : ARR(1.2E-14,-2633) ;

{75} ALKE + 03 = 0.525HCHO + 0.5ALD2 + 0.2CH02 +
0.2CR02 + 0.23H02 + 0.215M02 : ARR(7.8E-14,-2105) ;

{76} CHO2 + NO = HCHO + NO2 : 7.00E-12 ;
{77} CHO2 + NO2 = HCHO+ NO3 : 7.00E-13 ;
{78} CHD2 + H20 = ACD2 : 4.00E-18 ;
{79} CRO2 + NO = ALD2 + NO2 : 7.00E-12 ;
{80} CRO2 + NO2 = ALD2 + NO3 : 7.00E-13 ;
{81} CRD2 + H20 = ACTA : 4.00E-18 ;
{82} E02 + E02 = 2.4HCHO + 1.2H02 + 0.4ALD2 : 5.00E-14 ;
{83} P02 + P02 = 2.2ALD2 + 1.2HO2 : 5.00E-14 ;
{84} HO2 + E02 = ROOH + 02 : 3.00E-12 ;
{85} HO2 + P02 = ROOH + 02 : 3.00E-12 ;
{86} S02 + CHO2 = S04 + HCHO : {0 ;} 7.00E-14 ;
{87} S02 + CRD2 = S04 + ALD2 : {0 ;} 7.00E-14 ;
{88} ALKE + N03 = PRN1 : 1.26E-13 ;
{89} PRN1 + ND2 = PRN2 : 6.80E-12 ;
{90} PRN1 + HO2 = PRPN + 02 : 3.00E-12 ;
{91} PRN1 + NO = 2NO2 + HCHO + ALD2 : ARR(4.2E-12,180) ;
{92} CHO2 + HCHO = 0ZID : 1.36E-14 ;
{93} CHO2 + ALD2 = 0ZID : 1.36E-14 ;
{94} CRO2 + HCHO = 0ZID : 1.36E-14 ;
{95} CRO2 + ALD2 = 0ZID : 1.36E-14 ;
{96} AROM + OH = 0.84T02 + 0.16CRES + 0.16H02 : 1.52E-11 ;
{97} TD2 + NO = NO2 + HO2 + 0.72MGLY
+ 0.18GLYX + DIAL : ARR(4.2E-12,180) ;
{98} GLYX + hv = PROD : 7.389E-5%SUN ;
{99} GLYX + OH = HO2 + 2C0 + H20 : 1.15E-11 ;
{100} MGLY + hv = MC03 + HO2 + CO : 1.755E-4*SUN ;
{101} MGLY + OH = MCO3 + CO + H20 : 1.73E-11 ;
{---- IN THE NEXT REACTION
BETA 12, 13 WHERE REPLACED BY NUMBERS
AS GIVEN IN LILING’S STEM CODE ----}

{102} CRES + OH = 0.83H02 + 0.9Z02 + 0.9TC03

-0.90H - 0.0315N02 : 4.25E-11 ;
{103} NO3 + CRES = HNO3 : 1.00E-11 ;
{104} OH + DIAL = TCO3 : 2.80E-11 ;
{105} TCO3 + NO2 = TPAN : 4.70E-12 ;

{106} TPAN = TCO3 + NO2: ARR(2.2E+16,-13435) ;
{107} TCO3 + NO = NO2 + 0.92H02 + 0.89GLYX + 0.11MGLY +
0.05MC03 : ARR(4.2E-12,180) ;
{108} Z02 + NO = NO2 : ARR(4.2E-12,180) ;
{109} DIAL + hv = 0.98H02 + 0.02MC03 + TCO3 : 9.236E-5*%SUN ;
{110} HO2 + TO2 = ROOH + 02 : 4.00E-12 ;
{111} HO2 + TCO3 = ROOH + 02 : 4.00E-12 ;
{112} HO2 + Z0D2 = ROOH + 02 : 1.00E-12 ;
{---- HERE COMES AERQSOL PART ----}
{113} AHO2 = HCHO + HO2 : 0 ;
{114} ISOP + OH = RID2 : ARR(2.5E-11, 409) ;
{115} RIO2 + NO = 0.9NO2 + 0.45MVK + 0.45MACR +
0.9HO02 + 0.9HCHO : ARR(4.2E-12,180) ;
{116} RID2 + HO2 = ROOH : 3.00E-12 ;
{117} MVK + OH = VRO2 : ARR(3.0E-12,500) ;
{118} VRO2 + NO = 0.9NO2 + 0.6MC0O3 + 0.6HAC +
0.3H02 + 0.3HCHO + 0.3MGGY : ARR(4.2E-12,180) ;
{119} VR0O2 + HO2 = ROOH : 3.0E-12 ;
{120} OH + MACR = MAOS3 : 1.02E-11 ;
{121} MAO3 + NO2 = MPAN : 4.7E-12 ;
{122} MPAN = MAO3 + NO2 : ARR(2.2E+16,-13435) ;
{123} MAO3 + NO = 3NO3 - 2NO + HO2 + MGGY : ARR(4.2E-12,180) ;
{124} MAO3 + HO2 = ROOH : 3.00E-12 ;
{125} MACR + OH = MRO2 : ARR(3.86E-12,500) ;
{126} MRO2 + NO = 0.9N02 + 0.9HO02 +
0.9HCHO + 0.9MGGY : ARR(4.2E-12,180) ;
{127} MR0O2 + HO2 = ROOH : 3.00E-12 ;
{128} HAC + OH = HACO : 1.5E-11 ;
{129} HACO + NO2 = IPAN : 4.7E-12 ;
{130} IPAN = HACO + NO2 : ARR(2.2E+16,-13435) ;
{131} HACO + NO = NO2 + HO2 + HCHO : ARR(4.2E-12,180) ;
{132} HACO + HO2 = ROOH : 3.00E-12 ;

{133} ISOP + 03 = 0.5HCHO + 0.2MVK + 0.3MACR + 0.2CH02 +
0.06H02 + 0.2MVKO + 0.3MADO : ARR(7.0E-15,-1900) ;
{134} MVK + 03 = 0.5HCHO + 0.2CHO2 + 0.21H02 + 0.2MCRG +
0.15ALD2 + 0.B5MGGY + 0.15MC03 : ARR(4.0E-15,-2000) ;
{135} MACR + 03 = 0.65HCHO + 0.2CH02 + 0.36H02
+ 0.15N02 - 0.15NO + O.5MGGY

+ 0.2MCRG : ARR(4.4E-15,-2500) ;
{136} MVKO + NO = MVK + NO2 : ARR(4.2E-12,180) ;
{137} MVKO + NO2 = MVK + NO3 : ARR(4.2E-13,180) ;
{138} MVKO + H20 = PROD : 3.4E-18 ;
{139} MAOO + NO = MACR + NO2 : ARR(4.2E-12,180) ;
{140} MAOO + NO2 = MACR + NO3 : ARR(4.2E-13,180) ;

7

{141} MAOO + H20 = MACA : 3.4E-18 ;
{142} MCRG + NO = MGGY + NO2 : ARR(4.2E-12,180) ;
{143} MCRG + NO2 = MGGY + NO3 : ARR(4.2E-13,180) ;
{144} MCRG + H20 = PYVA : 3.4E-18 ;
{145} HAC + hv = HCHO + 2H02 : 4 .618E-6*SUN ;
{146} MGGY + hv = MCO3 + HO2 : 1.385E-3*SUN ;
{147} MGGY + OH = MCO3 : 1.7E-11 ;
{148} ISOP + NO3 = INO2 : ARR(3.00E-12,-450) ;
{149} INO2 + NO = 2N02 + HCHO + 0.5MVK + 0.5MACR : ARR(4.2E-12,180) ;
{150} INO2 + NO2 = PROD : ARR(4.2E-13,180) ;
{151} INO2 + HO2 = PROD : 3.00E-12 ;
{152} MVK + NO3 = MVN2 : 6.00E-14 ;
{153} MVN2 + NO = 2NO2 + HCHO + 0.5MC03 +

0.5MGGY + 0.5HO2 : ARR(4.2E-12,180) ;
{154} MVN2 + HO2 = PROD : 3.0E-12 ;
{155} MACR + NO3 = MAO3 + HNO3 : 3.3E-15 ;
{156} MACR + NO3 = MAN2 : 6.7E-15 ;
{157} MAN2 + NO = 2N02 + HCHO + MGGY : ARR(4.2E-12,180) ;
{157} MAN2 + HO2 = PROD : 3.00E-12 ;
{159} HAC + NO3 = HN0O3 + HACO : 5.2E-16 ;
{160} MADO + HO2 = ROOH : 3.00E-12 ;
{161} MVKO + HO2 = ROOH : 3.00E-12 ;
{162} MVKO + S02 = S04 + MVK : {0 ;} 7.00E-14 ;
{163} MAOO + S02 = S04 + MACR : {0 ;} 7.00E-14 ;
{164} MCRG + S02 = S04 + MVK : {0 ;} 7.00E-14 ;
{165} MACA + OH = PROD : ARR(1.2E-11,500) ;
{166} PYVA + OH = PROD : 5.00E-14 ;
{167} DOL6 + 03 = 0.11SUCA : 5.44E-17 ;
{168} DOL7 + 03 = 0.19GLUA : 3.46E-17 ;
{169} DOL8 + 03 = 0.15ADIA : 2.21E-17 ;
{170} CPET + 03 = 0.39GLUA : 1.03E-15 ;
{171} CHEX + 03 = 0.15ADIA : 2.16E-16 ;
{172} OH + HO2 = H20 + 02 : ARR(4.6E-11,230) ;
{173} ROOH + hv = HCHO + OH + HO2 : 4.618E-6%SUN ;
{174} ROOH + OH = 0.5M02 + 0.50H + 0.5HCHO :1.00E-11;
{175} DMS + OH = S02 + MSA : 8.3E-12 ;
{176} NO3 + NO3 = 2N02 + 02 : ARR(8.5E-13,-2450) ;
{177} OH + PAN = PROD : ARR(1.23E-12,-651) ;

{178} NO3 + HO2 = 0.60H + 0.6N02 + 0.4HNO3 :ARR(2.3E-12,170) ;

*

*

APPENDIX B
CODES

B.1 Brusselator example

subroutine brus(t,y,f)
double precision t,y(2),f(2)

f(1) =
£(2) =
return
end

1.d0 + y(1)**2xy(2) - 4.d0*y(1)
3.d0*xy(1) - y(1)*x2xy(2)

subroutine jac(t,y,jy)

realx*8
common

jy(1,1)
jy(1,2)
jy(2,1)
jy(2,2)

ijac =
return
end

t,y(2),jy(2,2)
/FLOP/ iflop, ifa, iso, ifun, ijac

= 2.d0*y(1)*y(2) - 4.d0
= y(1)**2

= 3.d0 - 2.d0*y(1)*y(2)
= = y(1)*x2

ijac + 6

subroutine direct(t,y,f)

real*8
f(1)
£(2)
£(3)

f(4)

£(5)
£(6)
return
end

t,y(2),£(6)

1.d0 + y(1)**2xy(2) - 4.dOxy(1)

3.d0*y (1) - y(1)**2xy(2)

(2.do*y (1) *y(2) - 4.d0)*y(3)

+ y(1)**2xy(5)

(2.d0*y (1) *y(2) - 4.d0)*y(4)

+ y(1)**2xy(6)

(3.40 - 2.40*xy(1)*y(2))*y(3) - y(1)**2xy(5)
(3.d40 - 2.d0o*xy (1) *y(2))*y(4) - y(1)**2*xy(6)

79

C ——-

C ——-

C ——-

B.2 Merson integrator
subroutine merson(ts,te,nstep,y,fun,atol,rtol)
implicit double precision (a-h,0-z)
parameter (n=2)
common /count/ ic_a, ic_r
double precision ts,te,h,y(n),dy(n),ynew(n)
double precision ki(n),k2(n),k3(n),k4(n),k5(n)
double precision sol,solh,err,rtol,atol
external fun
double precision UT,TO0,US
parameter (UT = 0.3333333333333333333333d0)
parameter (TO 2.6666666666666666666666d0)
parameter (US = 0.1666666666666666666666d0)

step = (te-ts)/dble(nstep)
iprint = 0

t = ts

do i=1,nstep

tl = ts + (i-1)*step

t2 = ts + ixstep

t =tl

h =1.d4-9

write(10,10) t,(y(k),k=1,n)

do while (t.1t.t2)

if (t+h.gt.t2) then
h=t2 -1t
end if

Stage 1 -—-——-
call fun(t,y,kl)
Stage 2 ----—-
do j=1,n

dy(j) = y(j)+hx*(ut*k1(j))
end do
call fun(t+ut*h,dy,k2)
Stage 3 -—-——-
do j=1,n

dy(j) = y(j)+h*us*(k1(j)+k2(j))
end do

80

Cc ——

Cc ——

10

call fun(t+ut*h,dy,k3)
Stage 4 --—-—-
do j=1,n
dy(j) = y(j)+h*(1.25d-1xk1(j)+to*k3(j))
end do
call fun(t+5.d-1xh,dy,k4)
Stage 5 —-—-—--
do j=1,n
dy(j) = y(j)+h*(5.d-1xk1(j)-1.5d0*k3(j)+2.d0*k4(j))
end do
call fun(t+h,dy,k5)

err = 0.d0

do j=1,n
sol
solh

h* (us*k1(j)+2.d40/3.d0*k4 (j)+us*k5(j))
hx(1.d-1*k1(j)+3.d-1*k3(j)+
4.d-1%k4(j)+2.d-1*%k5(j))
ynew(j) = y(j) + sol
err = err + ((sol-solh)/(atol+rtol*dabs(ynew(j))))**2
end do
err = dsqrt(err/dble(n))

if (err.1t.0.9) then
do j=1,n
y(j) = ynew(j)
end do
t = t+h
ic_a = ic_a + 1
else
ic_r = ic_r + 1
end if
h = dmin1(10.d0,9.d-1*h/err**(2.5d-1))
if (t+h.eq.t) then
print *,’Abort. Stepsize too small = ’,h
stop
end if

end do

end do
write(10,10) te, (y(k) ,k=1,n)
format (F6.2,20(X,E24.16))

81

return
end

B.3 Adifor generated - Merson integrator
program test
double precision ts, te, y(2)
double precision g_y(2, 2)

ts = 0.d40

te 1.d+1
nstep = 200000
g_y(1,1) = 1.40
g_y(1,2) = 0.40
g_y(2,1) = 0.40
g_y(2,2) 1.d0
y(1) = 1.40
y(2) = 1.40

call g_test_brus(2, ts, te, nstep, y, g_y, 2)
stop
end

subroutine g_test_brus(g_p_, ts, te, nstep, y, g_y, ldg_y)
double precision y(2), ts, te
external brus
integer g_pmax_
parameter (g_pmax_ = 2)
integer g_i_, g_p_, ldg_.y
double precision g_y(ldg_y, 2)
integer g_ehfid
external g_brus
external g_merson
data g_ehfid /0/

call ehsfid(g_ehfid, ’test_brus’,’g_brus.f’)

if (g_p_ .gt. g_pmax_) then
print *, ’Parameter g_p_ is greater than g_pmax_’
stop

endif

open (unit = 10, file = ’Adifor.m’)

83

call g_merson(g_p_, ts, te, nstep, 2, y, g_y, ldg_y, g_brus)
stop
end

subroutine g_brus(g_p_, t, y, g_y, ldg_y, £, g_f, 1dg_£f)

double precision t, y(2), £(2)

integer g_pmax_

parameter (g_pmax_ = 2)

integer g_i_, g_p_, ldg_f, ldg_y

double precision di_p, d3_v, d6_b, d2_v, d4_b, g_£f(ldg_f, 2), g_
*y(ldg_y, 2)

integer g_ehfid

data g_ehfid /0/

c3 call ehsfid(g_ehfid, ’brus’,’g_brus.f’)

if (g_p_ .gt. g_pmax_) then
print *, ’Parameter g_p_ is greater than g_pmax_’
stop
endif
d2_v

y(1) * y(1)
di_p = 2.0d0 * y(1)
dd_b = -4.d0 + y(2) * dl_p
dogi_=1, g_p_
g_f(g_i_, 1) =d2_v * g_y(g_i_, 2) + d4_b *x g_y(g_i_, 1)
enddo
£(1) = 1.d0 + d2_v * y(2) - 4.d0 * y(1)

d3_v

y(1) * y(1)
di_p = 2.040 * y(1)
dé_b (-y(2)) = di_p + 3.d0
dogi_ =1, g_p_
g f(g_i_, 2) = (-d3_v) * g_y(g_i_, 2) + d6_b * g_y(g_i_, 1)
enddo
£(2) = 3.d0 * y(1) - d3_v * y(2)

return
end

subroutine g_merson(g_p_, ts, te, nstep, nl, y, g_y, ldg_y, g_fun)
parameter (n = 2)
double precision ts, te, h, y(n), dy(n)

c3

Q Q

84

double precision ki(n), k2(n), k3(n), k4(n), k5(n)
double precision ut, to, us

parameter (ut = 0.3333333333333333333333d0)
parameter (to = 2.6666666666666666666666d0)
parameter (us = 0.1666666666666666666666d0)

double precision di

integer g_pmax_

parameter (g_pmax_ = 2)

integer g_i_, g_p_, 1ldg_y

double precision d9_b, d6_b, d7_b, g_dy(2,2), g_y(2,2),

* g k2(2,2), g_k3(2,2), g_k4(2,2), g_k5(2,2), g_k1(2,2)

integer g_ehfid

save g_dy, g_k2, g_k3, g_k4, g_kb
external g_fun

data g_ehfid /0/

call ehsfid(g_ehfid, ’merson’,’g_brus.f’)

if (g_p_ .gt. g_pmax_) then
print *, ’Parameter g_p_ is greater than g_pmax_’
stop

endif

h = (te - ts) / dble(nstep)

iprint = 0

t = ts
write(10,10) t,(y(k),k=1,n),((g_y(il1,i2),i2=1,n),il=1,n)

do i = 1, nstep

--- Stage 1 -----

call g_fun(g_p_, t, vy, gy, ldg_y, k1, g_kl, g_pmax_)
--- Stage 2 ---——-

do j=1, n

dog i_ =1, g_p_

g_dy(g_i_, j) = g_y(g_i_, jD+ h * (ut * g ki(g_i_,3j))
enddo
dy(j) = y(j) + h * (ut * k1(j))

enddo
di =t +ut xh

call g_fun(g_p_, dli, dy, g_dy, g_pmax_, k2, g_k2, g_pmax_)
C --- Stage 3 ————-
do j=1, n

dog i_ =1, g_p_

g-dy(g_i_, j) = d6_b * g k2(g_i_, j) + g_y(g_i_, j)
enddo
dy(j) = y(j) + h * (us * k1(j) + us * k2(j))

enddo
di =t +ut *xh
call g_fun(g_p_, dl, dy, g_dy, g_pmax_, k3, g_k3, g_pmax_)
C --- Stage 4 ————-
do j=1,n
d6_b = h * to
do g i_ =1, g_p_
g_dy(g_i_, j) = d6_b * g k3(g_i_, j) + g_y(g_i_, J)
enddo
dy(j) = y(j) + h * (1.25d-1 * k1(j) + to * k3(j))

enddo

di =t +5.d-1 xh

call g_fun(g_p_, dl, dy, g_dy, g_pmax_, k4, g_k4, g_pmax_)
C --- Stage 5 ———-

do j

*
-h) * 1.5d0
do g_i_ =1, g_p_
g_dy(g_i_, j) = d7_b * g_k4(g_i_, j) + d9_b * g_k3(g_i_, j
*) + goy(g-i_, j)
enddo
dy(j) = y(j) + h * (5.d-1 * k1(j) - 1.5d0 * k3(j) + 2.d0 * k

enddo
di =t+h
call g_fun(g_p_, dl, dy, g_dy, g_pmax_, kb, g_kb, g_pmax_)

do j=1, n
d7_b = h * us
d9_ b =h * (2.40 / 3.d40)
do g i_ =1, g_p_
g_y(g_i_, j) = d7_b * g_k5(g_i_, j) + d9_b * g_kd4(g_i_, j)
* + g y(g_i_, j) +d7_b * g ki(g_i_, j)

[

85

10

Cc ——

86

enddo
y(3) = y(G) + h * (us * k1(j) + 2.40 / 3.d0 * k4(j) + us * k

iprint = iprint + 1

if (iprint .eq. (nstep / 200)) then
write(10,10) t,(y(k),k=1,n),((g_y(i1,i2),i2=1,n),il=1,n)
format (£6.2,20(x,e24.16))
iprint = 0

endif

enddo

return
end

B.4 Implicit Euler integrator
subroutine euler(ts,te,nstep,nl,y,fun,jac)
implicit double precision (a-h, o-z)
common /FLOP/ iflop, ifa, iso, ifun, ijac
parameter (n=2)
real*8 ts,te,h,y(n),f(n),j(n,n),z(n)
real*8 x(n),er
external fun, jac

iprint = 0
h = (te-ts)/dble(nstep)
write(10,10) ts, (y(k),k=1,n)

Begin Time Loop -—-
do i=1,nstep
t =ts + (i-1)*h

do k=1,n
z(k) = y(k)
end do

C -—— Compute and factorize the Jacobian ---
call jac(t,y,j)
do il1=1,n
do i2 = 1,n
j(i1,i2) = -h*j(i1,i2)
end do
j@1,i1) = 1.40 + j(i1,i1)
iflop = iflop + 1
end do
call fact(j)

C ---- Begin Quasi Newton -----
er = 1.d40
icont = 0
do while ((er.gt.1.d-2).and.(icont.le.10))
icont = icont + 1
call fun(t,y,f)
do k=1,n
x(k) = y(k) - z(k) - h*xf(k)
end do
call solve(j,x)
er = 0.d40
do k=1,n
yk) = y&k) - x(k)
er = er + x(k)**2
end do
er = dsqrt(er/n)
iflop = iflop + 1 + n
end do
C -—-- End Quasi Newton -----

iprint = iprint+1l

if (iprint.eq.(nstep/100)) then

write(10,10) t+h, (y(k),k=1,n)
10 format (F6.2,20(X,E24.16))

iprint = 0
end if
end do
C -—— End Time Loop --—-

return

87

C ——-

88

end

subroutine fact(a)

double precision a(2,2),x1

common /FLOP/ iflop, ifa, iso, ifun, ijac

x1 = a(2,1)

if (dabs(a(1,1)).1t.1.4-8) then
print *,’Singular matrix’
stop

end if

a(2,1) = a(2,1)/a(1,1)

a(2,2) = a(2,2) - a(1,2)*x1/a(1,1)

ifa = ifa + 3

return

end

subroutine solve(a,x)
common /FLOP/ iflop, ifa, iso, ifun, ijac
double precision a(2,2),x(2)

x(2) = (~a(2,1)*x(1)+x(2))/a(2,2)
x(1) = (x(1)-a(2,1)*x(2))/a(1,1)
iso = iso + 4

return

end

B.5 DDM - Implicit Euler
subroutine euler_ddm(ts,te,nstep,nl,y,g_y,fun,jac)
implicit double precision (a-h, o0-z)
common /FLOP/ iflop, ifa, iso, ifun, ijac
parameter (n=2)
real*8 ts,te,h,y(n),f(n),j(n,n),z(n)
real*8 x(n),er,g_y(n,n),p(n*n+n) ,r(n*n+n)
external fun, jac

iprint = 0
h = (te-ts)/dble(nstep)

Compute and factorize the Jacobian —--
call jac(ts,y,j)
do il1=1,n

do i2 = 1,n

j(i1,i2) = -h*j(i1,i2)
end do
j(@t1,i1) = 1.d40 + j(i1,i1)
end do
call fact(j)

write (10, 10) ts, (y(k), k = 1, n),
* g_y(1,1), g_y(1,2),g_y(2,1),g_y(2,2)

C --- Begin Time Loop ---
do i=1,nstep
t =ts + (i-1)*h

do k=1,n
z(k) = y(k)
end do

C ---- Begin Quasi Newton -----
er = 1.d40
icont = 0
do while ((er.gt.1.d-2).and.(icont.le.10))
icont = icont + 1
er = 0.40
call brus(t,y,f)
do k=1,n
x(k) = y(k) - z(k) - h*xf(k)
end do
call solve(j,x)
do k=1,n
y(k) = y&k) - x(k)
er = er + x(k)**2
end do
er = dsqrt(er/(n))
iflop = iflop + 1 + n

end do

C -—-- End Quasi Newton -----
C ——- Sensitivities —-—-

r(1) = y(1)

r(2) = y(2)

r(3) = g_y(1,1)

r(4) = g_y(1,2)

r(5) = g_y(2,1)

r(6) = g_y(2,2)

call direct(t,r,p)
x(1) - h*p(3)

x(2) - h*p(5)

call solve(j,x)
g_y(1,1) = r(3) - x(1)
g_y(2,1) = r(5) - x(2)
x(1) - hxp(4)

x(2) - hxp(6)

call solve(j,x)
g_.y(1,2) = r(4) - x(1)
g_y(2,2) = r(6) - x(2)
iflop = iflop + 4

C --- Compute and factorize the Jacobian ---

call jac(t,y,j)
do il=1,n

do i2 = 1,n

j(i1,i2) = -h*j(il1,i2)

end do

j(i1,i1) = 1.40 + j(i1,i1)
end do
call fact(j)

iprint = iprint+1
if (iprint.eq.(nstep/100)) then
write(10,10) t+h, (y(k),k=1,n),
* g_y(1,1), g_y(1,2),g_y(2,1),g_y(2,2)
10 format (F6.2,20(X,E24.16))
iprint = 0
end if

end do

C --- End Time Loop ——-
return
end

B.6 Adifor - generated Implicit Euler
C DISCLAIMER

eNoNosNorErEesNoNo oo No e No oo N

12

91

This file was generated on 06/30/97 by the version of
ADIFOR compiled on Apr 11 1997.

ADIFOR was prepared as an account of work sponsored by an

agency of the United States Government, Rice University, and

the University of Chicago. NEITHER THE AUTHOR(S), THE UNITED
STATES GOVERNMENT NOR ANY AGENCY THEREQOF, NOR RICE UNIVERSITY,
NOR THE UNIVERSITY OF CHICAGO, INCLUDING ANY OF THEIR EMPLOYEES
OR OFFICERS, MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES
ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE ACCURACY, COMPLETE-
NESS, OR USEFULNESS OF ANY INFORMATION OR PROCESS DISCLOSED, OR
REPRESENTS THAT ITS USE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS.

program test
common /FLOP/ iflop, ifa, iso, ifun, ijac
real*8 ts, te, y(2)
external g_brus, g_jac
double precision g_y(2,2)
open (10, file = ’Euler.m’)

iflop = 0

ifa =0

iso = 0

ifun = 0

ijac = 0

ts = 0.40

te = 1.d+1
nstep = 1000000
y(1) = 1.40
y(2) = 1.d0
g_y(1,1) = 1.d40
g_y(1,2) = 0.40
g_y(2,1) = 0.d0

g_y(2,2) = 1.d0
call g_euler(2, ts, te, nstep, nl, y, g_y,
* 2, g_brus, g_jac)
write(6,*) ° Iflop Ifa Iso Ifun TIjac’
write(6,12) iflop, ifa, iso, ifun, ijac
format (10(2X,I9))
write(6,%*) ’Total flops = ’, iflop+ifat+iso+ifun+ijac
stop
end

92

subroutine g_brus(g_p_, t, y, g_y, ldg_y, f, g_f, 1dg_f)

common /FLOP/ iflop, ifa, iso, ifun, ijac

real*8 t, y(2), £(2)

integer g_pmax_

parameter (g_pmax_ = 2)

integer g_i_, g_p_, ldg_f, ldg_y

double precision di_p, d3_v, d6_b, d2_v, d4_b, g_£f(ldg_£f, 2), g_
*y(ldg_y, 2)

integer g_ehfid

data g_ehfid /0/

!3 call ehsfid(g_ehfid, ’brus’,’g_euler.f’)

if (g_p_ .gt. g_pmax_) then
print *, ’Parameter g_p_ is greater than g_pmax_’

stop
endif
d2_v = y(1) * y(1)
di_p = 2.0d40 * y(1)
d4_b = -4.d0 + y(2) * dil_p
ifun = ifun + 3

dogi_=1, g_p_
g f(g_i_, 1) =d2_v * g_y(g_i_, 2) + d4_b * g_y(g_i_, 1)
ifun = ifun + 2

enddo

f(1) = 1.d0 + d2_v * y(2) - 4.40 * y(1)
ifun = ifun + 2

d3_v = y(1) * y(1)
di_p = 2.0d0 * y(1)
dé_b = (-y(2)) * di_p + 3.4d0

ifun = ifun + 3

dogi_=1, g_p_
g_f(g_i_, 2) = (-d3_v) * g_y(g_i_, 2) + d6_b * g_y(g_i_, 1)
ifun = ifun + 2

enddo

£(2) = 3.d0 * y(1) - d3_v * y(2)
ifun = ifun + 2

return

end

subroutine g_jac(g_p_, t, y, g_y, 1dg_y, jy, 8_jy, 1ldg_jy)

93

common /FLOP/ iflop, ifa, iso, ifun, ijac

real*8 t, y(2), jy(2, 2)

integer g_pmax_

parameter (g_pmax_ = 2)

integer g_i_, g_p_, ldg_jy, ldg_y

double precision dl_p, d5_b, d2_v, g_jy(ldg_jy, 2, 2), g_y(ldg_y
*, 2)

integer g_ehfid

data g_ehfid /0/

13 call ehsfid(g_ehfid, ’jac’,’g_euler.f’)

if (g_p_ .gt. g_pmax_) then
print *, ’Parameter g_p_ is greater than g_pmax_’
stop
endif
d2_v = 2.d0 * y(1)
d5_b = y(2) * 2.40
dogi_ =1, g_p_
g_jy(g_i_, 1, 1) =d2_v * g_y(g_i_, 2) + d5_b * g_y(g_i_, 1)
enddo
jy(t, 1) = d2_v * y(2) - 4.d0

Q.

IM

<
|

= y(1) * y(1)
2.0d0 * y(1)
dogi_=1, g_p_
g-jy(g-i_, 1, 2) =dip*gy(gi, 1)
enddo
jy(1, 2) = d2_v
d2_v = 2.d0 * y(1)
_ (-y(2)) * 2.d0
dogi_=1, g_p_
g_jy(g_i_, 2, 1) = (-d2_v) * g_y(g_i_, 2) + d5_b * g_y(g_i_, 1

Q

[
e
1

Q.

[¢;]

o'
I

enddo
jy(2, 1) = 3.d0 - d2_v * y(2)

Q.

IM

<
|

= y(1) * y(1)
2.0d0 * y(1)
dogi_ =1, g_p_
g_jy(g_i_, 2, 2) = (-di_p) * g_y(g_i_, 1)
enddo
jy(2, 2) = -d2_v

Q.
-
e
]

ijac = ijac + 22
return
end

subroutine g_euler(g_p_, ts, te, nstep, nl, y, g_y, 1ldg_y, g_fun,
*g_jac)

implicit double precision (a-h, o0-z)

common /FLOP/ iflop, ifa, iso, ifun, ijac

parameter (n = 2)

real*8 ts, te, h, y(n), f(n), j(n, n), z(n)

real*8 x(n), er

integer g_pmax_

parameter (g_pmax_ = 2)

integer g_i_, g_p_, 1ldg_y

double precision g_z(g_pmax_, n), g_y(ldg_y, n), g_j(g_pmax_, n,
* n), g_x(g_pmax_, n), g_f(g_pmax_, n)

integer g_ehfid

save g_z, g_j, g_x, g_*f

external g_solve

external g_fun

external g_fact

external g_jac

data g_ehfid /0/

!3 call ehsfid(g_ehfid, ’euler’,’g_euler.f’)

if (g_p_- .gt. g_pmax_) then
print *, ’Parameter g_p_ is greater than g_pmax_’
stop
endif
iprint = 0
h = (te-ts)/dble(nstep)! 5.d-3
write (10, 10) ts, (y(k), k = 1, n),
* g_y1,1), g_y(2,1),g_y(1,2),g_y(2,2)
C
C --- Begin Time Loop ---
do i = 1, nstep
t=ts+ (i-1) xh

do k=1,
do g_i_

n B

1, g_p_

C
C
C

¢

g_z(g_i_, k) = g_y(g_i_, k)
enddo
z(k) = y(k)

enddo

-—— Compute and factorize the Jacobian ---

call g_jac(g_p-, t, ¥y, g-y, 1dg-y, j, g-j, g-pmax_)
doil =1, n
doi2 =1, n
dogi_=1, g_p_
g_j(g_i_, i1, i2) = (-h) * g_j(g_i_, i1, i2)
iflop = iflop + 1
enddo
ji1, i2) = (-h) * j(i1, i2)
iflop = iflop + 1

enddo
do g i_ =1, g_p_
g_jlg_i_, i1, i1) = g_j(g_i_, i1, il)
enddo
j(i1, i1) = 1.40 + j(i1, il)

enddo
call g_fact(g_p_, j, 8-j, g_pmax_)

C ---- Begin Quasi Newton -----

er = 1.40
icont = 0
do while ((er .gt. 1.d-2) .and. (icont .le. 10))

icont = icont + 1

call g_fun(g_p_, t, y, g_y, ldg_y, £, g_f, g_pmax_)

dok =1, n

dogi_ =1, g_p_
gx(g_i_, k) = (-h) * g_f(g_i_, k) + (-g_z(g_i_, k) + g

*x_y(g_i_, k)

iflop = iflop + 2
enddo
x(k) = y(k) - z(k) - h * f(k)
iflop = iflop + 1

enddo
call g_solve(g_p_, j, g_j, g_pmax_, X, g_X, g_pmax_)

95

er
do

N o

.do
i, n

Lo |

dogi_ =1, g_p_

g_y(g_i_, k) = -g_x(g_i_, k) + g_y(g_i_, k)
enddo
y(&) =y - x(k)

er = er + x(k) **x 2
iflop = iflop + 6
enddo
er = dsqrt(er / n)
iflop = iflop + 2
enddo
C ---- End Quasi Newton -----
C
C
iprint = iprint + 1
if (iprint .eq. (nstep / 100)) then
write (10, 10) t + h, (y(k), k = 1, n),
* g_.y(1,1), g_y(2,1),g_y(1,2),g_y(2,2)
10 format (£6.2,20(x,e24.16))
iprint = 0
endif

enddo
C —— End Time Loop -—-
return
end

subroutine g_fact(g_p_, a, g_a, ldg_a)
common /FLOP/ iflop, ifa, iso, ifun, ijac
double precision a(2, 2), x1
integer g_pmax_
parameter (g_pmax_ = 2)
integer g_i_, g_p_, ldg_a
double precision d7_b, d6_b, d45_b, d4_b, d3_b, d6_v, d3_v, d2_b,
* g_x1(g_pmax_), g_a(ldg_a, 2, 2)
integer g_ehfid
save g_x1
data g_ehfid /0/

'3 call ehsfid(g_ehfid, ’fact’,’g_euler.f’)

if (g_p_ .gt. g_pmax_) then

96

97

print *, ’Parameter g_p_ is greater than g_pmax_’
stop
endif
dogi_=1, g_p_
g_x1(g_i) = g_a(g_i_, 2, 1)
enddo
x1 = a(2, 1)
if (dabs(a(l, 1)) .1t. 1.d-8) then
print *, ’Singular matrix’
stop
endif
d3_v = a(2, 1) / a(1, 1)
d2_b = 1.0d0 / a(1, 1)
d3_b (-d3_v) / a(1, 1)
dogi_=1, g_p_
g_a(g_i_, 2, 1) =d3_b * g_a(g_i_, 1, 1) + d2_b * g_a(g_i_, 2,

* 1)
enddo
a(2, 1) = 4d3_v
dé_v = a(1, 2) * x1 / a(1, 1)
d4_b = -(1.040 / a(1, 1))
d5_b = -((-d6_v) / a(1, 1))
d6_b = d4_b * x1
d7_b = d4_b * a(l, 2)
dogi_=1, g_p_
g_a(g_i_, 2, 2) = d5_b * g_a(g_i_, 1, 1) + d7_b * g_x1(g_i_) +
*x d6_b * g_a(g_i_, 1, 2) + g_a(g_i_, 2, 2)
enddo
a(2, 2) = a(2, 2) - dé_v
C ________
ifa = ifa+19
return
end

subroutine g_solve(g_p_, a, g_a, ldg_a, x, g_x, ldg_x)

common /FLOP/ iflop, ifa, iso, ifun, ijac

double precision a(2, 2), x(2)

integer g_pmax_

parameter (g_pmax_ = 2)

integer g_i_, g_p_, ldg_x, ldg_a

double precision d8_b, d7_b, d6_b, d7_v, d8_v, d3_b, d2_b, g_x(1
xdg_x, 2), g_a(ldg_a, 2, 2)

integer g_ehfid
data g_ehfid /0/

!3 call ehsfid(g_ehfid, ’solve’,’g_euler.f’)

if (g_p_- .gt. g_pmax_) then
print *, ’Parameter g_p_ is greater than g_pmax_’

stop
endif
d8_v = ((-a(2, 1)) * x(1) + x(2)) / a(2, 2)
d2_b = 1.0d0 / a(2, 2)
d3_b = (-d8_v) / a(2, 2)
d7_b = d2_b * (-a(2, 1))
d8_b = -(d2_b * x(1))

dogi_=1, g_p_
g x(g_i_, 2) =d3_b * g_a(g_i_, 2, 2) +d2_b * g_x(g_i_, 2) +
*d7_b * g x(g_i_, 1) + d8_b * g_a(g_i_, 2, 1)

enddo
x(2) = ds_v
d7_v = (x(1) - a(2, 1) * x(2)) / a(1, 1)

Q.

N

o
|

=1.0d0 / a(1, 1)
d3_b = (-d7_v) / a(1, 1)
d6_b = (-d2_b) * x(2)
= (-d2_b) * a(2, 1)

dogi_=1, g_p_

gx(g_i_, 1) =d3_b * g_a(g_i_, 1, 1) + d7_b * g x(g_i_, 2) +

*d6_b * g_a(g_i_, 2, 1) + d2_b * g_x(g_i_, 1)

enddo

x(1) = 4d7_v

o

I\l

o'
I

iso = iso+28
return
end

[1]

[10]

[11]

[12]

99

REFERENCES

T. Alishenas and O. Olafsson. Modeling and velocity stabilization of constrained
mechanical systems with comparative study of two test problems. Preprint, NADA,
Royal Institute of Technology, Stockholm, 1993.

H. Amann. Ordinary Differential Equations: An Introduction to Nonlinear Analysis.
Walter de Gruyter, 1990.

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK User’s
Guide, second edition. Technical report, STAM, Philadelphia, PA, 1995.

U. M. Ascher, S. J. Ruuth, and B. T. R. Wetton. Implicit-Explicit methods for time
dependent PDE’s. Technical Report 93-15, 1993.

R.D. Atkinson, D.L. Baulch, R.A. Cox, R.F.JR. Hampson, J.A. Kerr, and J. Troe.
Evaluated kinetic and photochemical data for atmospheric chemistry. International
Journal of Chemical Kinetics, 21:115-190, 1989.

G. Bader and P. Deuflhard. A semi-implicit mid-point rule for stiff systems of ordi-
nary differential equations. Numer. Math., 41:373-398, 1983.

Ch. Bischof, A. Carle, G. Corliss, A. Griewank, and P. Hovland. ADIFOR generating
derivative codes from FORTRAN programs. Technical report, Mathematics and
Computer Science Division, Argonne National Laboratory, Argonne, Illinois, 1992.

Ch. Bischof, A. Carle, P. Khademi, and A. Mauer. The ADIFOR2.0 system for the
automatic differentiation of FORTRANT7T7 programs. Technical report, Mathematics
and Computer Science Division, Argonne National Laboratory, Argonne, Illinois,
1994.

H.G. Bock. Numerical treatment of inverse problems in chemical reaction kinetics.
Modelling of Chemical Reaction Systems, K.H. Ebert, P. Deuflhard and W. Jaeger
editors, Springer Series in Chem. Phys., 18:102-125, 1981.

K. E. Brenan, S. L. Campbell, and L. R. Petzold. Numerical Solution of Initial- Value
Problems in Differential-Algebraic Equations. Elsevier Science Publishers, 1989.

P.N. Brown, G.D. Byrne, and A.C. Hindmarsh. VODE: A Variable Step ODE Solver.
SIAM J. Sci. Stat. Comput., 10:1038-1051, 1989.

G.D. Byrne and A.M. Dean. The numerical solution of some chemical kinetics models
with VODE and CHEMKIN II. Computers Chem., 17:297-302, 1993.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

100

D. G. Cacuci. Sensitivity theory for nonlinear systems. I. Nonlinear functional anal-
ysis approach. II. Extensions to additional classes of responses. J. Math. Phys.,
22:2794-2812, 1981.

G.R. Carmichael, L.K. Peters, and T. Kitada. A second generation model for
regional-scale transport/ chemistry/ deposition. Atmospheric environment, 20:173—
188, 1986.

G.R. Carmichael, A. Sandu, and F.A. Potra. Sensitivity Analysis for Atmospheric
Chemistry models via Automatic Differentiation. Atmospheric Environment, 31:475
— 489, 1997.

B.W. Char, K.O. Geddes, G.H. Gonnet, M.B. Monagan, and S.M. Watt. Maple V
Language Reference Manual. Springer-Verlag, New York, 1991.

M. Chin, D. Jacob, J. Munger, D. Parrish, and B. Doddridge. Relationship of ozone
and carbon monoxide over north america. J. Geophys. Res., 99:14,565-14,573, 1994.

Y. S. Cho. Ph.d. thesis. The University of Iowa, 1986.

Y. S. Cho and G.R. Carmichael. Evaluation of liquid phase chemical production of
sulfate using sensitivity analysis. Atmospheric Environment, 20:1959-1988, 1986.

Y. S. Cho, G.R. Carmichael, and H. Rabitz. Sensitivity analysis of the advection-
diffusion equation. Atmospheric Environment, 21:2589-2598, 1987.

Y. S. Cho, G.R. Carmichael, and H. Rabitz. The relationship between primary
emissions and acid deposition in eulerian models determined by sensitivity analysis.
Water, Air and Soil Pollution, 40:9-31, 1988.

D. P. Chock and S. L. Winkler. A comparison of advection algorithms coupled with
chemistry. Atmospheric Environment, 28(16):2659-2675, 1994.

D. Dabdub and J.H. Seinfeld. Extrapolation techniques used in the solution of stiff
odes associated with chemical kinetics of air quality models. Atmospheric Environ-
ment, 29:403—410, 1995.

V. Damian-Iordache. KPP - a chemical development environment. Technical report,
The University of lIowa, Iowa City, [A 52246, 1996.

V. Damian-Tordache, A. Sandu, M. Damian-Iordache, G. R. carmichael, and F. A.
Potra. KPP - A symbolic preprocessor for chemistry kinetics - User’s guide. Technical
report, The University of lowa, lowa City, TA 52246, 1995.

J. J. B. de Swart and J. G. Blom. Experiences with sparse matrix solvers in parallel
ODE software. Technical report, Centrum voor Wiskunde en Informatica, Kruislaan
413, 1098 SJ Amsterdam, 1995.

J. E. Dennis. On the kanrovitch hypothesis for Newton’s method. SIAM Journal on
Numerical Analysis, 6:493-507, 1969.

101

[28] J. E. Dennis and R. B. Schnabel. Numerical Methods for unconstrained optimization
and nonlinear equations. Prentice Hall Inc, Englewood Cliffs, New Jersey 07632,
1985.

[29] R. Dentener and P. Crutzen. Reaction of N3O5 on tropospheric aerosols : impact
of the global distributions of NO,, O3 and OH. Journal of Geophysical Research,
98:7149-7163, 1993.

[30] P. Deuflhard. Recent progress in extrapolation methods for ordinary differential
equations. SIAM Review, 27:505-535, 1985.

[31] J. J. Dongarra, J. R. Bunch, C. B. Moller, and G. W. Stewart. LINPACK User’s
Guide. Technical report, STAM, Philadelphia, PA, 1979.

[32] J.J. Dongarra and E. Grosse. Distribution of software via electronic mail. Commu-
nications ACM, pages 403407, 1987.

[33] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices.
Oxford Science Publications, Clarendon Press Oxford, 1986.

[34] A. M. Dunker. The decoupled direct method for calculating sensitivity coefficients
in chemical kinetics. J. Chemical Physics, 81:2385, 1984.

[35] S.C. Eisenstat, M.C. Gursky, M.H. Schultz, and A.H. Sherman. Yale Sparse Matrix
Package. ii. The nonsymmetric codes. Research Report 114, Department of Computer
Science, Yale University, 1977.

[36] S.C. Eisenstat, M.C. Gursky, M.H. Schultz, and A.H. Sherman. Yale Sparse Matrix
Package. i. The symmetric codes. Int. J. Num. Meth. Eng., 18:1145-1151, 1982.

[37] A.S. El-Bakry, R.A. Tapia, T. Tsuchia, and Y. Zhang. On the Formulation of the
Primal-Dual Newton Interior-Point Method for Nonlinear Programming. To appear
in Journal of Optimization Theory and Applications, 1996.

[38] S. Elliot, R.P. Turco, and M.Z. Jacobson. Tests on combined projection/forward
differencing integration for stiff photochemical family systems at long time step.
Computers Chem, 17:91-102, 1993.

[39] M. W. Gery, G.Z. Whitten, J.P. Killus, and M.C. Dodge. A photochemical kinetics
mechanism for urban and regional scale computer modelling. Journal of Geophysical
Research, 94:12925-12956, 1989.

[40] G. Golub and C. F. van Loan. Matriz computaions. Johns Hopkins University Press,
Baltimore and London, 1983.

[41] W. Gong and H.R. Cho. A numerical scheme for the integration of the gas phase
chemical rate equations in 3D atmospheric models. Atmospheric Environment, 27A:2147—
2160, 1993.

102

[42] A. Griewank, C. Bischof, G. Corliss, A. Carle, and K. Williamson. Derivative conver-
gence for iterative equation solvers. Optimization methods and software, 2:321-355,
1993.

[43] A. Griewank and G. Corliss. Automatic differentiation of algorithms: Theory, im-
plementation, and application. SIAM, Philadelphia, Pennsylvania, 1991.

[44] E. Hairer, Ch. Lubich, and M. Roche. The Numerical Solution of Differential-
Algebraic Systems by Runge-Kutta Methods. Springer-Verlag, Berlin, New-York,
1989.

[45] E. Hairer, S.P. Norsett, and G. Wanner. Solving Ordinary Differential Equations I.
Nonstiff Problems. Springer-Verlag, Berlin, 1993.

[46] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II. Stiff and
Differential-Algebraic Problems. Springer-Verlag, Berlin, 1991.

[47] O. Hertel, R. Berkowicz, J. Christensen, and O. Hov. Test of two numerical schemes
for use in atmospheric transport-chemistry models. Atmospheric Environment, 27A:2591—
2611, 1993.

[48] E. Hesstvedt, O. Hov, and I. Isaacsen. A numerical method to predict secondary air
pollutants with an application on oxidant generation in an urban atmosphere. WMO
publication, 510:219-226, 1978.

[49] E. Hesstvedt, O. Hov, and I. Isaacsen. Quasi-steady-state-approximation in air pol-
lution modelling: comparison of two numerical schemes for oxidant prediction. Int.
J. Chem. Kinet., 10:971-994, 1978.

[50] A. Hindmarsch. ODEPACK: A systematized collection of ODE solvers. Ed. North
Holland, Amsterdam, 1983.

[51] M. Hochbruck, C. Lubich, and H. Selhofer. Exponential integrators for large systems
of differential equations. SIAM Journal of Scientific Computing, to appear, 1997.

[52] D.J. Jacob, J.A. Logan, G.M. Gardner, C.M. Spivakovsky R.M. Yevich, S.C. Wofsy,
S. Sillman, and M.J. Prather. Factors regulating ozone over the United States and
its export to the global atmosphere. J. Geophys. Res., 98:14,817-14,826, 1993.

[63] M.Z. Jacobson and R.P. Turco. SMVGEAR: a sparse-matrix, vectorized Gear code
for atmospheric models. Atmospheric Environment, 17:273-284, 1994.

[54] L. O. Jay. Structure-Preserving Integrators. University of Minnesota AHPCRC,
Preprint 95-038, 1995.

[55] L.O. Jay, A. Sandu, F.A. Potra, and G.R. Carmichael. Improved QSSA methods for
atmospheric chemistry integration. SIAM Journal on Scientififc Computing, 18:182—
202, 1997.

[56]

[57]

[58]

[59]
[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

103

R. J. Kee, F. M. Rupley, and J. A. Miller. CHEMKIN II: A FORTRAN package
for the analysis of gas phase chemical kinetics. Technical report, Sandia National
Laboratory, Livermore, CA, 1989.

X. Lin, M. Trainer, and S. Liu. On the nonlinearity of tropospheric ozone production.
Journal of Geophysical Research, 93:15,879-15,888, 1988.

F.W. Lurmann, A.C. Loyd, and R. Atkinson. A chemical mechanism for use in
long-range transport/acid deposition computer modeling. Journal of Geophysical
Research, 91:10,905-10,936, 1986.

J. Matthijsen. Private Communication. 1995.

G.J. McRae, W.R. Goodin, and J.H. Seinfeld. Numerical solution of the atmospheric
diffusion equation for chemically reacting flows. Journal of Computational Physics,
45:1-42, 1982.

I.M. Navon and U. Muller. FESW - A finite element FORTRAN IV program for
solving the shallow water equations. Advances in ehngineering software, 1:77-84,
1970.

Hoa D. Nguyen and Seungho Paik. Solution Domain decomposition with Finite
Difference Methods for PDE. Numerical methods for PDE, 11:453-466, 1995.

Jorge Nocedal. Theory of Algorithms for Unconstrained Optimization. Acta Numer-
ica, pages 1-37, 1991.

U. Nowak. A short user’s guide to LARKIN. Technical report, Konrad-Zuse-Zentrum
fuer, Informationstechnik Berlin, 1982.

J. Olson, M. Prather, T. Berntsen, G. R. Carmichael, R. Chatfield, P. Connell,
R. Derwent, L. Horowitz, S. Jin, M. Kanakidou, P. Kasibhatla, R. Kotomarthi,
M. Kuhn, K. Law, S. Sillman, J. Penner, L. Perliski, F. Stordal, A. Thompson, and
O. Wild. Results from the IPCC Photochemical Model Intercomparison (Photo-
Comp): Some Insights into Tropospheric Chemistry. submitted to Journal of Geo-
physical Research, March 1996.

K. Olszyna, E. Bailey, R. Simonaites, and J. Meagher. O3 and N Oy relationships at
a rural site. Journal of Geophysical Research, 99:14,557-14,563, 1994.

D. Parrish, J. Holloway, M. Trainer, P. Murphy, G. Forbes, and F. Fehsenfeld. Export
of north american ozone pollution to the north atlantic ocean. Science, 259:1436—
1439, 1993.

F.A. Potra, K. Kortanek, and Y. Ye. On some efficient interior point methods for
nonlinear convex programming. Linear Algebra and its Applications, 152:191-222,
1991.

M.J.D. Powell. Convergence properties of algorithms for nonlinear optimization.
Report DAMTP 1985/NA1, University of Cambridge, Department of Applied Math-
ematics and Theoretical Physics, Cambridge, October 1985.

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

104

M. Prather. Intercomparison of tropospheric chemistry/ transport models. Scientific
assesment of ozone depletion, World meteorological organization, 1995.

A. Prothero and A. Robinson. On the stability and accuracy of one-step methods for
solving stiff systems of ordinary differential equations. Math. of Comput., 28:145-162,
1974.

H. Rabitz, M. Hramer, and D. Dacol. Sensitivity analysis in chemical kinetics. Anual
review of physical chemistry, 34, 1983.

D. Ralph and S. Wright. Superlinear convergence of an interior point method for
monotone variational inequalities. Preprint MCS-P556-0196, Argonne National Lab-
oratory, 1996.

A. Sandu, J. G. Blom, E. Spee, J. G. Verwer, F.A. Potra, and G.R. Carmichael.
Benchmarking stiff ODE solvers for atmospheric chemistry equations II - Rosen-
brock Solvers. Report on Computational Mathematics 90, The University of Iowa,
Department of Mathematics, Towa City, July 1996.

A. Sandu, F.A. Potra, V. Damian, and G.R. Carmichael. Efficient implementation of
fully implicit methods for atmospheric chemistry. Journal of Computational Physics,
129:101 — 110, 1996.

A. Sandu, M. van Loon, F.A. Potra, G.R. Carmichael, and J. G. Verwer. Benchmark-
ing stiff ODE solvers for atmospheric chemistry equations I - Implicit vs. Explicit.
Report on Computational Mathematics 85, The University of lowa, Department of
Mathematics, lowa City, January 1996.

R. D. Saylor and G. D. Ford. On the comparison of numerical methods for the
integration of kinetic equations in atmospheric chemistry and transport models. At-
mospheric Environment, 29:2585-2593, 1995.

A.H. Sherman and A.C. Hindmarsh. GEARS: a package for the solution of sparse,
stiff ordinary differential equations. Lawrence Livermore Laboratory Report, UCRL-
84102.

D. Shyan-Shu Shieh, Y. Chang, and G.R. Carmichael. The evaluation of numerical
techniques for solution of stiff ODE arising from chemical kinetic problems. FEnuvi-
ronmental Software, 3, 1988.

S. Sillman. A numerical solution for the equations of tropospheric chemistry based on
an analysis of sources and sinks of odd hydrogen. Journal of Geophysical Research,
96:20735-20744, 1991.

D. Simpson. Biogenic VOC in Europe. Part II: implications for ozone control strate-
gies. EMEP MSC-W, 1994.

D. Simpson, Y. Andersson-Skold, and M.E. Jenkin. Updating the chemical scheme
for the EMEP MSC-W oxidant model: current status. EMEP MSC-W, Technical
Report 2/93, 1993.

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

105

S. Skelboe and Z. Zlatev. Exploiting the natural partitioning in the numerical so-
lution of ODE systems arising from atmospheric chemistry. Report, University of
Copenhagen, Department of Computer Science, Copenhagen, Denmark, 1996.

D. Stoffer. Variable steps for reversible integration methods. Computing, 55:1-22,
1995.

M. van Loon. Numerical smog prediction I: the physical and chemical model. CWI
Report NM-R9411, 1995.

M. van Loon. Numerical smog prediction II: Grid refinement and its application to
the Dutch smog prediction model. CWI Report NM-R95xx, 1995.

J. Verwer. Gauss-Seidel iterations for stiff ODEs from chemical kinetics. SIAM
Journal of Scientific Computing, 15:1243-1250, 1994.

J. Verwer, J. G. Blom, and W. Hunsdorfer. An Implicit-Explicit Approach for At-
mospheric Transport-Chemistry Problems. Applied Numerical Mathematics, 20:191—
209, 1996.

J. Verwer, J. G. Blom, M. van Loon, and E. J. Spee. A comparison of stiff ODE
solvers for atmospheric chemistry problems. Atmospheric Environment, 30:49-58,
1996.

J. Verwer and W. Hunsdorfer. A note on Splitting Errors for Advection-Reaction
Equations. CWI Report NM-R942.

J. Verwer and D. Simpson. Explicit Methods for Stiff Odes from Atmospheric Chem-
istry. Applied Numerical Mathematics, 18:413-430, 1995.

J. Verwer and M. van Loon. An evaluation of explicit Pseudo-Steady-State Approx-
imation achemes for stiff ODE systems from chemical kinetics. Journal of Computa-
tional Physics, 113:347-352, 1994.

P. Werbos. Applications of advances in nonlinear sensitivity analysis. System mod-
elling and optimization, Springer-Verlag:762-777, 1982.

R. Yamartino, J. Scire, G.R. Carmichael, and Y.S. Chang. The CALGRID mesoscale
photochemical grid model. Atmospheric Environment, 26 A:1493-1512, 1992.

N. N. Yanenko. The method of fractional steps. Springer-Verlag, New-York, Heidel-
berg, Berlin, 1971.

T. R. Young and J. P. Boris. A numerical technique for solving stiff ODE associated
with the chemical kinetics of reactive flow problems. Journal of Physical Chemistry,
81:2424-2427, 1977.

Z. Zlatev. Computer Treatment of Large Air Pollution Models. Kluwer Academic
Publishers, 1995.

