NUMERICAL ASPECTS OF AIR QUALITY MODELING

by
Adrian Sandu

An Abstract

Of a thesis submitted in partial fulfillment of the
requirements for the Doctor of Philosophy
degree in Applied Mathematical and Computational Sciences
in the Graduate College of
The University of Iowa

August 1997

Thesis supervisors: Professor Florian A. Potra
Professor Gregory R. Carmichael

ABSTRACT

Numerical simulation of atmospheric transport-chemistry processes is a com-
putationally intensive problem. A major task is the integration of the stiff systems
of ordinary differential equations describing the chemical transformations. It is
therefore of interest to develop stiff solvers which can be identified as close to opti-
mal for atmospheric applications.

In this thesis we analyze and propose a number of methods, both implicit and
explicit, suitable for this task. A theoretical analysis of the proposed methods is
given. Optimal methods are identified via a large number of numerical experiments.
A set of test problems representative for the application is put together and coded
for this purpose.

The symbolic preprocessor KPP (kinetic preprocessor) is developed and pre-
sented; KPP is able to translate chemical equations into ready to run simulation
code.

Several additional issues related to atmospheric numerical modeling are dis-
cussed: boundary conditions and the possibility of eliminating the splitting errors.

This work conclusively shows that implicit methods can be useful for air
quality modeling. For example, one of the newly proposed methods (Rodas3) is, in
the STEM-II model, as fast as Qssa with 30 seconds time step. However, Rodas3
is much more accurate and can be applied to any chemical mechanism, as opposed

to Qssa (and any explicit method) which are unstable on multiphase systems.

Abstract approved:

Abstract approved:

Thesis supervisor

Title and department

Date

Thesis supervisor

Title and department

Date

NUMERICAL ASPECTS OF AIR QUALITY MODELING

by
Adrian Sandu

A thesis submitted in partial fulfillment of the
requirements for the Doctor of Philosophy degree in
Applied Mathematical and Computational Sciences

in the Graduate College of
The University of Towa

August 1997

Thesis supervisors: Professor Florian A. Potra

Professor Gregory R. Carmichael

Graduate College
The University of Towa
Iowa City, Iowa

CERTIFICATE OF APPROVAL

PH.D. THESIS

This is to certify that the Ph.D. thesis of

Adrian Sandu

has been approved by the Examining Committee
for the thesis requirement for the

Doctor of Philosophy degree in

Applied Mathematical and Computational Sciences
at the August 1997 graduation.

Thesis committee:

Thesis supervisor

Thesis supervisor

Member

Member

Member

To my family

i

ACKNOWLEDGMENTS

This work was supported in part by grants from DOE (DE-FG02-94ER61855),
NASA (NAGW-2428) and the Center for Global and Regional Environmental Re-
search.

I want to thank to several people who have made this possible. To my advi-
sors, professor Florian Potra and professor Gregory Carmichael. To my colleagues
and co-workers Valeriu Damian, Mirela Damian, Laurent Jay, Jan Verwer, Maarten
van Loon, Edwin Spee, Joke Blom, Richard Arndt, Mahesh Phadnis, Chung Song,
Li Ling Chen, Jane Frank.

Special thoughts go to my wife Corina for her understanding, encouragement,

support and affection, and to my daughter Andreea, for giving a purpose to all this.

iii

ABSTRACT

Numerical simulation of atmospheric transport-chemistry processes is a com-
putationally intensive problem. A major task is the integration of the stiff systems
of ordinary differential equations describing the chemical transformations. It is
therefore of interest to develop stiff solvers which can be identified as close to opti-
mal for atmospheric applications.

In this thesis we analyze and propose a number of methods, both implicit and
explicit, suitable for this task. A theoretical analysis of the proposed methods is
given. Optimal methods are identified via a large number of numerical experiments.
A set of test problems representative for the application is put together and coded
for this purpose.

The symbolic preprocessor KPP (kinetic preprocessor) is developed and pre-
sented; KPP is able to translate chemical equations into ready to run simulation
code.

Several additional issues related to atmospheric numerical modeling are dis-
cussed: boundary conditions and the possibility of eliminating the splitting errors.

This work conclusively shows that implicit methods can be useful for air
quality modeling. For example, one of the newly proposed methods (Rodas3) is, in
the STEM-II model, as fast as Qssa with 30 seconds time step. However, Rodas3
is much more accurate and can be applied to any chemical mechanism, as opposed

to Qssa (and any explicit method) which are unstable on multiphase systems.

v

TABLE OF CONTENTS

LIST OF TABLES e e e
LIST OF FIGURES e
CHAPTER
1. INTRODUCTION e
1.1 Overview of air quality modeling
1.2 Objectives of this thesis
1.3 Problem statement oL,
1.4 Mass action kineticso oo
1.4.1 Positivityo
1.4.2 Conservation of mass
1.5 Review of the literature
1.6 Thesis organization
2. EXPLICIT METHODS
2.1 Imntroduction
2.2 Idea of explicitness L.
2.3 Plain, DAE, and iterated Qssa
2.4 (Qssa is an exponentially
fitted method
2.5 Extrapolation algorithms
based on Qssa Lo
2.6 The reduced system of a
singular perturbation problem
2.7 Convergence of Qssa for the
singular perturbation problem
2.8 Description of the test problem
2.9 Numerical results oL
210 Lumpingo
2.11 Other methods
2.11.1 Twostep oo
2112 Chemeqo
2113 ET . .. o e
2114 Ebi e
2.12 Concluding remarkso oL

Page
ix

xi

—_

3. IMPLICIT METHODS 53

3.1 Introduction 53
3.2 About pivotingo o6
3.3 Speciesordering Lo o7
3.4 An evaluation of different
sparse subroutines 60
3.4.1 Testsystems, 60
3.4.2 Test methodology 61
3.4.3 Short description of
linear system solvers tested. 63
344 Resultso 67
3.4.5 Integratorsused 71
3.4.6 Test problems 71
3.5 Numerical results 0oL, 73
3.6 Conclusions on sparsity treatment 79
3.7 Rosenbrock methods o0, 79
3.7.1 The integration formula 82
3.7.2 Reducing computational costs 84
3.7.3 Stepsize control, 86
3.7.4 Consistency and stability 87
3.7.5 New methods -
Rodas3 and Ros3 94
3.8 Othermethods 95
3.8.1 VODE 95
3.8.2 LSODES 97
3.8.3 SDIRK4 97
3.84 RODAS. 97
3.85 ROS4 98
3.8.6 SEULEX 98
4. BENCHMARK PROBLEMS
AND NUMERICAL RESULTS 100
4.1 Introduction Lo 100
4.2 The benchmark problems 101
4.2.1 Problem A1: TMk model 104
4.2.2 Problem A2: EUSMOG model 104
4.2.3 Problems B and C: CBM-IV model 105
4.2.4 Problems D and E: AL model 106
4.2.5 Problem F: stratospheric model 107
4.2.6 Problem G: aqueous model L. 109
4.3 Setup of experiments L. 114
4.3.1 Splitting intervalo 117
4.3.2 Emissions L o 117
4.3.3 Steering parameters 118
434 Accuracy 119
435 Timingo 120
4.3.6 Reaction coefficients 121

vi

4.4 Results-part 1 L
4.4.1 Problem A: EUSMOG model
4.4.2 Problems B and C: CBM-IV model
4.4.3 ProblemsD and E: AL model
4.4.4 Problem F: stratospheric model
4.4.5 Problem G: aqueous model

4.5 Results-part2
4.5.1 Problem A: TMk model

Problems B and C: CBM-IV model

Problems D and E: AL model

Problem F: stratospheric model
4.5.5 Problem G: aqueous model

4.6 Overall conclusions and remarks

4.
4.
4.

Ut Ot Ot
= O N

. KPP - AUTOMATIC GENERATION OF KINETIC EQUATIONS

Introduction Lo
The kinetic equationso Lo
Possible implementations to

solve the kinetic problem L.
User viewo e
5.4.1 The chemical model
5.4.2 Theintegrator
5.4.3 Thedriver
KPP capabilities 0o oo
KPP comand language
KPP data structures Lo
Other points

['=N W DN —

00 ~1 O Ut

. RELATED TOPICS

Introduction
Consistent boundary values
How accurate should the

boundary conditions be o0
Anexample. oL
Directional splitting00
Numerical example.,
Impact of the nonlinear terms

on boundary conditions
Extended linearized alternating

direction implicit methods
The methods,
Conservation properties
Implicit - explicit ELADT
6.11.1 Example: TVD advection - reaction
Benefits for atmospheric modeling
About stability

— = O oo ~N O Ot~ W N~

SO OO0 O 0O OOM
—o

—
W N

vii

7. CONCLUSIONS o o 192

7.1 Summary and concluding remarks 192

7.2 Futureresearch 195
APPENDIX

A. CHEMICAL MECHANISMS 198

A.1 The CBM-IV mechanism 198

A.2 The Lloyd- Atkinson- Lurmann mechanism 203

A3 The TMkmodel 211

A.4 The stratosphericmodel 213

A5 The aqueous model 217

REFERENCES e 228

viii

Table

3.1

3.2

3.3

3.4
3.5
3.6
3.7
4.1

4.2

4.3

4.4

4.5

LIST OF TABLES

Page

Resulting fill-ins (number of non-zeros after an in-place factoriza-
tion) for the different reorderings analyzed. The test problems are
discussed in section 4.6. oL 61

Model A. Times per call (107 seconds) for different solvers on a
HP-UX A 9000/735 with 160 M RAM machine. “DEC” is the time
for one decomposition, “SOL” the time for one backward-forward
substitution and “1D+7S” the time for one decomposition, followed
by seven backward-forward substitutions. 69

Model B. Times per call (10 ° seconds) for different solvers on a
HP-UX A 9000/735 with 160 M RAM machine. “DEC” is the time
for one decomposition, “SOL” the time for one backward-forward
substitution and “1D+7S” the time for one decomposition, followed
by seven backward-forward substitutions. 70

Initial concentrations for stratospheric model A. 72
Initial concentrations and hourly injections for tropospheric model B. 74
Average speed-ups obtained.o o000 75
Values of 7y for L-stability. 92
The dimension of the test problems, the number of nonzeroes in the
Jacobian matrix, and the number of nonzeroes in the Newton matrix
after the LU factorization. The difference between the numbers in

the third and second row is the fill-in. 103

Distribution of real part of the spectrum of the Jacobian for EU-
SMOG problem A. 105

Distribution of real part of the spectrum of the Jacobian for CBM-IV
problems Band C. Lo 106

Distribution of real part of the spectrum of the Jacobian for AL
problemsDand E.o Lo 107

Initial concentrations and hourly emissions for the tropospheric prob-
lems B, C, D and E. Toluene and Xylene, which are treated indepen-
dently in CBM-IV, are lumped as Aromatics in the AL model. . . . 108

X

4.6
4.7

4.8

4.9

4.10

4.11

4.12

5.1
5.2

Physical conditions for the tropospheric problems B, C, D and E.

Initial concentrations and physical conditions for the stratospheric
problem F.o

Distribution of real part of the spectrum of the Jacobian for the
stratospheric problem F. L.

Distribution of real part of the spectrum of the Jacobian for the
aqueous problem G. Lo

Initial concentrations and emissions for the aqueous problem G. . . .
The timing of dedicated integrators on test problem G. The last col-
umn represents the estimated CPU time needed to complete the five

days simulation. o

The values of rtol for which the codes either break down or give a
solution with more than 100 % relative error (negative SDA).

Photochemical smog mechanism.

Different smog scenarios. Lo

147

Figure

2.1

3.1

3.2

4.1

4.2

4.3

LIST OF FIGURES

Work-precision diagram for CBM-IV. Plain Qssa (solid with “x”),
DAE Qssa (solid with “x”), Iterated Qssa (solid with “0”), Chemeq
(dash-dots with “x”), Extrapolated Qssa (dashed with “x”), Sym-
metric Qssa (dashed with “0”), Twostep (dotted with “ ”), Vode
(dotted with “0”), and Sparse Vode (dotted with “¥”).

Model A. Work-precision diagram. A restart was carried each 1 hour
upper diagram) and each 15 minutes (lower diagram). Sparse Vode
solid), Vode (solid with “x”), Lsodes (solid with “0”), Sparse Rodas
dash - dots), Rodas (dash - dots with “x”), Sparse Sdirk4 (dashed),

Sdirk4 ((%ashed with “x”), Qssa (dots with “x”) and Chemeq (dots

with “07). . . .

Model B. Work-precision diagram. A restart was carried each 1 hour
upper diagram) and each 15 minutes (lower diagram). Sparse Vode
solid), Vode (solid with “x”), Lsodes (solid with “0”), Sparse Rodas
dash - dots), Rodas (dash - dots with “x”), Sparse Sdirk4 (dashed),

Sdirk4 ((;ashed with “¥”), Qssa (dots with “x”) and Chemeq (dots

with “0”).

Work-precision diagram for test problem A (EUSMOG): Twostep Sei-
del (dashed), Twostep Jacobi (dashed with “0”), Qssa (dots), Ex-
trapolated Qssa (dots with “0”), ET (dots with “ ”) Chemeq (dash-
dots), Sparse Vode (solid), Sparse Sdirk4 (solid with “«”), Sparse
Rodas (solid with “x”) and Lsodes (solid with “0”).

Work-precision diagram for test problems B and C (CBM-IV): The
upper pair of diagrams correspond to problem B and the lower pair
to problem C. Twostep Seidel (dashed), Twostep Jacobi (dashed with
“0”), Qssa (dots), Extrapolated Qssa (dots with “0”), ET (dots with
«“ ” Chemeq (dash dots), Sparse Vode (solid), Sparse Sdirk4 (solid
Wlth “x”), Sparse Rodas (sohd with “x”) and Lsodes (solid with “o”

Work-precision diagram for test problems D and E (AL): The upper
pair of diagrams correspond to test problem D, while lower pair to
test problem E. Twostep Seidel (dashed), Twostep Jacobi (dashed
with “0”), Qssa (dots), Extrapolated Qssa (dots with “0”), ET (dots
with “x”), Chemeq (dash dots), Sparse Vode (solid), Sparse Sdirk4
(solid Wl;ih “x”), Sparse Rodas (solid with “x”) and Lsodes (solid
with “0”). . . .o

xi

Page

44

80

81

122

). 124

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

5.1
5.2
9.3

Work-precision diagram for test problem F (STRATO): Twostep Sei-
del (dashed), Twostep Jacobi (dashed with “0”), Qssa (dots), Ex-
trapolated Qssa (dots with “0”), ET (dots with “x ”) Chemeq (dash-
dots), Sparse Vode (solid), Sparse Sdirk4 (solid with “x”), Sparse
Rodas (solid with “x”) and Lsodes (solid with “0”). 128

Work-precision diagram for test problem G (Aqueous): Sparse (solid),
Sparse Sdirk4 (solid with “x”), Sparse Rodas (solid with “x”) and
Lsodes (solid with “0”). L. 130

Work-precision diagram for test problem A (TMk): Sparse Rodas3
(solid with “x”), Sparse Ros3 (solid with “x”), Sparse Rodas (solid
with “0”), Twostep Seidel (dots with “x”), Sparse Vode (dots with
“0”), Sparse Seulex (dashed with “0”) and EBI (dash-dots with “0”). 132

Work-precision diagram for test problems B and C (CBM-1V): Sparse
Rodas3 (solid with “«”), Sparse Ros3 (solid with “x”), Sparse Rodas
(solid with “0”), Twostep Seidel (dots with “x”), Sparse Vode (dots
with “0”) and Sparse Seulex (dashed with “0”). 134

Work-precision diagram for test problems D and E (AL): Sparse Ro-
das3 (solid with “x”), Sparse Ros3 (solid with “x”), Sparse Rodas
(solid with “0”), Twostep Seidel (dots with “x”), Sparse Vode (dots
with “0”) and Sparse Seulex (dashed with “0”). 136

Work-precision diagram for test problems B (CBM-IV urban) and D
(AL urban), with a restart each 15 minutes: Sparse Rodas3 (solid
with “x”), Sparse Ros3 (solid with “x”), Sparse Rodas (solid with
“0”), Twostep Seidel (dots with “x”), Sparse Vode (dots with “0”),
Sparse Seulex (dashed with “0”) and Qssa (dash-dots with “x”). . . 137

Work-precision diagram for test problem F (Strato): Sparse Rodas3
(solid with “«”), Sparse Ros3 (solid with “x”), Sparse Rodas (solid
with “0”), Twostep Seidel (dots with “x”), Sparse Vode (dots with
“0”) and Sparse Seulex (dashed with “0”). 138

Work-precision diagram for test problem G (Aqueous): Sparse Rodas3
(solid with “x”), Sparse Ros3 (solid with “x”), Sparse Rodas (solid
with “o ”; Sparse Vode (dots with “0”) and Sparse Seulex (dashed

with “07). . . . 140
KPP user perspective o o 154
Input files details (default integrator) 155
Input files details (selected integrator) 156

xii

6.1

6.2

6.3

Splitting error for a simple test problem. A profile of height 1 is
advected over a square domain; boundary conditions are of Dirichlet
type and are time invariant. A simple directional splitting is consid-
ered; this splitting is exact for an infinite domain. The errors in the
final solution are due to the incorrect prescription of boundary values. 177

Relative errors for the local one dimensional splitting applied to the
test problem. The Dirichlet conditions were given by the exact solu-
tion, applied directly (left) and corrected (right).. 181

Relative errors for the local one dimensional splitting applied to the

test problem. The flux boundary conditions conditions were calcu-
lated analytically and applied directly (left) and corrected (right). . 182

xiil

CHAPTER 1
INTRODUCTION

1.1 Overview of air quality modeling

A detailed understanding of the relationships between the emissions and the
resulting distribution of primary and secondary species in the atmosphere is a reg-
uisite to designing actions for the maintenance of a healthy environment. Scientific
efforts to understand the atmospheric processes governing these relationships in-
volve a combination of laboratory experiments, field studies, and modelling analy-
sis. Laboratory experiments provide basic data on individual physical and chemical
processes. Field studies are designed to investigate a limited number of processes
under conditions in which a few processes dominate. Unlike controlled laboratory
experiments, field studies cannot be parametrically controlled. Since laboratory
experiments and field studies by themselves cannot fully elucidate complex atmo-
spheric phenomena, comprehensive models that allow multiple processes to occur
simultaneously are required for data analysis and scientific inquiry.

The models by Carmichael et al. [14], Jacob et al. [53], Dentener and Crutzen
[29] are examples of regional and global scale atmospheric chemistry models in
use today. These models treat transport, chemical transformations, emissions and
deposition processes in an integrated framework, and serve as representations of
our current understanding of the complex atmospheric processes. They provide a
means to perform parametric studies for quantitative analysis of the relationships

between emissions and the resulting distribution, and can also be used to study

the response of the pollutant distributions to system perturbations, and to link
pollutant distributions to environmental effects.

As our scientific understanding of atmospheric chemistry and dynamics has
expanded in recent years, so has our ability to construct comprehensive models
which describe the relevant processes. However, these comprehensive atmospheric
chemistry models are computationally intensive because the governing equations
are nonlinear, highly coupled, and extremely stiff. As with other computationally
intensive problems, the ability to fully utilize these models remain severely limited
by today’s computer technology.

Grid resolutions of 0.5?%0.5° or better in the horizontal, 20 vertical grids, and
as many as 40 to 100 species are necessary for adequate analysis of perturbations to
atmospheric chemistry on the global and regional scales. With such detail, the finest
grid resolution that can be achieved for global-scale analysis on todays computers
is about 2° * 2° x 10 vertical levels, even if one is content with a 1 : 1 simulation
time to CPU time ratio. This latter ratio should be at least 10 : 1, and preferably
100 : 1 or better, to effectively address many of the important scientific questions.

The scientific issues associated with analysis of our chemically perturbed at-
mospheres are dominated by a number of underlying considerations. Several of
the more important ones are: (a) the anthropogenic sources of trace species are
quite localized and occur only over a fraction of the Earth’s land area; (b) nat-
ural sources of trace species are, for the most part, very disperse and are not in
the same areas as the anthropogenic sources (although this trend may be chang-
ing in regions such as tropical rain forests and the savannahs); (c¢) in virtually no
case can an individual species be studied in isolation from other species; (d) many

of the mechanisms that effect transformation of the species are non-linear (e.g.,

chemical reactions and nucleation processes); and (e) species of importance have
atmospheric lifetimes that range from milliseconds and shorter to years (e.g., OH
radical to C Hy). These considerations require: finer grid resolutions than currently
existing ones in present-day models; simultaneous treatment of many species; and
long simulation times (i.e. months to years) to assess the impacts. These demands

present considerable challenges to the air quality modeling community.

1.2 Objectives of this thesis

Air quality models are conceptually complex and computationally very ex-
pensive. A full understanding of the underlying physical and chemical processes is
necessary before building good numerical approximations. Models are in need of
improved algorithms that are able to understand the sources and control the magni-
tudes of the numerical errors, to perform robustly in a wide variety of physical and
chemical conditions and, last but not least, be fast enough to provide good results
in an acceptable amount of CPU time.

To see why computational speed is so important, let us mention that, on
a HP-935A workstation, one day of chemistry simulation with DAE Qssa (at a
single grid-point, with our comprehensive model) takes roughly one second. A
three-dimensional model may have 50 x 50 x 20 grid-points (a realistic value for a
regional model) and the chemistry must be evaluated at each grid-point. A simple
calculation shows that, with a serial code, one day of simulation will need at least 15
CPU-hours (without counting the transport part and the overhead associated with
reading and writing Megabytes of data). The net result is that the simulation time

is of the same order as the wall-clock time. One possible solution is to move the

codes on more powerful machines (e.g., a version of STEM-II, see [14], is currently
running on a CRAY-C90). Another direction would be to take advantage of the
inner parallelism of the problem, and to write parallel versions of the simulation
codes. The increase in machine power, however, does not anihilate the need for
faster (and more reliable) numerical methods.

The thesis looks at some of the key numerical aspects of these models:

1. Since up to 90% of the CPU time is consumed in the integration of chemical
equations, this study pays special attention to developing different methods

for this task.

e In chapter 2 a summary of the existing explicit methods is given; an

analysis of (Qssa and also some new methods in this class are presented.

e In chapter 3 implicit methods are investigated; a systematic strategy for
reducing the linear algebra costs, plus new Rosenbrock type methods are

discussed.

2. Another important aspect is how to evaluate and compare different algorithms.
This requires a standard computational environment in which different rou-
tines are uniformly tested. In this thesis a series of benchmark problems are
established and and used. All the numerical methods - both new and from
the literature - are tested on this set of problems; chapter 4 presents the test

problems together with the numerical results.

3. To facilitate the benchmark problems and to make it easy to modify complex
and comprehensive codes a symbolic preprocessor has been developed. This

preprocessor “reads in” chemical kinetic equations and is able to produce C

or FORTRAN code associated with the corresponding differential equations.

Chapter 5 is devoted to the presentation of KPP - the kinetic preprocessor.

4. Improving the integration of chemical rate equations is just one aspect of the
big picture. The integration of the transport equations needs improvements
also. Most models use operator splitting, and numerical algorithms for each
of the subproblems are tested in very simple settings. Very little attention
has been paid to the proper treatment of boundary conditions and to the
control/elimination of splitting errors. Chapter 6 presents some ideas related

to the solution of these problems.

5. Finally, chapter 7 draws conclusions and pinpoints further research directions.

1.3 Problem statement
Air quality models are computer-based models which calculate the distribu-
tion of trace gases in the troposphere from specified emissions distributions and

meteorological scenarios. The major features consist of:

1. a transport component (or module) to describe the wind speed and direction,
the eddy diffusivity and mixing layer height, the temperature, the water vapor,
cloud water content, and the radiation intensity of each location as a function

of time;

2. a chemical kinetic mechanism to describe the rates of atmospheric reactions,

including homogeneous gas-phase, heterogeneous, and liquid phase reactions;

3. removal modules to describe the dry deposition of material, and the in-cloud

and below-cloud removal processes.

Each process incorporated into a model is itself a very complex and incom-
pletely understood phenomenon. Therefore, in formulating such models it is neces-
sary to incorporate the processes into the model framework by utilizing chemical,
dynamic, and thermodynamic parameterizations. Furthermore, even processes that
are quite well understood may require parameterization to maintain some balance
of the details among the different processes that are treated in the model.

The theoretical basis is the atmospheric advection-diffusion equations (i.e.,

the mass balance equations):

- B(U;Cy .))
%"' (gfcj) = %[Ky’jggj]“‘Ri‘i‘Ei'i‘Gi i=1,---,# of species

(4) (B)) (D) (B) (F)
(1.1)

where C; denotes the gas phase concentrations, U; are velocity components, z;
represents the spatially coordinates, most generally three dimensional, K;; are the
eddy diffusivities, R;, GG; and E; are the rates of chemical reactions, mass transfer
and emissions, respectively.

In the above equations term (A) represents the unsteady accumulation of
mass, (B) changes in mass due to advective fluxes, (C) changes in mass due to
turbulent diffusive fluxes, (D) the rate of production/destruction due to chemical
reaction, (E) the source term due to emissions, and (F) the rate of mass transfer
between phases. These equations are nonlinear due to the nonlinear nature of the
chemical processes, and are also highly coupled within a given phase, again due to
the chemical processes, and coupled between phases through the inter-phase mass

transfer processes (e.g., gas absorption, nucleation, and accretion processes).

Comprehensive air quality models presently explicitly treat a wide variety of
sulfur compounds (e.g., SO, sulfate, some reduced sulfur species), nitrogen com-
pounds (e.g., NO,NOy, HNO3, NO3, NoOs, PAN), and hydrocarbon species (e.g.,
CO, CO,y, CHy, a variety of alkenes, alkanes, aromatics, aldehydes and organic
acids), along with the important oxidizing species such a O3, OH, and H,0,.

Typically, a regional model consists of 50 x 50 x 10 x 80 sp. = 2-10 variables.

In order to manage the computational complexity, operator splitting is ap-
plied. One example, that uses both a splitting between chemistry and transport,
and also a directional splitting for solving the transport is:

Tk . TyAt . TAt. 025t A, TyAt LT

This means that one solves the subsystem associated with the transport along
x direction, together with the initial conditions for the problem and suitable bound-
ary conditions; after the solution was “advanced along x” with At it is “advanced
along y”, then along z with A¢. Chemistry is then integrated (as an ordinary dif-
ferential equation) for a time interval 2A¢; finally, the subsystems associated with
z, ¥, X transport are solved in this order. We will call At splitting interval.

The numerical values obtained from integrating a subsystem are used as initial

values for the next subsystem. This amounts to solving
(

%ﬁ = %[K%L C;(to) = Ci(to) i=1,NS
. N *
%5 = Walil, Cilto) = Ci(tp) i=1,NS

\
The operator splitting approach comes with some inherent questions:

e Does the splitting solution converge to the original solution as splitting interval

decreases ?
e How can we set consistent intermediate boundary conditions ?

e Is it possible estimate and control the splitting error ?

For an answer to the convergence question we reffer to Temam and Wheeler. A dis-
cussion on the boundary value problem can be found in chapter 7; error estimation
in this context is a subject of future research.

The large computational requirements in the study of chemically perturbed
environments arise from the complexity of the chemistry of the atmosphere. Inte-
gration of the chemistry rate equations typically consumes as much as 90 percent
of the total CPU time! Obviously, more efficient integration schemes for the chem-
istry solvers would result in immediate benefits through the reduction of CPU time
necessary for each simulation. As more and more chemical species and reactions are
added to the chemical scheme for valid scientific reasons the need for faster yet more
accurate chemical integrators becomes even more critical. It is well known that the
chemistry rate equations comprise a system of stiff ordinary differential equations
(ODE). At each operator split step, this system is restarted. A typical behaviour
for a stiff system is to go through a rapid, transient evolution in the beginning;
during this transient fast components “die out”and the system approaches a slow
manifold; afterwards the system evoluates along the slow manifold. The existence
of the transients at the beginning of each operator split time step is not a feature of
the physical system, but is related to the splitting method. During the transients
ODE solvers are forced to choose very small step sizes (from accuracy restrictions).

This is where a large part of the computing time is spent.

1.4 Mass action kinetics
The chemical subsystem can be described as
C' = f(t,0) (1.2)
The rate of change f is given by the empirical law of mass action kinetics.
Let P; be the set of chemical reactions in which species C; appears as a prod-
uct, and D; the set of chemical reactions in which C; is a reactant. Oviously, P;
produce and D; consume C;.

The rate of change of species C; is given by

Ci=filt,C) =3 s5— > s
JEP; kED;

where s; is the “speed of chemical transformation” associated with chemical reaction
J (the quantity of reactants which is transformed into products each time unit).

The law of mass action kinetics states that the reactions speeds s; are pro-
portional to the concentrations of the reactants, with proportionality constants K
(“reaction rates”).

For example, the reaction

A+B 5

has a “speed” of s; = K - [A] - [B]. This reaction has a positive contribution to the

rate of change of C (production) and negative contributions to the derivatives of A

and B (consumption):

Al _
dt J
Bl _
dt J
M — "'+S""
dt J

In the general case arbitrary stoichiometric coefficients o« > 0, 8 > 0 are

10

present, and a typical reaction involving C...Cy is

> afCi = 3 5L
The speed of this reaction is gi\lfeen by ‘

s; = K; [T1Cx]"
The «a coefficients are taken to be natural numbers, with the interpretation that
an integer number of molecules (or moles) of the reactants enter the reaction; (3
coefficients are also natural numbers for elementary reactions (an integer number of
molecules is formed through reaction); however, we will allow 3’s to take fractional
values also; this will give the possibility of modeling complex, chained reactions
with noninteresting intermediate compounds.

Thus, for every species C; we have that

dC; . .
dt = Z O!;-Sj - Z 6;Sj
JEP; JED;

Define the “production term” of species C; as

P= 3 ajs

JEP;

and the “destruction term”

D; = (Z ﬂ}%‘) /Ci

J€D;

- (Z BiK; I;I[Ck]“?) /Ci

JED;
= 3 8K [[IC4 [Ci)% !
J€ED; ki

Note that if species C; is a reactant in reaction j (j € D;) then a§- > 1 and all
the powers in the last equation are positive. Also note that for C; > 0, Vi we have
P, D; >0, Va.

With these definitions, the system (1.2) can be rewritten in production de-

struction form as:

C! = f,(t,C) = P(t,C) — Di(t,C) - C; (1.3)

11

1.4.1 Positivity
Physically, the concentrations [C;] are nonnegative; the mathematical model
build upon mass action kinetics preserves this property; for if C; = 0 and C; >
0, j # i then, by (1.3) we have that
fi(t,C) = B(t,C) > 0.

1.4.2 Conservation of mass

Physically the mass of a closed chemical system is conserved. Also, the number
of atoms of a certain type that enter a chemical transformation is preserved, and can
be found in the products (although in a possible different molecular arrangement);
this implies that the mass of certain families of species is preserved (e.g. sulphur or
nitrate compounds).

The mathematical model build upon mass action kinetics is mass conservative
if

> vifi(t,C) =0

3
for all nonnegative concentration vectors. Here v; are some scaling factors equal

to one if we work with masses, and depending upon molar masses if we work with
concentrations.

In order to have a qualitatively correct solution, good numerical methods
should preserve the positivity and the mass of the system. While preserving posi-

tivity is a demanding task, the preservation of the linear invariants of the system is

12

easier and we will pursue it further.

1.5 Review of the literature

Efficient chemistry integration algorithms for atmospheric chemistry have been
obtained by carefully exploiting the particular properties of the model. One of
the commonly used methods is the Qssa method of Hesstvedt et al. [50]. The
performance of the QQssa scheme can be further improved by using the lumping
technique which leads to mass conservation of groups of species. Practical Qssa
performance is discussed in the instructive paper [79], by Shieh, Carmichael et
al. where different integrators are compared on specific atmospheric chemistry
problems. An evaluation of the local truncation error of the Qssa scheme can be
found in [92].

There are many specially-tailored methods in use in atmospheric chemistry
models. One of the first proposed methods, and which has been extensively used,
is the hybrid predictor-corrector algorithm of Young and Boris [96]. Species are
divided into stiff and nonstiff; the explicit Euler method (predictor) and an explicit
trapezoidal method (corrector) are used for the nonstiff part, while the stiff part is
integrated with a modified midpoint scheme.

S. Sillman in [80] developed an integration scheme based on the implicit Euler
formula. Following a careful analysis of sources and sinks of odd-hydrogen radicals
in the troposphere, the author reorders the vector of species such that the resulting
Jacobian is nearly lower block triangular; this enables an elegant ”decoupling” be-
tween short-lived species (integrated implicitly) and long-lived species (integrated

semi-implicitly). The scheme is efficient, but difficult to generalize.

13

Hertel, Berkowicz, Christensen, and Hov [48] proposed an algorithm based on
the implicit Euler method. Using only linear operators it preserves the total mass.
The nonlinear system is solved using functional iterations. The main idea is to
speed up these iterations using explicit solutions for several groups of species. The
method seems to work fine for very large step-sizes.

A particularly clear approach was taken by Gong and Cho [42]. They divide
the species into slow and fast, according to their lifetimes; the slow species are
estimated using an explicit Euler scheme; the implicit ones are integrated with the
implicit Euler scheme (and Newton-Raphson iterations for solving the nonlinear
system); as a last step, the slow species are ”corrected”, reiterating the explicit
Euler step.

A fancy projection/forward differencing method was proposed by Elliot, Turco,
and Jacobson [38]. The species are grouped together in families; the distribution of
the constituents inside a family is recalculated before each integration step using an
implicit relation and solving the corresponding nonlinear system (this ”projection”
can be viewed as a ”predictor”); then the integration is carried out for families using
a significantly improved time step.

Dabdub and Seinfeld investigated in [23] an extrapolation algorithm whose
underlying numerical scheme is based on a Qssa predictor and on a hybrid corrector
(with a trapezoidal method for nonstiff components and a modified Qssa formula
for the stiff components). The authors report good results, however, a theoretical
analysis of the method is not presented.

Verwer [91] proposed an extension of Qssa to a second order consistent scheme,
and also a “two-step method” which is the second order BDF formula plus Gauss-

Seidel iterations for solving the nonlinear system (according to the author, these

14

iterations perform similarly to the modified Newton method, but with less over-
head). The two-step method enables very large step-sizes.

A different approach was taken in [54] by Jacobson. The 3-D calculations are
vectorized around the grid-cell dimension (very interesting idea) and advantage is
taken of the sparse structure of Jacobians and a specific reordering of species (that

makes Jacobians close to lower triangular form).

1.6 Thesis organization

The rest of the thesis is organized as follows.

In chapter 2 a summary of the existing explicit methods is given; an analysis
of Qssa and also some new methods in this class are presented.

In chapter 3 implicit methods are investigated; a systematic strategy for re-
ducing the linear algebra costs, plus new Rosenbrock type methods are discussed.

Chapter 4 presents numerical results.

Chapter 5 is devoted to KPP - the kinetic preprocessor.

Chapter 6 treats some related problems, and

Chapter 7 draws conclusions and pinpoints further research directions.

15

CHAPTER 2
EXPLICIT METHODS

2.1 Introduction

In this paper we look in detail at the widely used Qssa method and demon-
strate that significant improvements in the efficiency of this type of method can be
achieved. We consider two extrapolation algorithms based on Qssa. In particular
we obtain an order two method that uses two function evaluations per step which
we call the Extrapolated Qssa method. We also construct a nontrivial modifica-
tion of the well known GBS extrapolation algorithm based on an appropriate Qssa
modification. In particular we obtain an order two method that uses three function
evaluations per step which we call (for good reason) the Symmetric Qssa method.
In the stiff case the extrapolated methods no longer have a higher order than the
Plain Qssa method. Nevertheless, we prove that the Extrapolated Qssa method
and the Symmetric Qssa method have a smaller error constant which explains their
superior performance. We also prove that under certain conditions the Plain Qssa
method is convergent when applied to a particular singular perturbation problem.
Numerical experiments on a test problem used in a regional-scale model are also

presented.

2.2 Idea of explicitness
The dedicated explicit algorithms are scalarly implicit and exploit the production-

loss form of the ODE system. They are based on the assumption that all short lived

16

species, causing the problem to be stiff, are only weakly coupled to all other species.
In mathematical terms this implies that for these short lived species the loss term
—L;(t,y) is close to a stiff eigenvalue of the Jacobian matrix, and that no stiff
eigenvalues exist which are not close to a loss term. Following [61], the following
reasoning explains this. Consider atomic oxygen O which is a very fast reacting
species. In many models a typical predominant removal step for O (by some orders
of magnitude) is reaction with Oy and a third body M, i.e.,
O+0,+M 5 05+ M.
The kinetics for O is then well described by the scalar ODE
% = Poj = Lo)0], Loy = K[O:][M],

where Lio] is a constant since the concentrations of O and M are fixed. Hence
there exists no coupling with other species through the loss rate. Because for atomic
oxygen coupling through the production rate Py is very weak too, the predominance
of the above reaction now trivially implies that —L;¢ is close to a stiff eigenvalue of

the Jacobian matrix of the whole system and, in addition, that in first approximation

the exact solution for O is given by

P P
(O]t +h) = 22+ ([0](t) = - 2) e
Lo Loy
This exact solution for truly constant coefficients forms the starting point for the
popular QQssa methods.
Although this explanation is not mathematically rigorous for the nonlinear
problems we deal with, it predicts to a great extent whether an explicit solver of

the type used in this paper can be justified in advance (for one of these, namely

Twostep using Gauss-Seidel iteration, the coupling between short and long lived

17

species may be stronger, since Gauss-Seidel iteration introduces a form of “trian-
gular implicitness”). For each problem we therefore illustrate the eigenvalue rela-
tionship in a table showing the species and eigenvalues for which the relationship is
found to exist and the distribution of the remaining part of the spectrum (all the
eigenvalues were computed with the routine dgees from Lapack) of the Jacobian
(see also Fig. 8 in [61]). In this remaining part, eigenvalues thus can be of two
sorts, either they are small and hence do not introduce stiffness, or they are large
but cannot be associated with a single short lived species. If these latter eigenvalues
exist, then the special purpose explicit methods can fail completely. Inspection of
all the tables presented here will reveal that these latter eigenvalues exist only for

the tropospheric wet problem G. This observation is in line with our test results.

2.3 Plain, DAE, and iterated Qssa
If y € R™ denotes the vector of concentrations, the differential equations

arising from the chemical mass balance relation can be written in the form
y;
dt
where P;(y) and D;(y)y; are production and destruction terms respectively. These

=Pi(y1,---,Yn) —Dj(y1,---,yn)y; forj=1,....n (2.1)

equations have an exponential analytical solution provided that P;(y) and D;(y)

are constant. For an initial value y(ty) = yo and a step-size h the approximation

forms the basis of the Qssa method. For species with a very long lifetime 7, = 1/D;;,

i.e., with very small D, this equation can be simplified by replacing the exponential

term with 1 — hD;(yo), thus obtaining the explicit Euler formula

yi(to + h) =~ yo; + b (Pj(yo) — Dj(Yo)vo,5) - (2.3)

18

For species with a very short lifetime, i.e., with very large positive D;, the expo-
nential term can be approximated by 0, and the following steady-state relation is

obtained

P;(y(to + h))
Dj(y(to + h))
For short-lived species these equalities form a system of nonlinear equations which

yilto + h) ~ (2.4)
is usually solved by a fixed point iteration scheme. This is in fact equivalent to solve
the system of differential-algebraic equations (DAE) obtained by replacing in (2.1)
the differential equations corresponding to short-lived species by their corresponding
steady-state equations

dy; :
% P](ylavyn) _Dj(ylvayn)yja J € ja (25)

0 = By, ¥a) = Dilyr, -~ yn)yi, 1 €T,

where 7 is the set of indices corresponding to the short-lived species and the set J
consists of the remaining indices. We call the scheme based on (2.2)-(2.3)-(2.4) the
DAE Qssa method. This is clearly distinct from the method consisting of applying
(2.2) to all species which will be called the Plain Qssa method. We note that the
DAE Qssa method described in this paper is usually known in the literature as
the Qssa method and has been extensively used in solving atmospheric chemistry
equations.

Consider now the Plain QQssa scheme. By construction we have

y(to) = yo = y(to) , 7 (to) = P(yo) — D(yo)yo = ' (to) -
A simple analysis for the second derivatives at ¢, gives
¥'(to)) = —D(yo)¥y (to) = —=D(yo)(P(y) — D(yo)vo) ,

y"(to) = Py(yo)y'(to) — Dy(yo) (' (to), y(to)) — D(yo)y'(to)

= (Py(yo) — D(yo)) (P(y0) — D(y0)yo) — Dy(yo)(P(yo) — D(y0)Yo0, Yo)

showing that §"(t9) # y"(to) in general. Thus the order of Plain Qssa is equal to

19

one.
In an attempt to improve Plain Qssa, the chemists working on atmospheric
models have developed the Iterated Qssa method. The formula (2.2) is re-applied

with P; and D, recomputed at the point y; := §(to + h) giving
_ Pj(y1) (Pj(yl)) _hDj(
Y1,j = — — Yo, | €]yl). 2.6
Y D) T\ D) 20
The work per step is approximately doubled, as compared to Plain Qssa. Numerical

experiments have shown that Iterated Qssa performs better than Plain Qssa (in

terms of precision/work ratio) only for large tolerances.

2.4 (Qssa is an exponentially
fitted method
Apply exponentially fitted Euler method [52] to (2.1):
vy = Yo+ ho(hJ)f (yo)

where

¢(z) =

If the Jacobian is approximated by the destruction matrix in the exponentially

ef —1

z

fitted Euler formula one obtains the plain Qssa formula (2.2)

yi = Yo+ hé(=hD)f(yo)
= yo — h(hD) " (e™"P — I)(P — Dyy)
= Yo+ ("’ =I)(yo—D7'P)
= D'P—(D'P—y)e P
In [52] W-methods are considered, which are of exponentially fitted type and

have arbitrarily high orders using any approximation A of the Jacobian J. Such

methods are defined by

20

K, = ¢(hvA) (f(ui)JrhAli%jKj)

i—1

ui = yo+h) oK,
j=1

Y1 = y0+hzijj
i=1

Following this approach and the Qssa approximation J =~ —D we propose the
following new exponentially-fitted-Qssa methods:

QS202A (2-stage, order 2)

0 1
(ig) = () = ,

QS202B (2-stage, order 2)

0 1
(o) = , () = :
2/3 0 —2/3 1
=1 32)
QS402 (4-stage order 2)
0 1
0 0 11
(o) = () = ,
00 O 011
10 -3 0 0011

N[
|
olen
|
e
ST
~

o) = (
QS403 (4-stage order 3)

21

0 1
0 0 1 1
(qij) = L , () = :
12 01 1
2 2 1
2 9 -2 0L 11

with the weights
N — [35 5 3 3 Y= [1 31 3
(bl)_<ﬂ 6 1 —g)’ (bZ)_<E T 1 1)'
All exponentially fitted Qssa are able to integrate chemical systems arising
from atmospheric reactions. Their practical performance, however, was not found
to be better than the versions of QQssa proposed further. Thus, we will not pursue

this line anymore.

2.5 Extrapolation algorithms
based on Qssa

A natural way to build new methods based on Qssa in the hope of better ef-
ficiency is to consider extrapolation algorithms. Some extrapolation methods have
proved to be successful for very stiff problems arising in chemistry, e.g., extrapola-
tion based on the linearly implicit Euler method or on the linearly implicit mid-point
rule, see [6, 30] and [47, Section IV.9]. Therefore, extrapolation cannot be a priori
discarded as a viable technique for solving the stiff systems arising in atmospheric
chemistry. In general for high accuracy requirements extrapolation to high order
is used, but here we are mainly interested in low order extrapolation since the ac-
curacy requirements in atmospheric chemistry are low. One goal of this paper to

analyze two extrapolation algorithms based on QQssa. Extrapolation is based on the

22

existence of an asymptotic expansion in h-powers for the global error. In the pres-
ence of stiffness such an expansion does not hold in general however. Nevertheless,
extrapolation may already lead to a certain improvement just by reducing the error
constants.

From the nonstiff situation the extrapolation algorithm based on Qssa is de-
fined as follows. Considering a step-size H and a sequence of positive integers
n < ng < ng < ..., we perform n; times the Qssa formula (2.2) with step-size
h; = H/n;, and denote the result by 7. We then extrapolate these values via the

recursion

1} - 7}_151‘:
(nj/njx) — 1
The extrapolated values Tj;, are approximations of order k£ to the exact solution

Tigr =Tje + (2.7)
y(t + H) in the nonstiff situation.

Another type of extrapolation algorithm makes use of asymptotic expansions
in even powers of h. The following algorithm is similar to the well-known GBS
algorithm [46, Formula I1.9.13] but it is based on Qssa. We compute

y = e Dot (yo - D(yo)_lp(yo)) + D(y0) ™" P(yo) ; (2.8a)
yier = e PW (y — D(y) "' P(y;)) + D(y) ' P(w:) (2.8b)
fori=1,...,2n -1,
and then perform the following step
Sh(tn) = e~ Pln)t (an—l - D(y2n)_1P(y2n)) + D(yon) " P(Yon) (2.8¢)
where t, = %y + 2nh. The extrapolation algorithm is slightly different. Here,
considering a step-size H and a sequence of positive integers n; < no < ng < ...,

we perform the algorithm (2.8a)-(2.8c) with step-size h; = H/(2n;) and denote the

23

result by T}j; := Sy, (t,). We then extrapolate these values with the recursion
CZ} B 7}_1519

(nj/mj k)2 =1

The extrapolated values T} are approximations of order 2k to the exact solution in

Tipv1 = Tj +

(2.9)

the nonstiff situation.
In the next two sections we analyze what may happen with stiffness by con-

sidering a singular perturbation problem and its related reduced system.

2.6 The reduced system of a
singular perturbation problem
Since the differential equations (2.1) modelling chemical reactions are gen-
erally stiff, the well-known phenomenon of order reduction may occur [71]. As a
simplified model problem for the forthcoming analysis we consider the following
singular perturbation problem
y = —Di(y,2)y+ Pi(y, 2) (2.10a)
2 = - (%Dz(y, z) + Ds(y, z)) z+ (éPg(y, z) + Ps(y, z)) (2.10b)
with 0 < € < 1 and Ds(y, z) supposed to be a diagonal matrix strictly positive
definite in a neighbourhood of the solution. The above division into two classes
of species is rather restrictive, but it will already give certain insights into the
behaviour of the Qssa method and of extrapolation algorithms based on Qssa in
the presence of stiffness.

The equations (2.10a)-(2.10b) can be rewritten as
Y = Di(y,2)(-y+Ci(y 2)) (2.11)

2 = Dyy,2z)(—z+ Cu(y, 2)) ,

24

where
Ci(y,z) = Di(y,2)"'Pi(y,2), Dy(y,z) = éDz(y,z) + Ds(y, 2) ,
Pi(y,z) = %P2(y,Z) +Py(y,2), Culy,2) = Da(y,2)" Pa(y, 2) -
Multiplying the equation (2.10b) by e and letting ¢ — 0 we obtain the reduced
system
Yy = —Dily,2)y+ Py, z) = Dily, 2)(—y + Ci(y,2)) = f(y,2) ,(2.12a)
0 = —Ds(y,2)z+ P2y, 2) = Da(y,2)(—2 + Ca(y, 2)) = g(y,2) . (2.12b)

We assume that
9.(y, 2) is invertible (2.13)
in a neighbourhood of the solution which implies that the differential-algebraic
system (2.12a)-(2.12b) has index one (cf. [47]). This assumption is actually quite
natural for species with very short life-times (see (2.5)). In order to prove the
convergence of the Qssa method we will need the stability assumption
Cy(y, z) = Dy(y, 2) ' Pa(y, 2) is a contraction in z for the norm || - || (2.14)
be satisfied in a neighbourhood of the solution. We denote the related contractivity
constant by p. We will see in Theorem 2.7.1 that (2.14) implies (2.13).
Let us apply the Qssa method to the stiff equations (2.10a)-(2.10b). Since
Dy (y, z) is a diagonal matrix with strictly positive coefficients we can take the limit
¢ — 0 and we obtain
y = e 1ol (g — 1 (yo, 20)) + Ci(yo, %) (2.15a)
z1 = Cy(yo, 20) - (2.15b)
This is the definition of the direct approach of the Qssa method applied to the
reduced problem (2.12a)-(2.12b). It will help us later on in Section 2.7 for the con-
vergence analysis of the Qssa method applied to the singular perturbation problem

(2.10a)-(2.10b).

25

Now we restrict our analysis to the differential-algebraic system (2.12a)-(2.12b)
of index one and the method (2.15a)-(2.15b). Differentiating the algebraic equation
(2.12b) with respect to ¢t and omitting the obvious function arguments we obtain

2= (I —Cy,) ' CoyDi(—y + C1).
By expanding into Taylor-series the exact and the numerical solutions, it can be
seen that the local error dyy(to) := y1 — y(to + h) and 0z4(to) := 21 — 2(to + h) of
the direct approach Qssa method (2.15a)-(2.15b) is given by

Syn(to) = _%2 (D1yy (D1o(=%0 + Cio), —y0 + C1o) (2.16a)
+ D1¢C1yyD1o(—=yo + C1o)
+ D1,o(=%0 + Cro; 29) + Dloclzoz(l)) +0(1°),
Szn(te) = —hz) +O(h?), (2.16b)

where the subscript 0 indicates that the function arguments are the initial values
(Yo, z0)- We have given the complete expression of the first term of the error because
we will make a comparison with some other methods later on. It must be noticed
that even if Cy,(y,2) = 0 the local error remains dyy(tg) = O(h?) and dzp(tg) =
O(h). In the following theorem we give a perturbed asymptotic expansion of the
global error for a constant step-size application of the method (2.15a)-(2.15b).
THEOREM 2.6.1. Consider the index one system (2.12a)-(2.12b) with con-

sistent initial values (yo, 20) and suppose that (2.14) is satisfied in a neighbourhood
of the solution. Then the global error of the direct approach Qssa method (2.15a)-
(2.15b) at t; =ty + ih satisfies for ih < H

yi —y(t) = hai(t;) + h*(aa(t;) +of) + O(R)

zi—2(t) = h(bi(ti) + B) + O(R?) .

The error terms are uniformly bounded for H sufficiently small. The functions

26

a1(t), as(t), and by(t) are smooth. The perturbations o2, 3} are independent of h
and they do not vanish in general. At ty we have a;(ty) = 0, az(to) + a3 = 0, and
bi(to) + B = 0.

Proof. To start the proof, we first show convergence of order one for the Qssa
method (direct approach). It is worth noting that this part of the proof remains
valid for variable step-sizes with A = max;|h;|. We use standard techniques (see,
e.g., [45, Theorem 4.4] and [47, Theorem VI.7.5]). We denote two neighbouring Qssa
solutions by {7n, Zn}, {Un, Zn} and their difference by Ay, = Un — Un, Azn = Zn — Zn-
We suppose for the moment that

19 = y(t)ll < Cohy 120 = 2(ta)l < Cib, (| Aynll < Coh?, || Az, || < Csh .

(2.17)
This will be justified by induction below. For the Qssa method (2.15a)-(2.15b) we

have the inequalities

1Asil < 1Ayl + Ok Ayall + Al Az) | (2.18a)

[Azogall < p- Azl + O Aynll + Al Az,) (2.18b)

with 0 < p < 1. Applying [47, Lemma VI.2.9] we get
[Ayal] < Cu(l|Ayoll + hl|Azl]) ,

[Az] < G5 ([[Agoll + (b + ") - [[Az) -

If (y*, zF) with k£ < n denotes the Qssa solution starting on the exact solution at
tx, then the previous formula and (2.16a)-(2.16b) imply

lyn = yn Il < Ca(lloynte)ll + hlldzn(te)l) < Coh?

2k — 254 < Cs (own ()l + (h+ p" 7Y < [l0zn(t)]]) < Coh? + Csp™ 1.

n

Summing up we obtain
n—1 n—1 Cll
Yollyr =yt < Cohy D0 lz = 25 < Croh + T ph < Cizh .
Since the constants Cg, C'7, Cg, Cy, and C'5 do not depend on the constants Cy, C1, Cy,

27

and C3, the assumption (2.17) is justified by induction on n provided the constants
Cy, C1, Oy, and C5 are chosen sufficiently large and h sufficiently small.

In the second part of our proof we assume that the step-size h is constant. As
in [47, Theorem VI1.4.3] we are looking for a perturbed asymptotic expansion of the

global error of the form

i (a;(t:) + o) + O(KVH)

M=

yi —y(ts) =

<.
Il
—

K (b;(t;) + B7) + O(RN)

WE

Zi — Z(tz) =

<.
Il
—

with smooth functions a;(t), b;(t), and perturbations of, 47 satisfying a;(to) + of =
0, bj(to) + B = 0, and
aj — 0 for i — oo . (2.19)

For this purpose we construct recursively truncated expansions

M
Ui o= y(t:) + Y h(a;(t;) + o) + KMo}
Jj=1

M
&= alt) + 3 W (b(t) +8])

such that when inserted into (2.31:5;)— (2.15b) we have

Yirr = e~ D15 (@ — C1(Us, 2:)) + C1 (i, 21) + O (hM+2) ;

G = Co(@2)+0 (RMT)
We first develop the above expressions into Taylor-series at ¢; to obtain conditions for
the smooth functions. We then develop the terms involved with the perturbations
at to to obtain conditions for the perturbations independently of h. Each power
of h leads to two types of conditions, one for the smooth functions a;(¢), b;(¢) and
the other for the perturbations ag, ﬂzj . After some tedious computations we have
the following results. For M = 0 we simply obtain the condition «;,; = o} for the
perturbations. Therefore by the hypothesis (2.19) we must necessarily have o} = 0

for all 4 > 0. For ¢ = 0 it implies that a;(ty) = 0. For M = 1 the smooth functions

28

a1(t) and by (t) must satisfy

0 = Da.(t) (2(2), bi(8)) + Dalt) (2/(8) + i (1)) (2.20a)
—Po,(1)b1(t) + Doy (1) (2(2), ax (1)) — Poy (D ()
@) = —5(0) = Dalt)ar(t) = Duylt) (5(2), 01 (1) (2.20b)

=D, (1) (y(8),b1(8)) + Pry(t)ai(t) + Pr.(t)bs(2)

£5D1(0) (~Di (D) + Pi(t) -
We have used the notation D;(t) = D (y(t), 2(t)), etc. We can compute by (t) from
(2.20a) because of the invertibility of the matrix g,(t) = Dy, (t)(2(t),) + Da(t) —
P,,(t). We then insert its expression into (2.20b) leading to a linear differential
equation for a;(t) with initial condition a;(to) = 0. Therefore a;(t) and b;(t) are
determined uniquely from the two above equations. Putting ¢ = ¢y in (2.20a), we
have b;(ty) # 0 in general, implying that 8; # 0. For the perturbations 3 and o
we get the recurrences

i = Dalt) ! (Paa(to) 5} — Dau(to) (2(t0). 57))
afy = o+ Pi,(to)B} — Di,(to) (?/(to)aﬂil) :

Therefore in general 3} # 0 and o? # 0 for all 5. The remainder can be estimated
as in part d) of the proof of [47, Theorem VI.4.3]. We obtain recurrence relations
similar to (2.18a)-(2.18b). 0

The process of determining the perturbed asymptotic expansion may be continued
if the perturbations are exponentially decaying to zero. For j > 2, a;(t) and b,(?)
are computed similarly to a;(t) and b;(¢), and we obtain other very intricate re-
currence relations for ag 1 and ﬂg . In fact it is not worth to continue this process,
because here the aim of computing a perturbed asymptotic expansion is to see if the

extrapolated values could be of higher order than one. Unfortunately, this cannot

29

happen since only the smooth function terms a;(t), as(t), and b, () are eliminated
by extrapolation, not the perturbation terms 3! # 0 and «? # 0. Thus Theorem
2.6.1 shows that the order of the standard extrapolation (2.7) of Qssa remains equal
to one for all extrapolated values and this is a negative result. We can therefore
expect that in the stiff situation the standard extrapolation of the Qssa values will
generally not improve the order of the Plain Qssa. This result was confirmed nu-
merically. Although the order remains equal to one when doing extrapolation the
error constants are actually smaller and this can lead to certain improvements in
efficiency for the first values of the extrapolation tableau.

We call the element Ty of the extrapolation tableau (2.7) with n; = 1 and
ney = 2 the Extrapolated Qssa method. Applied with a step-size H = 2h this

method can be expressed as a multistage method as follows

Vi = yp+ (e_D(yO)Qh - 1) (yo - C(?Jo)) ;

Yo = yp+ <€_D(y°)h - 1) (yo - C(?/o)) ;

Y = Yot (PO —1) (Y, - O(v)))

o= 2Y3-Y;. (2.21)
and it necessitates only two function evaluations. It is an order two method in the

nonstiff case. We analyze what happens to this method when applied to the reduced

system (2.12a)-(2.12b). We get for the direct approach

Yi = y+ (efDl(yo’zo)Qh - 1) (yo — C1(yo, Zo)) ; 71 = Cy (Yo, 20)
Yo = yo+ (G_Dl(yo’zo)h - 1) (yo — C1(yo, 2’0)) ; Zy = Cy(Yo, 20)
Vs = Vit (e P00 _1)(Y, - Ci(Ya, %)), Zs = Ca(Ya, 20)

vy = 2Y3-Y;, 2 = 243— 7 .

30

Using Taylor-series to compute the local error of this method, we arrive at

H2
Oyn(to) = ——- (Dlzo (—yo + Clo, (I = Ca20) ™' CaygDig(—yo + 010))
+ D1C1o(I = Cay0) ' CayyDig(—y0 + Clo))
+O(H%)

dzr(ty) = H(I— (I = Cau)")CaygDro(—yo + Cio) + O(H?) .

We clearly see that the local error of this method contains less terms than the error
(2.16a)-(2.16b) of Plain Qssa. We observe that if Cy,(y,z) = 0 the local error of
the Extrapolated Qssa method is dyy(ty) = O(H?) and dzg(tg) = O(H?). For this
method, using a convergence proof similar to that given in Theorem 2.6.1 for Plain
Qssa, we obtain convergence of order one for the y- and z-components but with a
smaller error constant.

A similar analysis for the GBS-type algorithm (2.8a)-(2.8c) would be very
intricate, but it has been observed numerically that there is no significant improve-
ment when the extrapolation algorithm is used. Nevertheless, the first element
of the extrapolation tableau with n; = 2 has given good results. Applied with a
step-size H = 2h this multistage method reads

i = yp+ <€_D(y°)h - 1) (yo - C(yo)) ;

Yo = yo+ (€_D(Yl)2h - 1) (yo - C(Yl)) ;

Y = Yi+ (ePO9 1) (v, - C(¥y))

o= Y, (2.22)
and it necessitates three function evaluations. We call this method the Symmetric

Qssa method. It is an order two method in the nonstiff case. We analyze what

happens to this method when applied to the reduced system (2.12a)-(2.12b). We

31

get for the direct approach

Yi = yo+ (G_Dl(yo’z(’)h - 1) (Zl/o - Cl(yo,zo)) ; Zy = Ca(yo,)
Yo = yot (P00 1) (yo— C1(V1, 41)) . 2o = Co(V1, Z)
Vs = Yit (e PO2h 1) (Vi = C1(Yo, Z0)) , Zs = Ca(Ya, Za)
v o= Yi, 2 =23 .

Using Taylor-series to compute the local error of this method, we arrive at

Sym(te) = Il; (Dlzo (—llo + Cho, (%I - (I - szo)fl)cbyoDm(—yo + C1o)>
+ DIOCIzO(%I - - C?zO)_1>02y0D10(_y0 + ClO))
+O(H?) ,

dan(te) = H(I+ %cm — (I = Ca0) ™) CaygDro(—0 + Cio) + O(H?) .
We clearly see that the local error of this method contains less terms than the
error (2.16a)-(2.16b) of Plain Qssa. It is also clear here that the extrapolation
algorithm (2.9) cannot increase the order because the error of the first element of
the extrapolation tableau does not have an asymptotic expansion in even powers of
H. In fact any explicit method of Qssa-type cannot be of order greater than one
for the reduced system (2.12a)-(2.12b), because of the presence of the expression
(I — Cy,) ! in the first derivative of the exact solution for the z-component. We
observe that if Cy,(y,z) = 0 the local error of the Symmetric Qssa method is
Sy (ty) = O(H?) and dzg(ty) = O(H?). For this method, using a convergence
proof similar to that given in Theorem 2.6.1 for Plain Qssa, we obtain convergence

of order one for the y- and z-components but with a smaller error constant.

2.7 Convergence of Qssa for the

32

singular perturbation problem
In this section we give a proof of convergence under certain conditions of the
Plain Qssa method when applied to the singularly perturbation problem (2.10a)-
(2.10b).
Because we are mainly interested in smooth solutions to (2.10a)-(2.10b) (see
[47, Section VI.2]) we require as a stability assumption that the logarithmic norm
of g,(y, z) satisfies [47, Formula VI.2.11]
1(g:(y, 2)) <0 (2.23)
in an e-independent neighbourhood of the solution. By definition, the logarithmic

norm of a matrix A is given by

n(A) = lim Il + hAJ -1

h—0,h>0 h (2.24)

where [is the identity matrix.

In the following theorem we show that the stability assumptions (2.14) and
(2.23) may be related for the matrix norm induced by the max-norm ||z|. =
max! , |z;|. For other norms some counterexamples below demonstrate that the
two assumptions are unrelated.

THEOREM 2.7.1. In a neighbourhood of the solution:
1. If Cs(y, 2) is a contraction in z for the norm || - || then g.(y, z) is invertible;

2. If in addition Dy(y,z) is diagonal and strictly positive definite, and the in-
duced matriz norm of any diagonal matriz D = diag(diq, ..., dn,) satisfies
||D|| = max?_, |d;|, then the real parts of the eigenvalues of g,(y, z) are strictly

negative;

3. Moreover, if Cy(y,z) is a contraction in z for the maz-norm then for the

33

induced logarithmic norm we have
fioo(92(y, 2)) <0 .

Conversely:

4. If u(g,(y,z)) < 0 then the real parts of the eigenvalues of g,(y, z) are strictly

negative and g,(y, z) is therefore invertible;

5. If 1oo(92(y, 2)) <0, Dso(y, 2) is diagonal and strictly positive definite, and the
diagonal elements of Cs,(y, z) are non-negative, then Co(y, 2) is a contraction

in z for the maz-norm.

Proof. For part 1 we rewrite
9y, 2) = Da(y, 2) (=2 + Ca(y, 2)) -
Differentiating this expression with respect to z leads to
9:(y,2) = Da,(y, 2) (=2 + Ca(y, 2)) + Da(y, 2) (=1 + Ca.(y, 2)) -
Since ¢(yo, 20) = 0 and Dy(yo, 2¢) is invertible we have —zy + Co(yo, 20) = 0. Hence
we get
92 (Yo, 20) = Da(yo, 20) (=1 + Ca, (40, 20)) -
Because Cs(y, z) is a contraction in z with constant p for the given norm || - || we
have equivalently for the induced matrix norm
[Cox(y,)| < p<1. (2.25)

Since Dy (y, z) is invertible, this completes the proof of the first part of our theorem.

For part 2 we suppose by contradiction that there exists an eigenvalue A of
9.(y, z) with non-negative real part. We denote by v # 0 a corresponding eigenvec-
tor. We will show that v = 0, giving the desired contradiction. We use the notation

D := Dy(yo, 20) and C := Cs,(yo, 20). We have D(C — I)v = Av which implies that

34

(I + AD™! — C)v = 0. We thus obtain
(14D (1= (1+AD™Y) "Clv=0.
The matrix I + AD ! is clearly invertible. The matrix I — (I +AD 1) " C is in-

vertible too, because of the estimate
1

|1 +)\/ maxz”:l d“|

-1 -1
I (Z+AD7Y) " Cl < (Z+AD7Y) |- [C] < p<p<l.
We thus arrive at the contradiction v = 0.
For part 3, the logarithmic norm associated with the max-norm of a matrix

A is given by [46, Formula 1.10.20’]

too(A) = max(a” + Z ;|))
J#1
For the matrix C' — I we get

foo(C — T) = I?zal)((cm 1 +Z |cij) na (Z |ci) —1=||Clle—1<0.
For the matrix D(C — I) we thus have the estnnjatle
MMMOJNﬂ%{A%1+ZMDSéMw%@—Dd%
Conversely, for part 4, if a matrix A satlsﬁes 1(A) < a then the real part of
the eigenvalues of A are strictly smaller than «. This result is a simple consequence
of the definition of the logarithmic norm (2.24). We suppose by contradiction that
there exists an eigenvalue A of A satisfying Re(\) > a with a corresponding eigen-

vector v of unit norm. We have for h > 0 sufficiently small
(I +hA)v]|—1 [14+hA -1 S 1+ hRe(X) —

h h - h
implying that p(A) > « and giving the desired contradiction.

L Re)) >

a,

Finally for the last part, we have by hypothesis that

Uoo (D(C = 1)) = r?géml (i (c“ 1+ Z |cij]))
B J#i
Since d;; and ¢; are supposed to be positive we obtain
D leijl —1<0 foralli.

=1

35

Thus we get
n
n
Ol = miix(3leul) <1
Q

Here is a counterexample which shows that (2.14) does not imply (2.23) in general.

We take

0.929 01 O
CQ(y: Z) =) DQ(ya Z) =
0.92; 0 10

Although Cy(y, 2) is a contraction for the 1-norm ||z||; = > |z;| and the Euclidean

norm [|z]l2 = (X7 |2i[*)"/?

, for the corresponding induced logarithmic norms (see
[46, Theorem 1.10.5]) we have p1(g.(y,2)) = 8.9 and us2(g.(y, z)) ~ 1.67. It is quite
amazing to notice that Cy(y, 2) is a contraction for the max-norm and 1. (g,(y, 2)) =
—0.01. Most common matrix norms satisfy the condition enounced in the part 2
of the above Theorem 2.7.1, e.g., for all norms induced by the p-norms ||z||, =

(X, |2/P)Y/P with p > 1. Here is a counterexample for a norm which cannot

satisfy this condition. We take

9.921 — 529 200 0
OZ(yaZ) = ; Dz(y,Z) =
521 - 41,22 0 2
The spectral radius of Cs,(y, 2) is equal to 0.9, hence there exists a norm || - || for

which ||Cy,(y, 2)|| < 0.95 say, but an eigenvalue of g,(y, z) is approximately equal to
978.99. A concrete example in R? of a norm whose induced matrix norm does not
satisfy the hypothesis in part 2 of Theorem 2.7.1 is given by ||z|| = |22| + |22 — 21|
There are also counterexamples for the converse part of the Theorem 2.7.1. We

choose

222 1
CQ(y: Z) =) DQ(yv Z) =
0 0

For the 1-norm and the Euclidean norm we have u1(g,(y, 2)) = —1 and us(9.(y, 2)) ~

- O

—0.69, but ||Ca,(y, 2)|[1 = 2 and ||Ca,(y, 2)||2 = 2, i-e., Ca(y, z) is not a contraction

36

for these norms.

We now analyze the behaviour of the Qssa method when applied to the sin-
gular perturbation problem (2.10a)-(2.10b). We will do an analysis similar to that
in [47, Section VI.2]. We are mainly interested in smooth solutions of the form

y(t) = 3¥°(t) +eyt(t) + 22 + ..., (2.26a)
2(t) = 22t) +e2'(t) + 22 () + (2.26b)
Inserting these expansions into (2.10a)-(2.10b), multiplying (2.10b) by &, and com-

paring equal powers of ¢ we get for 7,

v = =Di(y°, 2" + Py, 20
0 = —Dy(y",2")2" + Ro(y’,2°) ,
for &!,
y' = =D, (s°, 2% y") = Di(y°,)yt + Py (1%, 2%)y' = Di.(y°, %) (o0, 2")
+P,(y° 2"z,
ZOI — _D2y(y0’ ZO)(ZO, yl) + PQy(yO; ZO)yl o D2Z(y0, ZO)(ZO, Zl) o D2(y0’ ZO)ZI

+P,(y°, 2%) 2 — Ds(y)°, 2°)2° + Ps(y°, 2°)
etc. For the Qssa method
Ynt1 = Yn+kn, kn = (e7P" — 1) (y, — C1) (2.27a)
Znyl = 2Zntin, by = (e P2 —1)(2, — Cup) (2.27Db)
we consider similar expansions
Un = W Aeyl vt 4., ke = K4kl 42+, (2.28a)
Zn = D tet 422+, Uy =L el 422 (2.28b)
We use the notation D, for Di(y, 2,), DY, for Di(yy, 23), etc. Ci(y,z) can be

developed in powers of € as follows

Cy= Dy (1+eDy'D3) H(Py+ePs) = Cy + €D, (—Dy ' D3Py + P3) + O(€7) .

37

THEOREM 2.7.2. Consider the singular perturbation problem (2.10a)-(2.10b)
with Do(y, 2) diagonal and strictly positive definite, satisfying the assumptions (2.14)
and (2.23) for the maz-norm, and admitting a smooth solution of the form (2.26a)-
(2.26b) with initial values (yo,20). Then for any fized constant ¢ > 0 the global
error of the Qssa method (2.27a)-(2.27b) satisfies for € < ch

Yo —y(ts) =O(h) , zn—2(tn) = O(h)

uniformly for h < hg and nh < Const.
Before giving the proof of this theorem we first need a perturbation lemma:

LEMMA 2.7.3. Consider the singular perturbation problem (2.10a)-(2.10b)
with Do(y, z) diagonal and strictly positive definite, satisfying the assumptions (2.14)
and (2.23) for the maz-norm and the Qssa method (2.27a)- (2.27b). Assume that
1Zn = C2(Fns Zn)lloo < Ah, [[Gn = Ynlloe < Bh, |20 = Znlloc < Ch, [[0n]lec < Dh, and

10n]|c < Eh. Then for any fized constant ¢ > 0, the perturbed values

gn—kl = eiDl(yn’zn)h(?//\n - Cl(gn: En)) + Cl(gn: gn) + 5n) (2293)
a1 = € D10 Cy(G, 24)) + ColTins Zn) + On (2.29b)

satisfy
1Tn41 = Yntille < (1 + FR)|n — Yalloo + GhlIZn = 2nlloc + [|0nllcc 5(2-30)

1Zn1 = Znt1llee < KU = Ynlloo + (@ + Lh)|[Zn = Znlloo + [|0n]leo (2-30D)
fore < ch, h < hy, where a < 1. The constants F, G, and K do not depend on the
constants A, B,C,D, and E. The constant L depends on the constants A, B, and
C.

Proof. For the y-component the result is obtained by direct estimation. For
the z-component this result is proved by applying the mean value theorem. We

consider the vector-valued function

F(y7 Z) = 6_D4(y,Z)h(Z - 04(ya Z)) + 04(3/1 Z)

38

for (y, z) in a O(h)-neighbourhood of (y,, z,). Clearly

Fy(y,z) = e Pilwah (—hD4y(y, 2)(z = Cu(y,2)) + 1 — Cyy(y, z)) + Cuy(y, 2) ,

F(y,z) = e P10 (=hDy,(y,2)(z = Cu(y, 2)) + I = Cu,(y,2)) + Cus(y, 2) -
We have the estimate ||Fy(y, z)||cc < k independently of the constants A, B,C, D,
and E. In this lemma we consider by hypothesis values satistying ||z — Cs(y, 2)||c0 <
fh where the constant ¢ depends on the constants A, B, and C. We get (omitting
the obvious function arguments)

[lloo < mbh + (e (I = Ca,) + Coglloo
where m is independent of the constants A, B,C, D, and E. For h > 0 we have
e = Con) Corlie. = (e 4 (1=) 3 sy)

< mlax (e P4 4 (1 — e P45)[| Ol o)

=1
< a<l1
as a consequence of e~ P4l 4 (1 — e~Paish)p < o < 1 for all 4. 0

We are now in position to give a proof of Theorem 2.7.2.

Proof of Theorem 2.7.2. We insert y° and 2 into the Qssa method (2.27a)-
(2.27b). According to Theorem 2.6.1 the reduced system is convergent of order one
so that [|z0 — Ca(y2, 29)||c < Ah. The defects satisfy

On = Yo — yh — (M0 — 1) (4 — Ca(yy, 20)) = 0

On = 20, — Cu(yl,25) — ePslunzidh (Z — Cu(yy, 2y)

= 2041 — Oy, 29) — Pl (Z — Co(Yns 2) O(h) ,
e., [|0nllec < Eh. Denoting Ay, = y2 — y, and Az, = 2 — z,, we assume that

(Yn, 2) and (y2, 20) satisfy
|AYnlloc < Bh, |Az]|e < Ch (2.31)

39

this will be justified by induction below. We apply Lemma 2.7.3 to obtain
[AYnsillo < (14 Fh)|Aynlleo + Ghl|Azn|lo

[A%nsille < Kl|Aynlloo + (@ + Lh)[|Azn]leo + Eh
where the constants F, G, and K do not depend on the constants A, B,C, and F.
The constant L depends on the constants A, B, and C, but does not vary with n.
We can apply [47, Lemma VI.2.9] to get the desired result. The hypotheses (2.31)

are satisfied by induction on n provided the constants A, B, and C' are chosen

sufficiently large and A is sufficiently small, but independently of €.

2.8 Description of the test problem

To test the properties of different numerical methods we have chosen the Car-
bon Bond Mechanism IV (CBM-IV) (Gery et al., [40]), consisting of 32 chemical
species involved in 70 thermal and 11 photolytic reactions. The concentration of
H50 is held fixed throughout the simulation. This mechanism is designed for the nu-
merical simulation of chemical processes in urban and in regional scale models. For
the numerical experiments the chemical mechanism is run for a simulation time of 5
days. The rate constants and initial conditions follow the IPCC (Intergovernmental
Panel on Climate Change) Chemistry Intercomparison study (see [70]) scenario 3
(“Bio”). An operator-splitting environment (the atmospheric convection-diffusion-
reaction equation is solved with the method of fractional steps [95]; chemistry and
transport are considered separately and integrated with different step-sizes) is sim-
ulated with a time step of 20 [minutes| for the transport scheme. Emission levels
of 0.01 [ppb/hour] of NO, 0.01 [ppb/hour] of NOy and 0.1 [ppb/hour] of isoprene

are considered. These emissions are injected in the system in equal quantities at

40

the beginning of each 20 [minutes| interval.

To describe the stiffness of the problem we have computed both the eigenvalues
A; of the Jacobian and the destruction rates D;. The relation —D; ~ A; allows us
to associate the eigenvalues with the largest negative real parts to certain short-
lived species. For the real part of the spectrum we have found the following values:
—8.11-10% [O(*D)], —8.26-10* [O(3P)] —2.47-10% [ROR], —3.5 [OH], —4.2 [T Oy,
all others being in the interval [—0.14, —1078]. The problem is very stiff since time
steps of 1 [nanosecond] are prohibitively small considering an integration interval
of 20 [minutes| and the low accuracy required. For this problem the fact that the
eigenvalues with the largest negative real parts are isolated and can be associated
with certain species indicates that the singular perturbation model (2.10a)-(2.10b)

makes sense.

2.9 Numerical results

In this section the results for the test problem are compared to the solution
computed by the code RADAUS5 of E. Hairer and G. Wanner [47] with very tight
tolerances rtol = 107'% and atol = 107'° [molecules/cm?].

As a measure of the accuracy we have employed the number of accurate digits
(NAD) computed as follows

NAD = %iNADZ- , NAD; = —logy, (ERR;) ,

where N is the number ozf: 1species, EFRR; a measure of the relative error in the
numerical solution of species ¢ and NAD; the corresponding number of accurate

digits. With the “exact” solution y(t) (computed by RADAU5) and the numerical

solution ¢(¢) at hand at discrete times {t; =ty + j - At, 0 < j < M} the measure

41

of the relative error is computed as follows

Lty —) |
ERR, = Cy [wlt) — i) << M) > al
ARy Ji={0<; i(ty)] > a)

JET:
The threshold factor used here is a = 1 [molecules/cm?]. If the set J; is empty, the

value of ERR; is neglected. The purpose of considering the above defined error mea-
sure instead of the root mean square norm (a = 0 [molecules/cm?]) is to suppress
from the error calculation the times where the absolute value of the concentration
falls below a = 1 [molecules/cm?]; these values are very likely corrupted and the
corresponding large relative errors say nothing about the general computational ac-
curacy. From a physical standpoint, for atmospheric chemistry applications, values
of a = 1 [molecules/cm?] or less can be assimilated to a complete extinction of the
species.

In what follows we denote the current step-size by h. The integrators used

are the following:
1. Plain Qssa integrates all the species with formula (2.2).

2. DAE Qssa is used with a dynamic partition of the species into slow, fast,

and normal. At each time step we have:

e If 7, > 100 - h the species is slow and is integrated with (2.3);
e If 7, < 0.1- h the species is fast and is integrated with (2.4);

e Otherwise, formula (2.2) is applied.
3. Iterated Qssa is similar to DAE Qssa, but has one extra iteration (2.6).
4. Chemeq (see [96], implemented in CALGRID) is used as specified in [77]:

e If 7, < 0.2- h the species is fast and is integrated with (2.4);

42

o If 7; > 5-h the species is slow and is integrated with the nonstiff Chemeq

formula;

e For all other species the Chemeq stiff formula is used.

5. Extrapolated Qssa (2.21) which uses the difference y; — Y3 = Y3 — Y] as an

error estimator for the step-size control.

6. Symmetric Qssa (2.22) which uses for the step-size control the difference
y1— Y, where Y} is just one cheap extra Qssa step using the function evaluation

at yo needed for Y

Yi=yo+ (e_D(yO)Qh - 1) (yo - C(yo)) :

7. Twostep is based on the variable step size, two-step backward differentiation
formula BDF2 [87, 91, 89]. Instead of a modified Newton process, Gauss-
Seidel iterations are used for solving the nonlinear system of equations. This
technique carefully exploits the production-loss form of the differential equa-
tion (see [87] for details). We have used the original implementation obtained
directly from the authors. To accelerate the convergence of the Gauss-Seidel
iterations, the species have been sorted in decreasing order relatively to the

size of their destruction rates.

8. Vode (a BDF code, see [11, 12])) is similar to LSODE (Livermore Solver for
ODE, see [51]), widely used by atmospheric modellers. Vode is considered
to have several advantages over LSODE when used to integrate systems of
ODE arising from chemical kinetics (see [12]). In order to take full advantage
of the sparsity pattern of the Jacobian, Vode has been modified as described

in [75] by replacing the general factorization and substitution routines dgefa

43

and dgesl with specialized sparse routines. Results for both the standard and

the modified Vode are presented.

All integrators have been used with a lower bound of 0.01 [seconds] imposed
on the chosen step-size.

The emissions of NO, NO, and ISOP introduce transient regimes at the
beginning of each hourly interval. At these moments, a complete restart is carried
out for all integrators. More exactly, an exit from the integration subroutine is
performed, the step-size is reset to its default value of 1 [second], and the subroutine
is called again (each call to Vode has been done with istate = 1). In a 3-D operator-
splitting model each two consecutive calls to the chemical kinetics integrator are
separated by a step of the transport scheme, which may change significantly the
concentration values. As a consequence, for comprehensive atmospheric models, a
periodic restart of the chemical integrator is a necessity.

Figure 2.1 reports the CPU time versus the number of accurate digits (NDA)
for the different integrators.

The efficiency of Plain Qssa is improved by treating with DAE Qssa separately
the steady-state species on one hand and the slow species on the other hand. This
conclusion is in agreement with the practical experience of QQssa users.

The extra function evaluation used in Iterated Qssa pays back for large values
of rtol; if more accuracy is needed then this strategy is not better than the classic
DAE Qssa approach. Several numerical tests have shown that employing more than
one iteration decreases the efficiency of Iterated Qssa.

Vode uses the highest order formulas among the tested algorithms. This fact
can be observed from the smaller slope in the work-precision diagram of Figure 2.1.

A high order method pays back when an accurate solution is needed; Sparse Vode

10

CPU time [seconds]

0.5 1 1.5 2 25 3 3.5
Number of Accurate Digits

Figure 2.1. Work-precision diagram for CBM-IV. Plain Qssa (solid with
“”), DAE Qssa (solid with “x”), Iterated Qssa (solid with “0”),
Chemeq (dash-dots with “x”), Extrapolated Qssa (dashed with
“x”), Symmetric Qssa (dashed with “0”), Twostep (dotted with
“x”), Vode (dotted with “0”), and Sparse Vode (dotted with “x”).

44

45

is the most efficient for 2.5 or more NAD. In the low accuracy range required by
atmospheric chemistry simulation the off-the-shelf code Vode is not competitive,
since its performance is affected by frequent restarts; this is one of the reasons why
atmospheric scientists have chosen to develop their own integrators rather than using
general solvers. However, if the linear algebra is done such that full advantage of
the structure of the problem is taken (see [75]) the computational time of Vode is
greatly reduced (the use of sparse linear algebra routines with Vode reduces the
total computational time for our test problem by a factor between two to three)
and the code becomes competitive.

Extrapolated Qssa and Symmetric Qssa perform well compared to DAE Qssa,
Iterated Qssa or Chemeq (especially when a NAD higher than 1 is required) but not
better than Sparse Vode or Twostep. In three dimensional atmospheric models, two
accurate digits in the solution of chemical kinetics equations is an acceptable value.
More precision is thought to be redundant due to inaccuracies in the transport
scheme; less precision can have an unpredictable effect on the overall accuracy
through the transport scheme with an operator splitting algorithm. For this level
of accuracy (two significant digits) Twostep performs as the best among the tested
numerical integrators.

A componentwise analysis of the numerical error shows that smooth compo-
nents like O3 are integrated correctly by all methods. However, the species involved
in fast photo-chemistry are integrated less precisely. Peaks of error appear exactly
during sunset and sunrise periods (although in the measure reported here this is not
apparent). The two new methods are more accurate and efficient than the classic
Qssa ones or Chemeq, but they are not as fast as the BDF codes Twostep and

Sparse Vode.

46

The experimental conclusions presented here are restricted to the model used
and to the set of algorithms employed. More numerical tests are necessary before
drawing a general conclusion. The authors are currently involved in a comprehensive

benchmark work that will test most of the old and new algorithms (see [76]).

2.10 Lumping
Modifications, such as lumping, can improve their performance notably (see
e.g. [89] where this is illustrated for the EUSMOG problem), but have the disad-
vantage of being problem dependent. With lumping we mean here the technique of
grouping species into chemical families to reduce, for example, the stiffness, or to
enforce conservation for a chemical family (see [49, 50] where this form of lumping

was proposed first for the Qssa method).

2.11 Other methods

We briefly present other methods from the literature.

2.11.1 Twostep
Twostep [87, 89, 91] is based on the variable step size, two-step backward
differentiation formula (BDF)
Y =YY" + yhf (tng1, y"), h =ty —t,, (2.32)
where v = (¢ +1)/(c+2), ¢ = (t, — tn—1)/(tn+1 — tn) and
V"= ((c+1)%" —y" 1) /(+2).

47

The 2nd-order BDF formula (also denoted by BDF2 has been chosen in view of the
modest accuracy requirement. Rather than using the common modified Newton
iteration, the classical Gauss-Seidel or Jacobi iteration technique is used for com-
puting an approximation to the implicitly defined y™*!. In the application of these
techniques we exploit, to some extent, the production-loss form, by which (2.32)
can be written as

y" = F(y™) = (I +yhL(tns, y”“))_1 (Y™ + YhP(tnir,y™")) . (2:33)
The Gauss-Seidel technique is now applied to the nonlinear system of equations y =
F(y). That is, given the iterate) as the i-th approximation for the sought solution
y" !, Twostep computes the next iterate y*1 by the componentwise formula

y,(fﬂ) =F; (ygiﬂ), s y,(:jll),y,(:), s y,(,i)) , k=1,..,m. (2.34)

This results in an explicit computation owing to the diagonal form of L. More
precisely, for the computation of y,(ciﬂ) only division by the scalar variable 1 +
YhLy(tns1,v) is required, where v denotes the intermediate vector

i1 1) .
v= [y§l+)7 A yl(czjl)ayl(;)a et yr(i?]T

The fact that in v the first (k—1) components are taken from the new iterate, makes
(2.34) a Gauss-Seidel type iteration process. When we take all m components in v
from the old iterate), then an iteration method of Jacobi or Picard type results.
Computationally there is not much difference between the two, although Gauss-
Seidel has to be programmed in line. Hence Jacobi iteration is somewhat easier to
use. Here we will use both types of iteration techniques. Note that for the Gauss-
Seidel technique the order of the species plays a role when only a small number of
iterations are used. In all experiments we in fact restrict the number of iterations

to only two. In [89, 91] this has been shown to work well.

48

Twostep is based on a two-step formula which cannot be applied at an operator-
split restart. At restart the one-step backward Euler formula is therefore used, which
simply means that Y™ = y™. The explicit iteration process is the same, so that there
is no additional penalty at restart associated with extra linear algebra computations
as is the case for implicit solvers using a Newton type iteration. Twostep allows a
maximal growth in step size at restart by a factor of two. This is less than one-
step solvers usually allow, but still quite acceptable in view of the explicit iteration

process. For more details on the code we refer to [89, 91] and [39].

2.11.2 Chemeq

One of the first dedicated, explicit methods for solving chemical equations
in comprehensive advection-reaction models is the hybrid algorithm of Young and
Boris [96]. It is currently implemented in the Calgrid mesoscale model [94]. In
the original algorithm, the species are dynamically separated into two categories
(fast and slow) according to the relative magnitude of their life-times 7, = 1/L;
with respect to the current step size h. Each category is integrated with a spe-
cial predictor-corrector formula. Our implementation of Chemeq follows the one
described in [77] and is based on the following predictor-corrector pairs (the abbre-

viation P stands for Py(t,,y"), etc.):
o If 7, > 5h (slow species):
predictor : ytt =yt + (PP — L} y}) (2.35a)
corrector : yptl =yl + g(P,? — Ly + PP — Lttty (2.35Db)
e If 0.2h < 7, < 5h (intermediate species):

1 Yk Q¢ —h) + 2R T
- 27 + h

n

predictor : yj (2.36a)

49

it _ Y+ =W+ 5 (PP BT (47)

corrector : {2236b
e T+t h (2:36)
e If 7, < 0.2h (fast species):
Pn
steady state assumption : yt! = =& (2.37)

L
A quick inspection will reveal that the corrector formulas are all derived from the

implicit trapezoidal rule. They are applied, however, in an explicit manner. Hence,

denoting y,(:) as the k-th component of the i-th corrected approximation y® for

y™*1, in all occurrences y,(:) is simply substituted in the right-hand sides of the

. . +1
corrector formulas, so as to compute the new approximations y,(:+). The correctors

are applied until
(i+1) _ (3)

max Y Y

2 y,(fﬂ) < 0.3 tol,

where tol is an imposed tolerance value for the step size control which is based on
atol and rtol. In case of non-convergence, the step is rejected and the computations
restarted with h,., = 0.6h. In case of convergence the integration proceeds with
hnew = hmin (1.1, fac), where fac = y/tol/err with err the estimation for the local
truncation error. It is emphasized that the step selection in the original Chemeq
is based uniquely on the convergence of corrector iterates, whereas we use an es-
timation for the local error to govern the step size. However, following Chemeq
philosophy, a local error greater than tol does not force a step rejection. It only

restricts hpey. See [39] for more details.

2.11.3 ET
The solver ET uses an extrapolation algorithm proposed in [23]. The approx-
imations used for the extrapolation are computed with a predictor-corrector pair of

which the corrector is a QQssa type formula. To describe the formulas used, we adopt

50

the implicit notation used for Chemeq. Hence the evaluations of the right-hand side
of the implicit formulas have to be thought of as carried out in the same way as for
Chemeq. The predictor formula implemented in the solver tested in this paper is
the simple Qssa formula

Yl = e hLTyn 4 ([— L™y (L) P, (2.38)
Like for Chemeq, the corrector dynamically separates the species into three cate-

gories:

e If 7, > 100A, the trapezoidal rule is used,

h .
vt =k 4 (P = Lyl + P = Ly, (2.39)

o If 0.1~ < 7, < 100h, the equations are corrected using the Qssa type formula

vett =T+ (g — Rt exp l— (L_Z + T) 5] , (2.40)
where 7! is defined by

1, N1 1

e If 7, < 0.1h, the steady state assumption is made, i,e.,

yptt = yptt (2.42)

The actual implementation uses a variable step size. For details about how the
extrapolation is organized and the corrector is used we refer to [23]. See also [39]

for more details.

o1

2.11.4 Ebi

The Euler Backward Iterative (Ebi) method was proposed by (Hertel et al.,
1993). Being based on the Euler backward implicit formula (3.2), its main fea-
ture is that, instead of using Newton’s method, the implicit solution is approxi-
mated through a semi-analytical, problem dependent iteration process. This pro-
cess groups species together which allow an exact solution of the implicit equations
after putting part of them at the old time level. Species equations which do not
fit in an appropriate grouping are treated with a form of Jacobi iteration. Satisfac-
tory results are reported (Hertel et al., 1993) for different scenario’s based on the
CBM-IV mechanism. The approach can also be applied when using higher BDF
methods since use of these implicit methods leads to a similar system of equations,
but a considerable drawback is that the iterative solution method is adapted to
the particular chemistry scheme. We therefore have tested the method only for the
TMk model, using an implementation obtained from (Dentener, 1996). This imple-
mentation contains no local error control mechanism so that constant step sizes are

taken.

2.12 Concluding remarks
Qssa-based algorithms are explicit methods and yet they enjoy a remarkable
stability. They behave like implicit methods although their evaluation formulae is
explicit. Although their relative error can be large, we must mention that their
absolute error is small and that the QQssa solutions are close to the exact solution
even for rapidly-varying components like NO; Qssa-based methods preserve quite

well the overall behaviour of the solution. This explains why these methods have

92

been successfully employed for many years for problems where relatively large errors
are accepted and small computing times are desired.

In [92] the local truncation error for Plain Qssa scheme is shown to be only
O(h) for the components with small lifetimes 7; < h. However, numerical experi-
ments have shown that the Qssa solutions still converge to the exact solution. The
fact that the local order reduction is not felt globally is in line with the theoretical
convergence analysis presented here.

The analysis and experiments show that the most attractive features of Qssa-
type methods are their small computational time and their easy coding, while their
main weaknesses are their low order and their relatively low accuracy. In an at-
tempt to overcome these weaknesses, the analysis of Qssa has led us to two new
methods, the Extrapolated and the Symmetric Qssa. They clearly perform better
than the classic Qssa versions and the hybrid algorithm Chemeq. Then considering
a complete 3-D model involving transport of chemical species, Qssa-type methods
allow for lumping of species that results in increased efficiency. However, they are
not as fast as the BDF codes Sparse Vode and Twostep for the test problem pre-
sented here. As will we see later, Qssa type methods are not competitive at all

when compared to sparse Rosenbrock methods.

93

CHAPTER 3
IMPLICIT METHODS

3.1 Introduction

The equations arising from chemical kinetics comprise a system of stiff ordi-
nary differential equations (ODE). Characteristic times in the range of nanoseconds
are present in the system (due to e.g. atomic oxygen O'P), while numerical time
steps of several minutes are needed for an efficient integration; the smallest time
scales of interest are minutes to hours. For solving these equations numerically,
implicit integrators with infinite stability regions are likely to work with large step-
sizes when the accuracy requirements are not too stringent. In consequence, for
comprehensive air pollution models it is of interest to replace traditional explicit
integrators (Qssa, Chemeq) by more robust implicit integrators. Besides stability

several other arguments further motivate this interest:

e The wide range of chemical conditions that are to be simulated can cause
numerical problems when explicit integrators are used; on the other hand,
implicit methods offer uniformity in performance for equations of variable
stiffness and difficulty. This uniformity is important as comprehensive air
quality models usually contain chemical conditions ranging from ground level
to upper troposphere and from marine environments to heavily polutted urban

centers.

e For problems involving inter-phase mass transfer explicit codes may become

unstable; an example of gas-liquid chemistry for which all explicit integrators

54
completely fail can be found in [76].

e The higher orders of consistency of standard implicit methods lead to substan-
tial improvements in accuracy. Using higher order methods based on explicit
formulas may not pay off, because of the order reduction phenomenon (see
[56, 92]), and since higher accuracy and stability are in general contradictory

requirements (see [47]).

e Multistep, Runge-Kutta and standard Rosenbrock methods all enjoy the prop-
erty of conserving the linear invariants of the system (for example, they are

structurally mass-conservative). Neither Qssa nor Chemeq have this desirable

property.

What prevented so far implicit methods from being widely used in three di-
mensional, comprehensive atmospheric models is the fact that they are considered
too slow for this type of application (except for the case when special hardware is
available - see the Smvgear code [54], running on CRAY-YMP). At each integration
step, a nonlinear system of equations has to be solved. This involves the repeated
evaluation of Jacobians and the solution of linear algebraic systems of dimension n,
the number of species considered in the model. However, we show that this is not the
case when the linear algebra is carefully implemented. One can enjoy all the above
benefits of implicit methods while remaining computationally very competitive.

General stifft ODE solvers do not take advantage of the sparsity pattern of
the Jacobian, and the number of arithmetic operations required for the numerical
solution of the corresponding linear system is proportional to n3. This is one of

the reasons why general stiff ODE solvers are not very efficient for integration of

chemical rate equations with a moderate to large number of species. A comparison

95

of the exactness and time efficiency of different integrators can be found in the paper
of Shieh, Carmichael et al. [79].

On the other hand, exploitation of sparsity may significantly reduce the linear
algebra overhead. Recently, several authors showed promising results with sparse
BDF codes in atmospheric chemistry models [54, 89]. In this chapter we develop
a systematic way of exploiting sparsity when integrating atmospheric chemistry
equations. Unlike [54], our target is not a specialized architecture; we concentrate on
developing machine-independent algorithms. In section 3.3 we discuss and evaluate
reordering techniques that lead to minimal fill-in during LU decomposition. We
then (section 3.4.3) test various linear system solvers, in particular showing that the
chosen routine is twice as fast as the one used in [89]; in section 2.9 we demonstrate
how the chosen solver can improve the efficiency of some state-of-the-art stifft ODE
solvers. These ideas are tested on two comprehensive chemical mechanisms used
to study stratospheric and tropospheric chemistry; both models are described in
section 3.4.6.

Among implicit methods special attention is paid to the Runge-Kutta-Rosenbrock
family; being linearly implicit, the methods from this family do not need an itera-
tion process to obtain the numerical solution; yet, they have ideal linear stability
properties, which make them well suited for the stiff atmospheric chemistry prob-
lems; they are structurally mass preserving; thus, they are excellent candidates for
the integration of chemical systems. Two new methods - ROS3 and RODAS3 - are
then proposed for being used in air quality models. They benefit from the special

treatment of sparsity and also from their inherent properties.

o6

3.2 About pivoting

Implicit algorithms advance the numerical solution of differential equations
one step in time by solving a nonlinear system of equations. This is done by using
a (modified) Newton method, which results in solving a sequence of linear systems.
The numerical solution of the linear system is usually done by a direct method, i.e.,
by employing a (LU) factorization. The matrix that is to be factorized in implicit
solvers (sometimes called ”prediction matrix”) is of the form

P=I—-h-v-J

where [is the identity matrix, J an approximation to the Jacobian, h the attempted
step-size and v a coefficient dependent on the method. This form of the prediction
matrix holds for multistep schemes and, after an equivalence transformation, for
Runge-Kutta methods as well.

Several authors ([26], [54], [89]) report good results with non-pivoting sparse
linear algebra solvers, when integrating atmospheric chemistry equations. This

saves computational time. Several arguments sustain this practice:
e The presence of I ensures that diagonal elements are not structurally zero;

e If a pivotal element is zero or very small, then the step-size is rejected and a
new P is constructed, with a smaller h. P is diagonally dominant for all h
sufficiently small, say 0 < h < hy, so that, at least in the limit case, no pivoting
is required. We should point out here that the restriction on step-size needed
for diagonal dominance may be as severe as the stability restriction imposed

by an explicit method.

e Reordering the species (see below) is equivalent to performing a diagonal

pivoting; of course, this does not take into account numerical values, but it

o7

helps, because a pivot with absolute value greater than one will lead to an
error amplification, and this error will corrupt each row processed at that
stage. Since the columns with less elements come first, fewer row operations
are needed in the initial stages; hence the error introduced by a very small

pivot is not greatly amplified.

e A solution of the linear system corrupted by numerical errors (due to non-
pivoting) may be thought of as the exact solution of a system with inexact
Jacobian. The convergence of Newton iterations may not be affected by this
approximation. This argument is, of course, not valid with Rosenbrock meth-

ods.

Theoretically, because of non-pivoting, the matrix P may be falsely “detected”
as singular, and unnecessary step-size rejections may occur. Moreover, even if the
step-size is accepted, more iterations per Newton step may be needed because of
the increased errors in the solution of linear systems. Numerical experience (ours,
and that of the authors cited earlier) shows that the above phenomena are not that

important in practice.

3.3 Species ordering
The sparsity structure of the permutation matrix P is given by the sparsity
structure of the Jacobian J, which in its turn is determined by the chemical inter-
actions. Thus, for a given chemical system, the sparsity structure is constant and
can be predetermined. More exactly, a maximal sparsity structure can be predeter-
mined; some entries in J can become zero during computation, as is the case with

the photolysis terms during night.

o8

To take full advantage of the sparse structure of P, we need to permute its
rows and columns such that the sparsity of the L and U factors is maximized.
Among different possible strategies, we look at symmetric permutations:

P«T-PN"=I—h-y-I-J-10F

which preserve the presence of ones in the diagonal elements and hence give the
possibility of factorization without pivoting. Such symmetric permutations can
be viewed as a rearrangement (renumbering) of the species involved in the chem-
ical mechanism (if the initial ordering was [1,...,n]?, the new ordering will be
I1-[1,...,n]T). We further restrict the class of possible permutations to those given
by a global strategy; more exactly, we want to compute the permutation off-line,
in the preprocessing stage (hence considering only the structure of the matrix and
not particular numerical entries). The same permutation is then used throughout
the computation, thus reducing the workload associated with sparse data structure
manipulation.

The following strategies were considered:

1. Intuitive. A reordering based on the reactivity of the species. This requires
specific knowledge regarding the chemical mechanism and has been applied
successfully in [80]. Since our aim here is to minimize the fill-in, we ordered
the species decreasingly after their characteristic life-time (the inverse of av-
erage destruction term, the average being taken over the two day integration

interval);

2. Row. The rows of P are sorted in increasing order, according to the number
of their nonzero elements. If two or more rows have the same number of

nonzero elements, their initial relative ordering is preserved.

59
3. Column. Same strategy as above, but applied on columns.

4. RowxCol. For each diagonal element k, the value a(k) = r(k) - ¢(k) is
computed, where 7 (k) is the number of nonzero elements in row k and ¢(k) is
the number of nonzero elements in column k. The permutation II is such that

the diagonal elements of IT- P - TI" are sorted in increasing order with (k).

5. Diagonal Markowitz. The algorithm emulates the LU decomposition (say,
the column-oriented version) of the initial matrix P. Consider that at the

current step, the first k-1 columns have been processed.

e Step k: To minimize the fill-in, look at the diagonal elements of the
active sub-matrix P(k : n,k : n) and choose the one with the lowest
B(k) = (r(k) — 1) - (c(k) — 1), where r(k), c(k) are relative to the sub-
matrix P(k:n,km). If the diagonal element found is (i,i), permute rows
k and i and columns k and i. The procedure is equivalent to a diagonal
pivoting; unlike the standard Markowitz rule, this diagonal strategy does

not use numerical values; hence, it is a global strategy.

o Step k—%: Do a symbolic decomposition step on column k, i.e. emulate
the k' step of a real decomposition, counting the fill-in (zero elements

becoming nonzero) in P(k:nk:n).

e Step k+1: Repeat step k with the new active sub-matrix P(k+1:n, k+1:n).

A nice feature with this algorithm is that, as a by-product, one obtains the

sparsity pattern of the L and U factors.

6. Local minimum fill-in. Resembles the Markowitz strategy, except that, at

each step, the diagonal element (i,i) is chosen such that the fill-in of P(k:n k:n)

60

after performing step k of elimination is minimized. This strategy is much
more expensive than Markowitz, since at stage k, there are k (symbolic) fac-
torizations of dimension (n — k)? to be performed. The gain, compared to the

diagonal Markowitz strategy, is minimal.

The results for the test problems described in section 3.4.6 are presented in
Table 3.1. We report the number of non-zeros resulting after reordering and an
in-place LU factorization. The real target of reordering is to minimize this fill-in.
The results show that all the considered strategies (except the “Intuitive” mode)
perform similarly. Interestingly, the species considered most reactive appear last in
the “pure numerical” re-orderings as well. For example, for model 2 the last species
(in reversed column order) are: OH, NO, HO2, NO2, NO3, O3, HCHO, ALD2 ...

Conclusion: the diagonal Markowitz criterion has a slight advantage over the

others, so we recommend its use.

3.4 An evaluation of different

sparse subroutines

3.4.1 Test systems
In order to evaluate the performance of different sparse solvers, we employed
two test linear systems based on the chemical problems described in section (3.4.6).
One numerical value of the Jacobian (corresponding to noon-time, first day) was
computed. The test systems correspond to v - h = 1 and the exact solution is a

vector of ones:

61

Table 3.1. Resulting fill-ins (number of non-zeros after an in-place factoriza-
tion) for the different reorderings analyzed. The test problems are
discussed in section 4.6.

STRATEGY # of non-zeros in LU
Model 1 Model 2
INITTAL 243 673
Intuitive 385 2900
Row 287 810
Column 278 806
RowxCol 275 789
Diag Markowitz 275 768
Local min fill-in 274 761

The sparsity pattern of P was evaluated off-line, and the data structures needed
by each tested solver were generated using a small MATLAB routine. Each of the
routines described in section 3.4.3 received the linear system in its own input format.
For all the tests in the next subsection, this exact solution was recovered within an

error of 1077.

3.4.2 Test methodology
Usually, the solution of a sparse linear system is done in three distinct steps:
a) analysis of sparsity pattern and preparation of data structures; b) sparse LU
decomposition, using the information gathered at the first step; and c¢) solution of

resulting pair of triangular systems.

62

The following particularities appear when solving ODFE’s arising from atmo-

spheric chemistry:

e The sparsity structure of the Jacobian (and hence, of the prediction matrix)
is given by the interactions among chemical species and hence is constant
on large time intervals. This structure may be sparser during night-time
when photolysis reactions shut down; since it is cumbersome to either work
with different sparsity structures on different intervals or update this struc-
ture periodically, we take the simpler approach ([89]) of moving the analysis
step off-line, computing a (maximal) sparsity structure, and working with it

throughout the integration time interval.

e Because chord iterations are used when solving the nonlinear system, the same
prediction matrix is used for more than one iteration. Hence, to each LU
decomposition (step b)) correspond several calls to the substitution routine
(step ¢)). For example, with Vode on atmospheric chemistry problems, the

number of calls is about six or seven.

To emulate these characteristics, the codes were benchmarked as follows: the
ANALYSE routine (corresponding to step a)) was called once, in the beginning;
then, the DEC and SOL (corresponding to phases b) and ¢), respectively) were
called 10° times. Each call to DEC was followed by 0 and by 7 calls to SOL (for

timing DEC only, and for simulating the calls made by an implicit integrator).

3.4.3 Short description of

63

linear system solvers tested.

3.4.3.1 Off-the-shelf solvers
1. LINPACK The code is available on netlib, see [31]. LINPACK uses column-
oriented algorithms to increase efficiency by preserving locality of reference.
Here we test the routines dgefa and dgesl. LINPACK_U is LINPACK,
acting on the unordered matrix. More exactly, the order of the species is
the reverse of that resulting from the Markowitz diagonal criterion. As a
consequence, the LU factors are almost full. LINPACK_O is LINPACK
acting on the ordered matrix. Without any further intervention, other than
species reordering, the decomposition time may be cut down significantly, as

seen in Tables 3.2, 3.3. This is explained by the sparsity of L.

2. LAPACK The code available on netlib, see [3]. LAPACK is a collection of
Fortran subroutines that supersedes both LINPACK and EISPACK. Tested
routines: dgetrf and dgetrs. Results for both the ordered and the unordered

system are given.

3. HARWELL MA28 The code, available on netlib, is written by I. S. Duff,
Computing and Information Systems Department Rutherford Appleton Lab-
oratory and J. K. Reid. MA28 is a Markowitz general purpose linear algebra
package. The tests with Harwell package were made by calling ma28ad once,

then calling the sequence ma28bd, ma28cd 10° times.

4. Y12M of Z. Zlatev, University of Copenhagen, is a general package for sparse
systems of linear equations and is also available on netlib. The routines used:

y12mb (analyse), y12mc (decompose), y12md (solve).

64

5. SuperLU written by J.W. Demmel, J. R. Gilbert S. Eisenstat, X. S. Li, J.
Liu, J. Teo uses a supernodal approach to sparse partial pivoting. Routines
used in tests: dgstrf (srefact =Y’ first call, then with refactorization option)

for factorization, and dgstrs for solution of triangular systems.

6. UMFPACK?2 of T. A. Davis, Computer and Information Science and Engi-
neering Department , University of Florida, and I. S. Duff. Version 2.0 from
September, 13, 1995 is available on netlib. UMFPACK2 uses an unsymmetric-
pattern multifrontal approach (wherefrom it derives its name). udm2fa was
called once, then udm2rf and udm2so were called 10° times. Different combi-
nations of input parameters were tested (with/without permutation to block
triangular form, with /without preferring diagonal pivots, with different num-
ber of columns to be examined during the pivot search, with/without iterative

refinement). The timings correspond to the default values of parameters.

7. SLAP. was written by A. Greenbaum, Courant Institute, and M. K. Seager,

Lawrence Livermore National Laboratory and is available on netlib.

The following routines were used: dsilus (for performing an in-place LDU
decomposition), and dslui2 (for performing the back and forward substitu-
tions). dsilus and dslui2 were designed to perform an incomplete LDU
decomposition of a sparse matrix, thus providing a preconditioner for iter-
ative methods. No permutations are performed, and no fill-in is considered
(i.e., only the elements in L and U that correspond to a nonzero position in A
are computed). This features make the code fast. However, its performance
is affected by the large number of indirect addressings in the inner loops. In

order to use the pair dsilus and dslui2 as an exact (complete) solver, we

65

predicted off-line the sparsity structure of the L. and U factors; then we ”ex-
tended” the matrix A to this structure, explicitly inserting zeros on the fill-in
positions. Two versions (the original and a modified one) were considered:
SLAP_1 represents the routines dsilus and dslui2 without any modifica-
tion. SLAP_2 represents the routine dsilus with the following modification:
the ANALYSE phase (corresponding to first part of dsilus) is done once
(off-line); the routine is then passed directly A (copied into L, D and U), as
well as the sparsity pointers (IL, JL, etc.). As a consequence, a substantial

improvement (as compared to SLAP_1) was obtained.

The vendor BLAS version was used with all the routines that required it, ex-
cept for SuperLLU (where some incompatibilities appeared and we used the provided

BLAS library).

3.4.3.2 Tailored solvers
Since the main idea is to do the analysis step off-line, and then use the resulting
data structures throughout the computation, we consider several implementations

of Gaussian elimination without pivoting.

1. Mod_Gauss_1. Is a modified (column-oriented) Gauss algorithm. Its dis-
tinctive feature is that in order to reduce the number of indirect addressings,
we work directly on the square matrix, rather than on a compressed row or
column or on a linked list format. The sparsity patterns of L. and U are com-
puted in the preprocessing stage. All the algebraic manipulations are done
in a sparse mode. The factorization (decomposition) is done in-place, and

the resulting “triangular” L. and U factors are used. This lead to a loss in

66

performance in the SOLVE phase, so that the following hybrid data structure

was considered:

. Mod_Gauss_2 uses the full representation in the DECOMPOSITION phase,
but then copies the nonzero elements into (the vectors) L and U; then SOLVE
phase uses a sparse data structure. This results in a small overhead when
DECOMPOSE-ing, and a large speed-up when solving. This version is more

efficient when a large number of SOLVEs follow each decomposition.

. DOOLITTLE This routine uses a row-oriented Doolittle factorization (see
[33] for more details on this algorithm). Line k in L is computed, followed
by the computation of line k in U. The initial matrix is stored in compressed
row format; in addition to the vector of pointers IROW (IROW(k) indicates
the beggining of line k) there is a vector of pointers IDIAG (IDIAG(k) is
the position of k-th diagonal element). The presence of both IROW, IDIAG
enables the code to perform an in-place LU decomposition, IROW being asso-
ciated with the beginning of lines in L. and IDIAG with the beginning of lines
in U. No pivoting is performed, and no fill-in is considered. Thus, the initial
matrix A has to be "extended”, in the sense that the positions of fill-ins are
computed off-line, then explicit zero entries are considered in these positions.

Two versions were tested:

¢ DOOLITTLE_1. The SOLVE phase works with the sparse data struc-

ture resulting from LU decomposition.

e DOOLITTLE 2. In order to completely avoid indirect addressings, a
loop-free code is generated (via the KPP symbolic preprocessor) for the

SOLVE phase only.

67

3.4.4 Results
Timings for solving the systems resulting from our test problems with the
above routines are presented in Tables 3.2 and 3.3. All the routines solved the
linear system
P.x=(I—-h-v-Jac)-x =0
with h-y=1and b= P- (1,...,1)”. In all the cases the exact solution (1,...,1)7

was recovered within an error of 1071%. Several remarks:

e The new solvers SuperLU and UMFPACK are designed for very large systems
of equations (several thousands - by - several thousands); their use is not
justified for small to moderate size problems, as those arising from present-

day atmospheric chemistry models.

e General purpose solvers like Harwell’'s MA package and Y12M have a signif-
icant overhead associated with pivoting and handling of more general data
structures. Their results are reliable; again, this does not seem to pay for
small systems (at most several hundreds by several hundreds) arising from at-
mospheric chemistry kinetics. However, the reasonable performance of MA28
gives us the hint that a Markowitz code (working with simplified data struc-

tures) may be well-suited for the application.
e Modified Gauss. According to the results from Tables 3.2, 3.3 the strategy of
performing sparse operations on the full structure seems to work well.

One obvious disadvantage of working with the whole matrix is the increase

in the required amount of memory. More tests on different machines show

68

a dramatic degradation in performance if the amount of RAM is restricted.
For example, Mod_Gauss on the 160 M RAM machine (see Tables 3.2 and
3.3), performs comparable with MA28. However, on a 64 M RAM machine,
it is two times slower than Harwell’s MA. This may be explained as follows:
the elements of the matrix are addressed directly, but, because of sparsity,
successive references require big jumps in the n * n vector (the internal repre-
sentation of the whole matrix). Thus, the references are no longer local, and

the amount of cache memory influences very much the performance.

Doolittle. Has the advantage of working on a uniform representation of the
matrix (one vector of nonzero elements, unlike SLAP, which requires one vec-
tor for L, one for U and one for D). Each row is decompressed before, and
re-compressed again after processing (see [33]). This moves most of the in-
direct addressings from the O(n?) loop to two O(n) loops. The technique of
generating loop free code for the SOLVE phase (as with Doolittle_2) speeds
up considerably the code (in our test problem, a factor of three is gained
in SOLVE phase). It has the disadvantage of requiring a specialised pre-
processing software (in this study we generated the code with the symbolic
preprocessor KPP, but the user may write a very simple C routine for this
purpose).

A loop-free code for the DECOMPOSE phase may, in principle, substantially
improve the timing; on the other hand, this solution would significantly in-
crease the resulting code, and memory problems associated with that may

counterbalance the speed gain.

Table 3.2. Model A. Times per call (10 seconds) for different solvers on a
HP-UX A 9000/735 with 160 M RAM machine. “DEC” is the time
for one decomposition, “SOL” the time for one backward-forward
substitution and “1D+7S” the time for one decomposition, fol-
lowed by seven backward-forward substitutions.

69

Model A
ROUTINE DEC | SOL 1D+7S
LINPACK_U 714 73 1225
LINPACK_O 411 73 922
LAPACK_U 694 | 102 1408
LAPACK_O 341 | 102 1055
HARWELL 393 39 666
Y12 832 28 1028
UMFPACK2 900 73 1411
SuperLU 948 95 1613
SLAP_1 432 25 607
SLAP_2 263 25 438
Mod_Gauss_1 205 55 590
Mod_Gauss_2 228 26 410
DOOLITTLE_1 135 29 338
DOOLITTLE 2 || 135 10 205

Table 3.3. Model B. Times per call (107° seconds) for different solvers on a
HP-UX A 9000/735 with 160 M RAM machine. “DEC” is the time
for one decomposition, “SOL” the time for one backward-forward
substitution and “1D+7S” the time for one decomposition, fol-
lowed by seven backward-forward substitutions.

70

Model B
ROUTINE DEC | SOL 1D+7S
LINPACK_U 6870 | 355 9355
LINPACK_O 2240 | 355 4725
LAPACK_U 8000 | 493 11451
LAPACK_O 1900 | 493 5351
HARWELL 1150 | 103 1871
Y12 2880 82 3454
UMFPACK2 2720 | 176 3952
SuperLU 2660 | 246 4382
SLAP_1 2030 67 2499
SLAP_2 1100 67 1569
Mod_Gauss_1 730 | 138 1696
Mod_Gauss_2 840 67 1309
DOOLITTLE_1 || 440 93 1091
DOOLITTLE 2 || 440 30 650

71

Conclusion: Doolittle with loop-free code generated for phase ¢) seems to be
the fastest routine available for atmospheric chemistry applications (this conclusion

by no means applies to general linear systems).

3.4.5 Integrators used
Since the off-line estimation has shown Doolittle 2 to be the most promising
sparse solver, we used it in all the numerical experiments which will be reported
here. Three off-the-shelf integrators were used in the numerical experiments in both
original and modified (sparse) versions. Each code is based on a different numerical

scheme.

e Vode, the Variable coefficient ODE solver of Hindmarsch, Brown and Byrne,
a BDF code. For details see [11];

e Sdirk4 written by Hairer and Wanner, part of [47]. Is based on a stiffly accu-

rate, five stages, order four, singly diagonally implicit Runge-Kutta method;

e Rodas written by Hairer and Wanner, part of [47]. Based on stiffly accurate

Rosenbrock method of order four with six stages.

3.4.6 Test problems
Test problem A corresponds to a stratospheric (altitude 40 Km) box model. It is
available at NASA ftp site, contact Douglas E. Kinnison, kinnison1@llnl.gov. There
are 38 species involved in 84 thermal and 25 photolytic reactions at the following
physical and geographical conditions: latitude 65N, temperature 241.43 K, pressure

2.7 hPa, air density 8.12 - 10'® molecules/cm?. This mechanism and rate constants

72

Table 3.4. Initial concentrations for stratospheric model A.

Species | Initial || Species Initial
name | (ppb) | name (ppb)
0 8.15 || Os 656
NO 10.7 || NO, 2.75
HNO; | 0.35 || HO 6100
OH 0.2 HO, 0.14
H, 370 || CH,4 490
co 20 Cto 1
HCY 2.15 || HOCY 0.22

have been used in the NASA HSRP/AESA stratospheric chemistry models inter-
comparisons. The values of initial concentrations for the most important species

are given in Table 3.4.

Test problem B employs the chemical mechanism that is presently used in the
STEM-II regional-scale transport/ chemistry/ removal model (Carmichael et al.,
[14]), consisting of 86 chemical species involved in 142 thermal and 36 photolytic
reactions . The mechanism, based on the work of Lurmann et al. [59] and Atkinson
et. al. [5] is representative of those presently being used in the study of chemically
perturbed environments; it represents the major features of the photochemical ox-
idant cycle in the troposphere and can be used to study the chemistry of both
highly polluted (e.g., near urban centers) and remote (e.g., marine) environments.

The photochemical oxidant cycle is driven by solar energy and involves nitrogen

73

oxides, reactive hydrocarbons, sulfur oxides and water vapour. The chemistry also
involves naturally occurring species as well as those produced by anthropogenic
activities. The model was used to simulate urban conditions at ground level, tem-
perature of 288 K and an air density of 2.55 - 10'® molecules/cm®. The values of
initial concentrations, and the values of hourly emissions are given in Table 3.5.
These emissions were performed in equal quantities at the beginning of each time

interval. The chemical simulations were run for 5 days.

3.5 Numerical results

Each of the modified codes was tested for different tolerances and different
restart intervals.

In this section the results for the test problem are compared to the solution
computed by the code RADAUS5 of E. Hairer and G. Wanner [47] with very tight
tolerances rtol = 107'% and atol = 1071 [mlc/cm?].

As a measure of the accuracy we have employed the number of accurate digits
(NAD) computed as follows

NAD = %i\’:NADi) NAD; = —logy, (FRR;) ,
where N is the number ()Zf: 1species, ERR; a measure of the relative error in the
numerical solution of species ¢ and NAD; the corresponding number of accurate
digits. With the “exact” solution y(t) (computed by RADAU5) and the numerical
solution ¢(¢) at hand at discrete times {t; =ty + j - At, 0 < j < M} the measure

of the relative error is computed as follows

Ji = {0<j<M: |y(ty)| > a},

Table 3.5. Initial concentrations and hourly injections for tropospheric model

74

B.
Species Initial Injection
name (ppb) (ppb/hour)
NO 50 1
NO, 20 0.2
HONO 1 0
O3 100 0
H,0, 1 0
co 300 0
HCHO 10 0.2
Aldehyde 10 0.2
PAN 1 0
Alkans 50 2
Alkens 10 1
Ethene 10 0.2
Aromatics 20 4
Isoprene 10 1.0

75

1 2

(1) — ity
ERR;, = . R e
7 A w)

The threshold factor used here is a = 100 mlc/cm3. If the set J; is empty, the value

of ERR; is neglected. The purpose of considering the above defined error measure
instead of the root mean square norm (a = 0 mlc/cm?) is to suppress from the
error calculation the times where the absolute value of the concentration falls below
a = 100 mlc/em?; these values are very likely corrupted and the corresponding large
relative errors say nothing about the general computational accuracy. From a phys-
ical standpoint, for atmospheric chemistry applications, values of a = 100 mic/cm?

or less can be assumed to correspond to the complete dissapearance of the species.

Table 3.6. Average speed-ups obtained.

Model A Model B
At [sec] || 900 | 3600 | 900 3600
Vode 2.7 26 | 4.33 4.12

Sdirk4 | 1.7 | 2.2 | 3.25 3.00
Rodas || 1.4 | 1.5 | 2.50 2.90

In addition to presenting the results for sparse implicit integrators, we perform
a comparison with the widely used algorithms Qssa (see [50]), Chemeq (see [96])
and the sparse BDF code Lsodes (see [51]).

e Qssa is used with a dynamic partitioning of the species into slow, fast and

normal, function of step-size h and the species life-time 7, = 1/D,;.

76

— If 7, > 100 - h the species is slow and is integrated with forward Euler

formula;
— If ; < 0.1- A the species is fast and is considered at steady state;

— Otherwise, exponential Qssa formula is applied.
e Chemeq is used as specified in [77]:

— If ; < 0.2 - h the species is fast and is considered at steady-state;

— If 7; > 5-h the species is slow and is integrated with the nonstiff Chemeq

formula;

— For all other species the Chemeq stiff formula is used.

e Lsodes is the sparse version of the popular BDF code LSODE. LSODE and
Lsodes are often used to solve the atmospheric chemical kinetics equations
(see [77]). The code was used with M F = 121, i.e. analytical Jacobian with

an inner estimation of the sparsity structure.

For implicit integrators, the same parameter setting for both sparse and off-the-
shelf versions was used. The accuracy of sparse codes is (despite non-pivoting) very
similar to that of the original ones.

Timings and accuracies for the original codes, the sparse versions and the
explicit algorithms are presented in Figures 3.1 (test problem A) and 3.2 (test
problem B). The numerical accuracy (expressed as the number of accurate digits)
is plotted versus the CPU time (in seconds, as given by the UNIX routine timex).

The important points are:

e In Figures 3.1 and 3.2 the BDF codes are represented by solid lines, Runge-

Kutta by dashed lines, Rosenbrock by dash-dots and explicit methods by

77
dotted curves.

The slopes of these work-precision diagrams measure the orders of convergence
of different methods; implicit integrators used here have higher convergence
orders, hence they display higher slopes compared to Qssa and Chemeq. For
less accuracy, the latter are faster, while for higher accuracy the former become
preferable. Thus, when more accuracy is desired, the higher convergence order

of the implicit methods used here pays off.

To compare the performance of different methods on the work-precision dia-
gram, “draw” an imaginary horizontal line through the desired level of accu-
racy (say, two digits) and read from its intersection with the code plots the
necessary CPU time for achieving that level of accuracy; the code that gives

the leftmost intersection point will be the fastest for that problem.

Note the shift in the time scales for the lower diagrams versus the upper ones.
This shows the increase in CPU time associated with lowering the restart time.
This increase affects mainly the performance of implicit methods; although
they are capable of working with very large step-sizes, frequent restarts and
the transient regimes force lower step-sizes and a large number of LU decom-

positions right after each restart.

Figure 3.2 shows nicely why Chemeq may be preferred to Vode for the tro-
pospheric test problem B when the restart time is 15 minutes or less. The
deterioration of performance with frequent restarts precluded BDF methods
to be used in 3-D air pollution models. Moreover, if the implicit codes are not

supplied analytical Jacobians their performance further decreases.

78

e Decreasing the transport step and increasing the dimension of the chemical
mechanism results in a relative advantage for special explicit methods. How-
ever, even with a restart time of 15 minutes, and fairly large chemical mech-
anisms, the standard integrators endowed with the above presented sparse
linear algebra techniques are competitive with Chemeq and Qssa, when the

requested computational accuracy is one significant digit or more.

e Each implicit code traces a pair of almost parallel lines in the diagrams, one
for the off-the-shelf version and one for the sparse version; roughly speaking,
these lines differ by a translation along the time axis (which corresponds to
the speed-up). The line parallelism shows that both code versions perform
similarly in terms of accuracy; in particular, the accuracy does not seem to be
affected by non-pivoting. This experimental conclusion is in agreement with

the findings of other authors (see [26, 54, 89]).

To summarize, figures 3.1 and 3.2 show that careful exploitation of sparsity
leads to significant improvements in the efficiency of implicit numerical integrators.
These improvements depend on the size of the problem and on the percent of the
total CPU time a particular code spends in solving linear algebra. In table 3.6 we
report, the average speed-ups obtained with the considered codes and problems.

The results presented here are for transport time steps (i.e., restart times) of
15 minutes (a typical value for regional scale models) and 1 hour (a typical value
for global scale models). Many models may use a transport time step between 15
minutes and 1 hour. The results in figures 3.1 and 3.2 point to the conclusion
that, if the transport time is sufficiently large, sparse implicit methods outperform

dedicated integrators in terms of accuracy/time ratio.

79

3.6 Conclusions on sparsity treatment

The specialized techniques for treating the sparsity described here lead to
significant improvements over a general sparse code like Lsodes when integrating
chemical systems. For the model problems considered here, the standard (full linear
algebra) versions of Lsode and Vode perform almost similar in terms of work/
accuracy ratio; in contrast, sparse Vode is about two times faster than Lsodes.

The treatment of sparsity described here is rather conservative, since the off-
line analysis of the chemical system counts every possible non-zero entry in the
Jacobian. Further improvements seem possible by dynamically approximating the
Jacobian with a matrix of higher sparsity.

So far, the implicit methods widely used in atmospheric modelling are Gear
(BDF) methods. This work shows that methods from other families, like Runge-
Kutta and Rosenbrock, can be equally competitive. We have considered three off-
the-shelf codes endowed with the above described sparse techniques. Their good per-
formance motivates further search for integrators for atmospheric modelling within
the class of implicit methods.

Finally, let us mention that this treatment of sparsity is not restricted to at-
mospheric modelling, being applicable to the numerical solution of general chemical

systems.

3.7 Rosenbrock methods
This section is devoted to a brief introduction to Rosenbrock methods; part

of the notation has been adopted from (Hairer et al., 1991), where Rosenbrock

methods are described in much greater detail (Sections IV.7, IV.10 and VI.3).

Model A. Restart 1 hour

25

Number of Accurate Digits

10°
Log CPU time [seconds]
Model A. Restart 15 min
a4
1
*
1
3.5 % -
|
[
» 3F I i
=) !
a sk
@ *
< 2.5 | B
=
=1 !
Q
< I
= I
o 2+ -
z * °
g
>
=15f x E
>
o}
1 i
0.5 .
10° 10"

Log CPU time [seconds]

Figure 3.1. Model A. Work-precision diagram. A restart was carried each
1 hour (upper diagram) and each 15 minutes (lower diagram).
Sparse Vode (solid), Vode (solid with “x”), Lsodes (solid with
“0”), Sparse Rodas (dash - dots), Rodas (dash - dots with “x”),
Sparse Sdirk4 (dashed), Sdirk4 (dashed with “x”), Qssa (dots
with “x”) and Chemeq (dots with “0”).

80

Model B. Restart 1 hour

25

Number of Accurate Digits

1.5

Log CPU time [seconds]

Model B. Restart 15 min

3.5

2.5- ,

Number of Accurate Digits

0.5 .

Log CPU time [seconds]

Figure 3.2. Model B. Work-precision diagram. A restart was carried each
1 hour (upper diagram) and each 15 minutes (lower diagram).
Sparse Vode (solid), Vode (solid with “x”), Lsodes (solid with
“0”), Sparse Rodas (dash - dots), Rodas (dash - dots with “x”),
Sparse Sdirk4 (dashed), Sdirk4 (dashed with “x”), Qssa (dots
with “x”) and Chemeq (dots with “0”).

81

82

3.7.1 The integration formula

Rosenbrock methods are usually considered in conjunction with stiff ODE

systems in the autonomous form

y=fy), t>to, y(to)=vo (3.1)
This places no restriction since every non-autonomous system ¢ = f (¢, y) can be put
in the form (3.1) by treating time ¢ also as a dependent variable, i.e. by augmenting
the system with the equation £ = 1. In atmospheric applications it is often the
case that the reaction coefficients are held constant on each split step interval; the
chemical rate equations obtained this way are in autonomous form.

Usually stiff ODE solvers use some form of implicitness in the discretization
formula for reasons of numerical stability. The simplest implicit scheme is the
backward Euler method

Yns1 = Yn + hf (Yns1), (3-2)
where h = t,,1 — t, is the step size and y, the approximation to y(¢) at time
t = t,. Since y,11 is defined implicitly, this numerical solution itself must also be
approximated. Usually some modification of the iterative Newton method is used,
again for reasons of numerical stability. Suppose that just one iteration per time
step is applied. If we then assume that vy, is used as the initial iterate, the following
numerical result is found

Ynt1 = Yntk, (3.3a)
k = hf(y,) + hJk, (3.3b)
where J denotes the Jacobian matrix f'(y,) of the vector function f.

The numerical solution is now effectively computed by solving the system of

linear algebraic equations that defines the increment vector £, rather than a sys-

tem of nonlinear equations. Rosenbrock (1963) proposed to generalize this linearly

83

implicit approach to methods using more stages, so as to achieve a higher order of
consistency. The crucial consideration put forth was to no longer use the iterative
Newton method, but instead to derive stable formulas by working the Jacobian ma-
trix directly into the integration formula. His idea has found widespread use and a

generally accepted formula (Hairer et al., 1991) for a so-called s-stage Rosenbrock

method, is
Ynt1 = Yn+ Y biki, (3.4a)
=1
i—1 i
j=1 j=1

where s and the formula coefficients b;, a;; and ;; are chosen to obtain a desired
order of consistency and stability for stiff problems. An introduction on the proper-
ties of consistency, stability and stiff accuracy for Rosenbrock methods is presented
in an appendix.

For a reason explained later, the coefficients v;; are taken equal for all stages,
ie. vy =vforalls=1,...,s. For s =1, vy =1 the above linearized implicit Euler
formula is recovered. For the non-autonomous system y = f(¢,y), the definition of

k; is changed to

1—1 0 %
ki = hf(tn + aih: Yn + Z aijkj) + 7ih2a_{(tn: yn) + hJZ’Yijkja
=1 j=1

where

i—1 i
O = Za’z’ja Vi = Z%‘j-
Like Runge-Kutta methods, Rosenbrock methods successively form intermediate

results
i—1
Yi=yn + Zaijkj; 1< <s, (3.5)
j=1
which approximate the solution at the intermediate time points t,,+a;h. Rosenbrock

methods are therefore also called Runge-Kutta-Rosenbrock methods. Observe that

84

if we identify J with the zero matrix and omit the 0f /0t term, a classical explicit
Runge-Kutta method results.

Rosenbrock methods are attractive for a number of reasons. Like fully implicit
methods, they preserve exact conservation properties due to the use of the analytic
Jacobian matrix. However, they do not require an iteration procedure as for truly
implicit methods and are therefore more easy to implement. They can be developed
to possess optimal linear stability properties for stiff problems. They are of one-
step type, and thus can rapidly change step size. We recall that this is of particular

importance for our application in view of the many operator-split restarts.

3.7.2 Reducing computational costs

Each time step requires an evaluation of the Jacobian J, s matrix-vector
multiplications with J and, assuming that v; = 7, s solutions of a linear system
with (the same) matrix I — vhJ, accompanied with s derivative evaluations. The
multiplications with J are easily avoided in the actual implementation by a simple
transformation (see Section IV.7 of (Hairer et al., 1991)). Because of the multistage
nature, the computational costs for a Rosenbrock method, spent within one time
step, are often considered to be high compared to the costs of say a linear multistep
method of the BDF type. In particular, the Jacobian update and the solution of
the s linear systems, requiring one matrix factorization (LU-decomposition) and s
backsolves (forward-backward substitutions) typically account for most of the CPU
time used by a Rosenbrock method. On the other hand, if a Rosenbrock code solves
the problem efficiently in fewer steps than a BDF code needs, then the CPU time

for a whole integration using a Rosenbrock method can become significantly less

85

then for a BDF method.

Sparsity

For large atmospheric chemistry models the number of zeroes in J readily
amounts to &~ 90%. This high level of sparsity can be exploited to significantly
reduce the costs of the linear algebra calculations. For this task we use the symbolic
preprocessor KPP [25, 76]. KPP prepares a sparse matrix factorization with only a
minimal fill-in (see Table 1 in (Sandu et al. 1996a)) and delivers a Fortran routine for
the backsolve without indirect addressing. Altogether this means that the numerical
algebra is handled very efficiently. The sparse matrix technique implemented in

KPP is based on a diagonal Markowitz criterion.

Approximate Jacobians
It is conceivable to attempt to further reduce the numerical algebra costs

through an approximate Jacobian.

e One possibility is to use a time-lagged Jacobian J = f'(y,4,) where n =
0,—1, ... such that n+ n is constant. If we define J this way, and in addition
keep h fixed, then I — vhJ is a constant matrix during the number of times
that the parameter n is decreased; hence one can advance several time steps
using the same LU-decomposition. The derivation of order conditions (which
circumvents the order reduction associated with the time-lagging of the Jaco-
bian) can be found in (Verwer et al, 1983a, 1983b). Since the exact Jacobians

are used, conservation properties will still be maintained.

e Replacing J by a matrix with a simpler structure, say a matrix of higher spar-

sity, may result in further savings in linear algebra costs, but will destroy the

86

conservation properties. Also, the number of order conditions will significantly

increase (see the W-methods of (Steihaug et al., 1979)).

e One can devise methods based on a partitioning of the species into slow and
fast ones where part of the entries of J is put to zero. This approach does
not maintain conservation properties either and adds the problem of devising

a good partitioning strategy.

In the current paper the above ideas are not explored: only exact Jacobians are

considered.

3.7.3 Step size control
General purpose stiff ODE solvers normally adapt the step size in an automatic
manner to enable small step sizes at times when the solution gradients are large
and large step sizes when solution gradients are small. For Runge-Kutta solvers an

effective and simple step size control can be based on a so-called embedded formula
s
Yn+1 = Yn + Zgz’kia

which uses the already computed incremenfc:i/ectors k;. The approximation ¢,
thus differs only in the choice of the weights b; and hence is available at no extra
costs. Usually, the weights are chosen such that the order of consistency of 4,1
is p = p— 1, if p is the order of y,,;. This suggests to use the difference vector
Est = §p11 — Yn+1 as a local error estimator. In what follows we will denote the
order of such a pair of formulas by p(p). All the Rosenbrock solvers (Rodas, Rodas3,
Ros4 and Ros3) use embedded formulas to estimate the local error.

The specific step size strategy goes as follows. Let m denote the dimension

of the ODE system. Let Toly = atol + rtol |y,+1x|, where atol and rtol represent a

87

user-specified absolute and relative error tolerance and ¥, the k-th component
of yn11. Tolerances may differ componentwise, but are here taken equal for all
components for simplicity of testing. Denote

1 & Estk 2
Err= | — .
W 2 (Tozk>

m, -

The integration step is accepted if Err < 1 and rejected otherwise and redone. The
step size for the new step, both in the rejected and accepted case, is estimated by
the usual step size prediction formula

hnew = h.min (10, max <0.1, 0.9/(Er7“)1/(’3+1))) .
At the first step after a rejection, the maximal growth factor of 10 is set to 1.0.

Further, h is constrained by a minimum h;, and a maximum hmax and at any

n
start of the integration for each operator-split interval we begin with a starting step
size h = hgtart- A rejection of the first step is followed by a ten times reduction of
h. These step size constraints will be specified later. Because the maximal growth

factor is equal to 10, the step size adjusts very rapidly and quickly attains large

values if the solution is sufficiently smooth and h = hgt 44t is chosen small.

3.7.4 Consistency and stability
The performance of an integration method largely depends on its order of
consistency and its stability properties. Again for the convenience of readers from
the atmospheric research community, in this section we will briefly discuss the con-
sistency property for the Rosenbrock method, as well as some useful results from
the linear stability theory. Also some attention will be paid to the notion of stiff-

accuracy.

88

Consistency conditions
The consistency conditions are found from a formal Taylor expansion of the

local error. Let y,11 = FE(y,) be a compact notation for the Rosenbrock method.
The difference

on(t) = E(y(t)) —y(t + h), (3.6)
where y is the exact (local) solution of the ODE system ¢ = f(y) passing through
y(t), is called the local error and the largest integer p for which

Sn(t) = O(hP™), h—0,
is called the order of consistency. Hence 0p(t) is the error after a single step from
an exact solution, while the order reveals how rapidly dj(¢) approaches zero for a
decreasing step size. Assuming sufficient differentiability of y and f, the order p is
determined by Taylor expanding the local error and equating to zero the resulting
terms up to the p-th one. This leads to the so-called consistency conditions which
are expressions in the formula coefficients. Satisfying these conditions gives the
desired order p. While the expansion is technically complicated and the resulting
conditions can become quite lengthy for a large p, the derivations are conceptually

simple. For a maximum of four stages, the conditions for order p < 3 are:

p=1 : bi+by+b3+by=1, (3.7a)
p=2 ¢ byt b= (3.7
p=3 : boad + b33 + by = %, (3.7¢)

b3 33285 + ba(Ba2 By + Baafs) = é — 7+ (3.7d)

where

i—1 i—1
Bij = cuj + vij, i = Za’ija B = Zﬂij-
j=1 j=1

89

The conditions for p < 5 and general s can be found in Section IV.7 of (Hairer et

al., 1991).

Linear stability
Let €, = y, — y(t,) denote the global error: the difference between the sought
exact solution of the ODE system ¢ = f(y) and the computed approximation. The
global error at the forward time level ¢ = ¢,,,; can be seen to satisfy
ent1 = E(en +y(tn)) — E(y(tn)) + 0n(tn), (3-8)
showing that this error consists of two parts: the local error (3.6), which is a
functional of the exact solution, and the difference
E(en +y(tn)) — E(y(tn)),
where E(€, + y(t,)) represents the actual Rosenbrock step taken from the approx-
imation ¥y, = €, + y(t,) and E(y(t,)) represents the hypothetical Rosenbrock step
taken from the exact solution y(¢,). This difference term reveals a dependence of
€nt1 ON €,. For a proper functioning of the Rosenbrock method it is desirable that,
in an appropriate norm || ||,
| E(en + y(tn)) — E(y(t))ll < lleall, (3.9)
because then the integration is stable in the sense that
[ensll < Il €nll + 1l on(Ea)l-
This error inequality is elementary, but also fundamental for one-step integration
methods. It simply shows that all local errors add up to the global error,
n—1
lenll < D [10n(t)1]
if we assume that at the initial time toj :t(;le error ¢g = 0. From inserting 6,(¢;) =
O(h?*1), while assuming h — 0 and n — oo such that ¢, = nh is fixed, it follows

that €, = O(h?). By adding up all local errors one power of h is lost, resulting in a

90

convergence order p.

If (3.9) does not hold, the global error can accumulate unboundedly. The
integration is then unstable and of no practical use. Whereas for general nonlinear
stiff ODEs from chemistry no stability analysis exists for Rosenbrock methods, their
stability is well understood for stable, linear systems

y=Jy, (3.10)
with eigenvalues \ satisfying Re(A) < 0. From practical experience we know that
linear stability often provides a satisfactory prediction of stability for nonlinear
problems if J is interpreted as the Jacobian matrix f’(y). This interpretation is
based on a linearization argument, see (Dekker et al., 1984) and (Hairer et al.,
1991). Applied to (3.10), the Rosenbrock method y,+1 = E(y,) reduces to the
linear recursion

Yn+1 = R(hJ)yn, (3.11)
where R(h.J) is a matrix-valued rational function that approximates the matrix-
valued exponential function e/, being the solution operator of (3.10). By inserting
(3.11) into the error equation (3.8), we obtain
€nt1 = R(hJ)en + 0p(tn),

or, equivalently,
n—1

en = R"(hJ)eo + > R" 7 (hJ)on(L)),
§=0
where, as before, n = 1,2,... . We see that the demand of stability can now be

expressed as boundedness of powers of R(hJ), i.e.,

| R"(hJ)|| < C, (3.12)
where C' is a constant which is independent of n and hJ. This independence guar-
antees unconditional stability in the sense that no restrictions exist on the step size.

Condition (3.12) holds if we require that the scalar rational function R(z), which

91

is called the stability function, satisfies |R(z)| < 1 for arbitrary z = hA, Re(z) < 0.
This is the famous property of A-stability originally proposed by Dahlquist (see
(Hairer et al., 1991)). We note in passing that for our application we do not really
need A-stability, since for atmospheric chemistry the eigenvalues of the Jacobian
are always located in the neighbourhood of the real axis. So we actually need the
boundedness property only near the negative half line.

We will impose the condition of L-stability, which in addition to A-stability,
requires R(oco) = 0. L-stability is known to lead to a somewhat more robust ap-
proach and better mimics the damping property of e* for Re(z) < 0. The property
of L-stability is easily verified. The stability function R is found by applying the

method to the scalar problem y = Ay. This yields a rational function of the form
P(z)

(1 —7z)*"

where P is a polynomial of degree s',s’ < s, and the degree of P is less than or

R(z) = (3.13)
equal to s’ — 1 if the stability function is to be L-stable. Mostly, s’ is equal to the
number of stages s, but s’ can be smaller. In this paper we only consider methods
for which s’ = s.

Stability properties of rational functions of the type (3.13) have been studied
extensively. For our purpose the following results are very useful. Suppose that the
order of consistency p of the Rosenbrock method is also the order of consistency of
R, i.e., p is the largest integer for which R(z) = €* + O(2*™),z — 0. For L-stable
functions we then usually have p = s or p = s — 1. In both cases R is uniquely
determined by ~. For the case p = s — 1, L-stability holds for certain intervals for
and if p = s for one particular value of 7 (see Section IV.6 and Table 6.4 in (Hairer
et al., 1991)). By way of illustration we list the values of v for 1 < s < 4 in Table

3.7.

92

Table 3.7. Values of v for L-stability.

s | L-stability, p > s —1 L-stability, p = s

1 vy=1
2|1 (2-v2)/2< v < (24V2)/2 | v=(24+V2)/2
3] 0.18042531 < v < 2.18560010 | v = 0.43586652

41 0.22364780 < v < 0.57281606 | v = 0.57281606

Stiff accuracy
Stiff accuracy is a property related to the Prothero-Robinson model problem
=AMy — 8(t) + (1),
where ¢ is some known function. Its solution reads
y(t+h) = M (y(t) — ¢(1) + ¢(t + h)
and if Re(Ah) — —oo, the solution y(¢ + h) — @(t + h), irrespective the size of h.
Prothero and Robinson have investigated under which conditions on the formula
coefficients, implicit Runge-Kutta solutions mimic this property. Because, then
a method can handle this particular transition to infinite stiffness in an accurate
manner, which has been the main motivation for this test model (see (Dekker et
al., 1984) and (Hairer et al., 1991)) They proposed the term stiff accuracy for this
phenomenon.
For the current test model, the global error recursion (3.8) reads
€nt1 = R(2)en + On(tn),

where 0,(t,) depends in a certain way on z = hA, h and ¢. Hairer and Wanner

93

(1991) show, in Section IV.15, that for any consistent Rosenbrock method,
6n(tn) = O(h*/z), for h—0, z = oo,
if
asi+vsi=b; (i=1,...,8) and az=1. (3.14)
Hence, the desired transition property holds for the local error and because (3.14)
also implies R(oco) = 0, this property holds for the global error as well. They
therefore call a Rosenbrock method stiffly accurate if (3.14) holds.
For general nonlinear stiff problems the virtue of stiff accuracy is not so clear.
In (Hairer et al., 1991) it is argued that stiff accuracy is advantageous when solving
stiff differential-algebraic systems with a Rosenbrock method (cf. Proposition 3.12,
Sect. VI.3). For ODEs a similar argument exists which goes as follows. Suppose
(3.14) holds. A straightforward computation then reveals the following relation
between y,.1 and the final stage quantities ks and Y,
ks = hJyn,1 + hf(Ys) — hJY. (3.15)

Assuming that J is invertible, we may write

Ynt1 = Yy — (RI) T (Wf(YS) = ky), (3.16)
which is the result of one modified Newton iteration for the equation
hf(y) — ks =0, (3.17)

using Y; as starting value. For given k; this equation can be interpreted as a
collocation equation for a numerical solution. Hence, if the property of stiff accuracy
holds, if J is invertible and Y; a sufficiently good starting guess, then the Rosenbrock
solution ¥y, is close to a collocation solution. Observe that for linear systems
y = Jy we always have hJy, 1 = k; according to (3.15). If the final increment vector
ks is close to a true derivative, this collocation property seems recommendable.

Other arguments supporting the notion of stiff accuracy for nonlinear problems do

94

not exist as far as we know.

3.7.5 New methods -

Rodas3 and Ros3
RODAS3

This solver was designed along the same principles as Rodas. It is based on
a stiffly accurate, embedded pair of order 3(2). The number of stages is s = 4,
requiring four backsolves but only three derivative evaluations are used. Hence per
step it needs less work than Rodas, but it is one order lower. We have selected
this pair since we aim at optimal efficiency for low accuracies. To the best of
our knowledge, this pair of formulas has not yet been proposed elsewhere. The

coefficients o;; and v;; are

0 1/2
(a’z’j) = ’ ’) (%‘j) = ! 12)
1 0 0 -1/4 —-1/4 1/2
3/4 —=1/4 1/2 0 1/12 1/12 -2/3 1/2

and the weights are
(bi) = (5/6 —1/6 —1/6 1/2) , () = (3/4 —1/4 1/2 0) :
Both formulas are L-stable. Observe that the embedded one is defined by the final

intermediate approximation Y.

ROS3

This solver is based on an embedded pair of order 3(2) and is also new. The
number of stages is s = 3 involving three backsolves and two derivative evaluations.
The third order method is L-stable and the embedded second order method is

strongly A-stable (R(oco) = 0.5). The stiff accuracy property is not valid for Ros3.

95

The method was constructed under the design criteria: order three, L-stability
for both the stability function and the internal stability functions, and a strongly
A-stable second order embedding. The internal stability functions are associated
with the intermediate approximations (3.5). Imposing stability for these internal
functions was advocated in (Verwer, 1977) as a means to improve a Rosenbrock
method for strongly nonlinear stiff problems. We note in passing that if the order
of consistency equals 3 and s = 3, then the requirement of L-stability prevents the

existence of an L-stable second order embedding. The coefficients are:

v = 0.43586652150845899941601945119356
Y21 = —0.19294655696029095575009695436041
v32 = 1.74927148125794685173529749738960

by = —0.75457412385404315829818998646589
by = 1.94100407061964420292840123379419
by = —0.18642994676560104463021124732829
by = —1.53358745784149585370766523913002
by = 2.81745131148625772213931745457622
by = —0.28386385364476186843165221544619

The remaining coefficients are ao; = a3y = v and a3y = 31 = 0.

3.8 Other methods

3.8.1 VODE

Vode is a “Variable coefficient Ordinary Differential Equation” solver based

on the implicit BDF formulas [11, 47] and a successor of the “Livermore Solver”

96

Lsode from [51]. The latter is popular in the field of atmospheric chemistry. For
a discussion of the mathematical techniques implemented we refer to [11, 47]. We
used Vode as a black box with its user parameter istart = 1, except that we modi-
fied the code to carefully exploit the sparsity of the Jacobian matrix. This reduces
the costs of solving the linear algebraic systems arising in the modified Newton iter-
ation. In [54] and [89] it has been shown that this is very profitable for atmospheric
chemistry problems. We used the sparse linear algebra implementation described in
[75]. The necessary routines are automatically generated by the symbolic chemical

preprocessor KPP [25], which transparently:
e determines the sparse analytical Jacobian,

e reorders the species using a diagonal Markowitz criterion, in order to minimize
the fill-in resulting from the LU decomposition of the matrix used in the

modified Newton process,

e analyses the pattern of zeros in the Jacobian and builds the data structures

needed for the sparse Doolittle LU decomposition,
e generates loop-free code for the forward-backward substitution routines.

The performance of Vode appeared to be sensitive to the choice of the absolute
tolerances. Using the natural value atol = 1.0 was not always optimal. We therefore
set them componentwise as

atol; = max (10_2, 1072 - rtol - ni) (mlc/cm®)
where 7; estimates the magnitude of the concentration of species i. See [39] for

other specific parameter settings.

97

3.8.2 LSODES

Lsodes is a version of the popular BDF code Lsode which exploits the sparsity
in the Jacobian matrix by calling linear algebra routines from the Yale Sparse
Matrix Package [36, 35]. It is obvious that Vode and Lsodes are closely related.
For our application an important difference is that Vode uses a dedicated sparsity
technique, whereas Lsodes uses the general Yale package, which is less efficient, in
general. Lsode and Lsodes are often used to solve atmospheric chemical kinetics
equations (see e.g. [77]). The code was applied with its user parameter setting MF
= 121, i.e. analytical Jacobian with an inner estimation of the sparsity structure.

See [39] for other specific parameter settings.

3.8.3 SDIRK4
This solver has been borrowed from Hairer and Wanner [47] where a full
description along with numerical results can be found. It is based on a 4-th order,
diagonally implicit Runge-Kutta method using five stages. Because this solver is of
one-step type, it allows a fast increase in step size after a restart. For atmospheric
chemistry applications this is an obvious advantage. We have only modified it for
the treatment of sparsity as described in Section 3.8.1. Hence all strategies were

unaltered. See [39] for specific parameter settings.

3.8.4 RODAS
This solver has also been borrowed from Hairer and Wanner [47]. It is based
on a 4-th order, Runge-Kutta-Rosenbrock method using six stages. This solver

is also of one-step type and hence shares the advantage of a fast increase in step

98

size after a restart with Sdirk4. The code has been modified for the treatment of
sparsity as described in Section 3.8.1. All strategies were unaltered. See [39] for

specific parameter settings.

3.8.5 ROS4

This Rosenbrock solver is also taken from (Hairer et al., 1991). It implements
a number of 4-stage 4(3) pairs which all require four derivative evaluations and four
backsolves. Hence, per step Ros4 is somewhat cheaper than Rodas. However, in
(Hairer et al., 1991) a comparison is presented favouring Rodas, which is attributed
to the stiff accuracy property (the methods of Ros4 are not stiffly accurate). We
have tested its L-stable version (see Table 7.2, (Hairer et al., 1991)) and found that
generally its performance was very close to that of Ros3 and Rodas3. We therefore

decided to omit presenting results for Ros4.

3.8.6 SEULEX

The solver Seulex is also taken from (Hairer et al., 1991). It bears a rela-
tionship with the Rosenbrock solvers, as it builds up a solution from the (non-
autonomous) linearly implicit Euler method, i.e., y,11 = ¥y + (I — hJ) 7 Af (tn; Yn),
by Richardson extrapolation. The use of this Euler method in an extrapolation code
for stiff ODEs was first suggested in Deuflhard (1985) A rule of thumb is that the
virtue of extrapolation manifests itself most clearly when high accuracy is required
(see also (Hairer et al., 1991)). We have included Seulex in our benchmarking as the
extrapolation approach is mentioned by Zlatev [97] (see Section 3.4.3) as a viable

one for atmospheric ODE problems, although no results seem to have been reported

99

yet. The same sparse linear algebra as used for the other solvers was implemented.
The extrapolation sequence defined by iwork(4) = 4 was used. This sequence was

found to work well for our application. Other settings are given default values.

100

CHAPTER 4

BENCHMARK PROBLEMS
AND NUMERICAL RESULTS

4.1 Introduction

This chapter presents a comprehensive set of seven benchmark problems based
on chemical mechanisms used in actual applications. This set consists of seven prob-
lems based on three tropospheric gas-phase chemistry schemes, namely a small, a
medium and a large scheme (used to simulate both a rural and an urban sce-
nario). one stratospheric scheme coming from NASA, and one hybrid gas-liquid
phase scheme from cloud modeling which we obtained from Matthijsen [60]. Be-
cause of the diverse applications, these chemical schemes constitute a representative
test set for evaluating and comparing numerical solvers.

Numerical comparisons are performed between several dedicated explicit and
several implicit solvers. For the clarity of presentation the exposition of results is
divided into two parts: the first one focuses on explicit solvers, while the second
one focuses on linearly-implicit methods. Several solvers are present in both parts,
making the link between them.

The implicit solvers use sparse matrix techniques to economize on the nu-
merical linear algebra overhead. As a result they are often more efficient than the
dedicated explicit ones, particularly when approximately two or more figures of ac-
curacy are required. The results presented may constitute a guide for atmospheric
modelers to select a suitable integrator based on the type and dimension of their

chemical mechanism and on the desired level of accuracy.

101

All experiments discussed in this paper were carried out on a single processor
workstation and concern box-model tests. We emphasize that promising solvers
should also be compared in actual 3D transport applications where the issues of
memory use, vectorization [54, 92] and parallelization are of great practical im-
portance. Code changes connected with vectorization and/or parallelization for a
particular architecture can result in CPU time decreases of orders of magnitude.

To enable interested readers to further extend this benchmark comparison
using their own solvers, as well as to extend the problem set with other challenging
example problems from atmospheric chemistry, all the software we have used for the
problems and the solvers has been put on a ftp-site (see [39] and the instructions

therein).

4.2 The benchmark problems
The seven test problems are based on a set of five chemical schemes which are
presently being used in various studies. Four of them describe gas-phase, and one
describes gas-liquid phase chemistry. All are fully documented elsewhere. Before

briefly describing each problem, several general remarks are in order:

e All the test problems were uniformly coded in FORTRAN using the KPP
symbolic preprocessor [25]. This uniformity is important for a meaningful
intercomparison, since part of the algorithms need the derivative function in
production-destruction form, part need it in the standard form, and some of
them need an analytical Jacobian. None of the solvers was favoured /inhibited
by a cheaper/ more expensive implementation of these functions. FORTRAN

code defining the test problems can be obtained from [39].

102

e All problems were run for five days. This time interval is sufficiently large for
taking into account several diurnal cycles originating from the photochemical
reactions. For all models the unit of components of dy/dt used in the numerical

tests is number of molecules/cm?/second.

e The tropospheric gas-phase problems are based on three different chemical
schemes. These are the 15-species EUSMOG scheme, the 32-species CBM-1V
scheme, and the 84-species mechanism implemented in the STEM-II model.
This mechanism will be referred to as AL. All three are used in present applica-
tions and are representative of those being used in the atmospheric chemistry
models. Varying the size of the mechanism is important since both implicit
and explicit solvers are considered for this benchmark. The stratospheric gas-
phase problem contains 34 species and the tropospheric gas-liquid phase one

65.

e The same urban and rural scenarios are simulated with CBM-IV and with
AL. Although the chemical conditions are identical and the calculated results
very close, the performances of the numerical solvers depend on the chemical

mechanism used. We will make this point later in the paper.

e An important issue in our numerical comparison is the use of a sparse matrix
technique [75] to economize on the linear algebra costs which the stiff solvers
spend in the modified Newton iteration. As a measure of these costs, we
give in Table 4.1 the number of nonzero elements in the Jacobian matrix,
as well as the number of nonzero entries in the Newton matrix after the LU
factorization. The ratio between the number of nonzeroes in the Jacobian

matrix and the square of the dimension gives an indication to which extent a

103

Table 4.1. The dimension of the test problems, the number of nonzeroes in
the Jacobian matrix, and the number of nonzeroes in the Newton
matrix after the LU factorization. The difference between the
numbers in the third and second row is the fill-in.

Problem A|B,C|D, E| F G
Dimension | 15 | 32 84 34 65

Jacobian | 57 | 276 | 674 | 246 506
Factorized | 57 | 300 | 768 | 280 629

sparse matrix solution may improve the timing compared to a standard dense
matrix solution. If this ratio is small, say less than about 1/4, and a reordering
of the species exists which gives rise to a small fill-in after the factorization,
then a good sparse solution technique will be significantly more efficient than
the standard dense solution. The table shows that for our test problems both
the ratio for the Jacobian and the resulting fill-in are quite small. The sparse
matrix technique we have used is based on a diagonal Markowitz criterion (see
Section 3.5 for some more details). Lest we miss the obvious, for problems of
a small dimension for which the dense matrix numerical algebra costs are not
dominating, the gain in using a more efficient matrix solution will be hardly

noticeable in the overall costs. This is the case for Problem A (see also [89]).

The dedicated explicit algorithms are scalarly implicit and exploit the production-

loss form of the ODE system.

104

4.2.1 Problem A1: TMk model

The problem was borrowed from (Dentener, 1993, 1996). It describes the
reduced CH,/CO/HO,/NO, chemistry and is used in the global dispersion model
TMk (Heimann, 1983). It consists of 36 reactions between 18 species of which 2
were held fixed, namely HyO and O,. Since new values of the photolysis rates are
available every 40 minutes, we split accordingly the five day period (see Section 5
for more details). The simulated conditions correspond to a polluted air parcel in
summer time, at 45 degrees north latitude and at ground level (pressure = 1000
mbar). We have included emissions of NO at a constant level of 10 mlc/cm?/s.
More information about this model can be found in (Dentener, 1993). We note that
for this small problem (17 components) the exploitation of sparsity results in limited

benefits. The Jacobian matrix has 90 nonzero entries and 93 after the factorization.

4.2.2 Problem A2: EUSMOG model
This problem is borrowed from a model which is currently implemented and
tested at the CWI in a Dutch smog prediction code in the framework of the project
EUSMOG [85, 86]. The problem is a highly parameterized version of the EMEP
MSC-W ozone chemistry scheme [82]. It consists of 15 reactions between 15 species
and is extensively described in [85]. It has been used before in the comparisons
reported in [89], where it has also been documented. Information about the eigen-

values can be found in Table 4.2.

105

Table 4.2. Distribution of real part of the spectrum of the Jacobian for EU-
SMOG problem A.

Problem A
Species 1 Re (\;)
OH -9

All other € [—4-107%, ~ 0]

4.2.3 Problems B and C: CBM-IV model

These problems are based on the Carbon Bond Mechanism IV (CBM-1V) [40],
consisting of 32 chemical species involved in 70 thermal and 11 photolytic reactions.
The concentration of HoO was held fixed throughout simulation. The CBM-IV
mechanism was designed for the numerical simulation of chemical processes in ur-
ban and in regional scale models. Test problem B describes an urban scenario and
simulates a heavily polluted atmosphere. The initial concentrations and the levels
of hourly emissions follow those described in [77]. This helps to relate our results
to those presented in the above mentioned paper. Test problem C describes a rural
scenario and simulates a clean atmosphere. It follows the IPCC Chemistry Inter-
comparison Study, third Bio scenario (see [70]). The values of initial concentrations
and the values of hourly emissions are given in Table 4.5. The emission was released
in equal quantities at the beginning of each time interval. Information about the

stiffness of the models in terms of the eigenvalues of the Jacobian is presented in

Table 4.3.

106

Table 4.3. Distribution of real part of the spectrum of the Jacobian for CBM-
IV problems B and C.

Problem B (urban) C (rural)
Species ¢ Re (\;) Re (\;)
O('D) —8.11- 108 —8.11- 108
O(®P) —8.26 - 10* —8.26 - 10*
ROR —2.47-103 —2.46 - 103
OH —46 —3.5
TO, —4.27 —4.2
All other € | [-1.5,~ 0] [—0.14, =~ 0]

4.2.4 Problems D and E: AL model

The test problems D and E are based on the largest chemical system tested
here. They employ the kinetic mechanism that is presently used in the STEM-II
regional-scale/transport/chemistry/removal model [14], consisting of 84 chemical
species (plus 4 species whose concentrations were held fixed throughout simulation:
H>0O, CO,, Oy, H,) involved in 142 thermal and 36 photolytic reactions. The
mechanism, based on the work of Atkinson et. al. [5] and Lurmann et al. [59] can
be used to study the chemistry of both highly polluted (e.g., near urban centers) and
remote (e.g., marine) environments. Problem D is an urban scenario, while problem
E a rural one, based on IPCC scenario 3. The simulated conditions and initial
concentrations are identical to those employed in problems B and C, respectively.
The values of initial concentrations, and the values of hourly emissions are given

in Table 4.5. The emission was performed in equal quantities at the beginning of

107

Table 4.4. Distribution of real part of the spectrum of the Jacobian for AL
problems D and E.

Problem D (urban) E (rural)
Species ¢ Re (\;) Re (\;)
OH —28 —1.81
CRO, —1.45 —1.38
CHO, —1.45 —1.30
MAOO —1.23 —-1.17
MV KO —1.23 —1.17
MCRG —1.23 —-1.17
All other € | [-0.3,~ 0] [—0.03, = 0]

each time interval. Information about the stiffness of the models in terms of the
eigenvalues of the Jacobian is given in Table 4.4. Since AL does not treat explicitly
O('D) and O(3P), the large negative eigenvalues associated with these species are

not present.

4.2.5 Problem F: stratospheric model
This test problem is based on the chemical mechanism that has been used in
the NASA HSRP/AESA stratospheric models intercomparison. The initial concen-
trations and the values of the rate constants follow the NASA region A scenario
(model available at NASA ftp site, contact Douglas E. Kinnison, kinnison1@llInl.gov)

with the difference that the photolysis rates were piecewise linearly interpolated.

Table 4.5. Initial concentrations and hourly emissions for the tropospheric
problems B, C, D and E. T'oluene and Xylene, which are treated
independently in CBM-IV, are lumped as Aromatics in the AL

model.

108

Problem B, D (urban) C, E (rural)
Initial | Emission || Initial Emission

Species (ppb) | (ppb/hour) | (ppb) (ppb/hour)
NO o0 1 0.1 0.01
NO, 20 0.2 0.1 0.01
HONO 1 — 30 —

O3 100 — 0 —
H>0, 1 — 2 —
co 300 2 100 —
HCHO 10 0.2 0 —
ALD, 10 0.2 0 —
PAN 1 — 0 —
Alkans 50 2 0 —
Alkens 10 1 0 —
Ethene 10 0.2 0 —
Aromatics (AL) 20 0.4 0 —
Toluene (CBM-IV) 10 0.2 0 —
Xvylene (CBM-IV) 10 0.2 0 —
Isoprene 10 1 1 0.1

109

Table 4.6. Physical conditions for the tropospheric problems B, C, D and E.

Relative humidity || 80%

Temperature 288.15 K

Altitude 0 km

Pressure 1013.25 mbar

Air density 2.55 - 10" mle/cm3

There are 34 species (plus 6 species whose concentrations were held fixed throughout
simulation: HyO, CO, Oy, Hy, Ny, CH,) involved in 84 thermal and 25 photolytic
reactions. The values of initial concentrations for the most important species are
given in Table 4.7. No emissions have been prescribed. For a complete description
of the problem we refer to the NASA ftp site. Information about the stiffness of

the problem in terms of the eigenvalues of the Jacobian is given in Table 4.8.

4.2.6 Problem G: aqueous model
From the numerical point of view, this test problem is the most difficult one.
It contains 65 species (plus 5 species whose concentrations were held fixed: H,O
(vapour), HyO (drops), C Hy, Oy, COy(aq)) involved in 77 thermal and 11 photolytic
gas-phase chemical reactions, 39 liquid-phase chemical reactions and 39 gas-liquid
mass transfer reactions. The gas-phase mechanism is based on CBM-1V, while the
liquid-phase mechanism is based on a chemical scheme the authors obtained from

[60]. Initial concentrations are given in Table 4.10. Information about the stiffness

Table 4.7. Initial concentrations and physical conditions for the stratospheric

110

problem F.

Species | Initial | Species Initial

(ppb) (ppb)
(@] 8.15 || O3 656
NO 10.7 || NO, 2.75
HNO; | 0.35 || HyO 6100
OH 0.2 HO, 0.14
H, 370 || CH, 490
coO 20 Clo 1
HC? 2.15 | HOCY 0.22
Temperature 241.43 K
Altitude 40 km
Latitude 65° N
Pressure 2.7 mbar

Air density

8.12-10%6 mlc/cm3

111

Table 4.8. Distribution of real part of the spectrum of the Jacobian for the
stratospheric problem F.

Problem F
Species % Re (\;)
O(*D) —2.53 - 108
HCO —1.06 - 10°
CtO0 —1.70 - 10*
CH; —9.98 - 102
H —1.17- 102
CH50 —16
Ct —4.5
O(3P) —1.37
All other € [—0.5,~ 0]

112

Table 4.9. Distribution of real part of the spectrum of the Jacobian for the
aqueous problem G.

Problem G

Species i Re ()

HNOj (4 ~2.2-10°

O('D) —8.1-108

OH(;q) -1.8-107

SOF g -1.3-107
HCOOH 44), SO3 (ag), -1.25e+7, -3.65e+6, -1e+6,
HCOO,y, NH3 (ag), 0(2;1), -4.2e+5, -1.3e+5, -8.2e+4,
HO3 (o), OH, O, H(J;q), -2e+4, -9e+3, -2.46e+3,
HSOg(aq),OH(aq), CH;0, -2.2e+3, -2e+42, -1.5e+2,
NOj (49 ROR,NOj3 (ag) -90, -30,-15

All other € [—10, ~ 0]

of the problem in terms of the eigenvalues of the Jacobian is given in Table 4.9. Of
numerical interest is the fact that only for the four most negative eigenvalues does
the relation \; &~ —L; hold, while (different from the gas-phase-only test problems)
the number of stiff eigenvalues is much larger. This is due to the rapid gas-liquid
phase kinetics. In Table 4.9 we have listed these large negative eigenvalues and
the species with large L;, but without making a one-to-one correspondence between

them.

Table 4.10. Initial concentrations and emissions for the aqueous problem G.

113

Species | Initial Emission | Species Initial
(ppb) | (ppb/hour) (ppb)

NO 0.2 0.01 O3 60

NO, 0.5 0.01 coO 200

H50, 1.5 — HCHO 1.0

PAR 1.2 — Ethene 2.4-1072

I1SOP 1.0 0.05 Xylene 2-1072

SO, 3.3-107? — Toluene 3-1072

Temperature 288.15 K

Altitude 0 km

Relative humidity 80 %

Liquid water 0.0436 %

Air density

2.50 - 10" mlc/cm?

114

4.3 Setup of experiments
e The variable step size control requires the choice of a relative error tolerance
rtol and an absolute error tolerance atol. The choices made for atol and rtol
differ per solver and are not specified here. Noteworthy is that at certain
times the concentrations of some species (e.g. radicals) can become smaller
than 1.0 mlc/cm®. Because these values are insignificant, they are ignored in

the step size control.

e Often we also prescribe a minimal step size. The use of a minimal step size
improves efficiency since extremely small steps can be selected by a variable
step size selection scheme. Atmospheric chemistry problems containing photo-
chemical reactions can possess time constants as small as 1078 to 10~ seconds
and step size selection mechanisms do signal these. However, these extremely
small step sizes are redundant because the minimal time constants of impor-
tance for photochemical chemistry models are of the order of seconds and
species with a time constant truly smaller almost instantaneously get in their
(solution dependent) steady state when they are perturbed. On the other
hand, too large lower bounds for the step size can cause convergence and loss

of accuracy problems to the numerical solvers.

e All sparse implicit solvers work with the analytical Jacobian matrix and can
be shown to mimic conservation rules which exist for the ODE system. This

does not hold for all of the explicit solvers.

e A numerical comparison should focus on modest accuracies, say relative accu-
racies near 1%. Higher accuracy levels are redundant for the actual practice

of air pollution modelling.

115

The solvers are tested as if they were used in an operator splitting environment.
This means that we split the total integration interval into N subintervals of length
At. For each subinterval we then restart the integration of the stiff solvers. For
all test problems the length of the subintervals equals At = 3600 sec. leading to
N = 120 new starts over the 5 day period. The 3600 sec. subinterval means
that we reckon with a 1800 sec. transport time step, assuming a Strang splitting
symmetrized around the chemistry step. It should be stressed that the choice of
the subinterval length is important for a box-model comparison, since this length
determines the number of restarts. Restarts are expensive for implicit solvers using
a Newton type iteration due to the linear algebra overhead. This holds in particular
for the multistep solvers Vode and Lsodes. For the one-step implicit solvers Rodas
and Sdirk4 the penalty is less, since they are able to enlarge the step size after
restart considerably faster. Generally, for any explicit solver the penalty is also less
because of the absence of linear algebra overhead.

All test problems contain photochemical reactions. This means that part of
the reaction constants are determined by time of the day dependent photolysis rates
which undergo a rapid change at sunrise and sunset. This change gives rise to large
variations in concentration values and normally force a solver to adjust the step size.
In Problem A the photolysis rates are given by a C° function, while in Problems B,
C, D, E, Fand G by a C' function which are zero at nightly periods.

All the runs were made in double precision on a HP-UX 935 A workstation
with a CPU clock frequency of 125 megaherz and 160 Mbytes RAM. The numerical
results for all test problems are compared to a very accurate reference solution
computed by the code Radaub from [47] with the very tight tolerances rtol =

1072, atol; = 10 'y;, where 7; estimates the magnitude of the concentration of

116

species ¢ in unit mlc/cm?’. Our measure of accuracy is based on a modified root
mean square norm of the relative error. With the reference solution y and the
numerical solution ¢ available at {t, = to +nAt, 0 <n < N}, we first compute for

each species k

2

ERp = | —. C Je={n:) >a). (41

|‘7k‘ neJy

yk(tn) - yAlc(tn)
Hence we compute specieswise a temporal error measure, which we then represent

in the plots in two ways. Through the number of significant digits for the average

of ERy, defined by
SDA; = —logy, (i f: ERk> , (4.2)
M =
and the number of significant digits for the maximum of E Ry, defined by
SDA = —log, (ml?x ERy). (4.3)
The threshold factor a used here is given the value a = 1.0 mlc/cm®. If the set
Jx is empty, the value of ERy is neglected. The purpose of considering the above
defined error measure instead of the root mean square norm (a = 0) is to avoid
chemically meaningless large relative errors for concentration values smaller than
1.0 mlc/cm3. Tt is instructive to present the accuracy of the computed results using
averaged and maximal errors taken over the number of species. Finally, in the
work-precision diagrams of the following section, efficiency is measured by CPU
time. This is of course dependent on the computer architecture used. However, the
relative magnitudes shown here should be applicable to scalar computers in general.
We thus plot the SDA values against the measured CPU times on a logarithmic
scale in unit seconds. Observe that SDA = 2 means 1% accuracy in the error

measure used. In discussing the results presented in the next section we focus on

this accuracy level. The different data points in the plots for the same solvers are

117

associated to runs carried out for different relative tolerances.

4.3.1 Splitting interval

The tests are intended to simulate an operator splitting environment. In air

quality models, most often a symmetric splitting is used, for example:
TwAt o TyAt o TzAt o Ot o TZAt o TyAt o TwAt

where TjAt stands for transport in direction j for a time interval At and C' is the
chemistry solution operator. Thus the restart time or splitting interval equals 2At.
For Problem A we have chosen a restart time of 40 min. and for all other problems 60
min. A restart time of 60 min. corresponds to a transport step size of 30 minutes
due to the symmetry of splitting. For the two urban scenarios (test problems B
and D) additional simulations were carried out with a restart each 15 minutes; this

corresponds to a splitting interval of 7.5 minutes for the transport scheme.

4.3.2 Emissions

For all problems except the stratospheric problem F, emissions are prescribed.
In the experiments we have computed emissions at the beginning of each split inter-
val, simulating a form of operator splitting. This means that species solutions for
which emissions occur, are made discontinuous so that at any restart initial tran-
sients occur. We thus simulate, to some extent, what happens in a true transport
computation where one also encounters initial transients at any restart. As a rule,
strong initial transients make the nonlinear stiff problems harder to solve. If we

would compute the emissions along with the integration over the split intervals,

118

then all species solutions remain continuous at restart.

4.3.3 Steering parameters
For variable step size solvers the important steering parameters are hgiqrt,
h

and the local error tolerances atol, rtol. A user-specified h is important.

min min
Without a prescribed minimum, step sizes can result as small as the shortest time
constants, sometimes even ~ 1078 to 107% sec. Step size values close to these
extremely short time constants are redundant, since the minimal time constants of
importance for photochemical models lie between 1 sec. and 1 min., approximately.
On the temporal scale of interest, species with a smaller time constant quickly
reach their (solution dependent) steady state when they are perturbed. On the
other hand, most solvers require a relatively small step size at the start to resolve
the initial transients.

Through trial and error we have prescribed the following values for h,,;, and
hgtart Which are imposed for all solvers (except EBI): for the tropospheric Problems
A-E, hpip = 0.1 sec and hgiqrt = 60 sec; for the stratospheric Problem F, by, =
hgtart = 0.001 sec; and for the aqueous Problem G, Ay, iy = hgtart = 0.0001 sec.
These values concern the 1 hour restart time. For the tropospheric problems B,D
with the 15 min. restart time, we have taken hgtypt = Ay = 0.1 sec.

For all problems and all solvers except EBI, we have prescribed the absolute
tolerance value atol = 0.01 mlc/cm?® along with a sequence of relative tolerance

values rtol such that effectively relative local error control is imposed. For a given

method , the different data points in the accuracy-efficiency plots correspond to this

119

sequence. The values used are

rtol =1.0,3.0107,1.0107%,3.01072,1.01072,3.01072,1.01073,3.0107%,1.0 102

Needless to mention that the actual resulting accuracies are always different from
the given local tolerances. The tolerances merely govern the local error and step size
control. Also note that for very large values of rtol, say rtol > 0.1, the control is
very loose so that a negative number of significant digits (4.4) or even a breakdown
may be the result. Note that a negative number of significant digits (4.4) means rel-
ative errors greater than 100%. The Rosenbrock solvers Rodas, Ros3 and the BDF
solver Vode showed breakdowns more often, Rodas3 only for rtol = 1, while Seulex
never failed and always returned a positive SDA. Also Twostep never encountered
a breakdown, only minor negative SDA values. Data points corresponding to a
breakdown or a negative result, as well as points with SDA > 4 or with an excep-
tionally large CPU time have been skipped from the plots. We have used a wide

range of tolerances merely for illustrative purposes.

4.3.4 Accuracy
The numerical results were compared to a very accurate reference solution
(given by Radaub, rtol = 107!, componentwise set atol) using a temporal modified
root mean square norm of the relative error. With the reference solution y and the
numerical solution ¢ available at {t, = to +nAt, 0 < n < N}, we first compute for

each species k

1 2

ERy = |—-
|jk| neJg

Yk (tn) - yAk (tn)
Y (tn)

120

where J, = {0 <n < N : yg(t,) > a}. This value is then represented in the plots
through the number of significant digits for the maximum of E Ry, defined by
SDA = —logy, (maxy ERy). (4.4)
Note that if the set J; is empty for a chosen threshold a, the value of ERy is
neglected. This threshold factor serves to eliminate chemically meaningless large
relative errors for concentration values smaller than @ mlc/cm? in the error measure.
We used a = 10° mlc/cm? for all tropospheric problems and a = 10* mlc/cm? for
the stratospheric one. Additional experiments performed with @ = 1 mlc/cm?® led
to nearly the same conclusions. In all plots presented in the remainder for problems
B - F, including those for the 15 min. restart times for B, D, we have used N =
120. So we always sample at the endpoint of each hour over the whole 5 days. For
Problem A we sample at the end of every 40 min. Observe that SDA = 2 means
1% accuracy in the error measure used. In discussing the results in the next section

we focus on this accuracy level.

4.3.5 Timing

The answer to the question of which method is ”the fastest” may depend also
on the machine. In order to measure the influence of the hardware on the relative
performance of integrators we have performed all the numerical experiments on
two completely different architectures, namely a HP-UX 935 A workstation (double
precision, ~ 14 digits) and a Cray C98 (scalar mode, single precision, a 14 digits); in
addition, some of the experiments were also repeated on a SGI workstation (double
precision, &~ 14 digits). Very similar results were found. As a consequence, in

what follows only the HP work-precision diagrams are presented. We plot the SD A

121

values against efficiency, i.e., the measured CPU times on a logarithmic scale in unit

seconds.

4.3.6 Reaction coefficients

In practice the rate coefficients can be implemented in two ways, either as
time-continuous functions or as functions piecewise constant per split interval. The
time-continuous function implementation of the thermal rate coefficients may lead
to a large number of exponential function evaluations per time step, which are very
costly. For example, with Rosenbrock methods we observed that these calculations
can be as expensive as the sparse matrix factorization. Since for the actual prac-
tice true time dependency seems redundant, we have used piecewise constant rate
coefficients per operator-split subinterval (temperature and solar angle frozen using
values halfway). Observe that in (Sandu et al., 1996a) time-continuous values were
used. We did again a number of tests with time-continuous values in the current
investigation but observed no notable differences in the relative performances of the

solvers.

4.4 Results - part 1

4.4.1 Problem A: EUSMOG model
The work-precision diagram is given in Figure 4.1. The implicit integrators
and the two versions of Twostep perform very well. For an accuracy of two digits,
sparse Vode appears to be the fastest. The good performance of implicit integrators

is due in part to the small dimension of the system which means less work with

122

the linear algebra. Note that the Jacobi and Gauss-Seidel versions of Twostep have
similar performance for this test problem (see also [89]). It is clear that the simplest
Qssa solver, ET and Chemeq are the slowest among the tested routines. It is also

worth noting that the Qssa performance greatly improves by extrapolation.

Problem A (EUSMOG). SDA_inf.

Problem A (EUSMOG). SDA 1.
— . . 4 . —r

—
/

35¢ A J 35t

w
~
w

~
o
~
[

Number of Accurate Digits

—
o

r~

i
CPU time [seconds]

Number of Accurate Digits

—
o

r~

i
CPU time [seconds]

Figure 4.1. Work-precision diagram for test problem A (EUSMOG): Twostep
Seidel (dashed), Twostep Jacobi (dashed with “0”), Qssa (dots),
Extrapolated Qssa (dots with “0”), ET (dots with “x”), Chemeq
(dash-dots), Sparse Vode (solid), Sparse Sdirk4 (solid with “x”),
Sparse Rodas (solid with “x”) and Lsodes (solid with “0”).

4.4.2 Problems B and C: CBM-IV model
In Figure 4.2 the numerical results for test problems B and C are presented.

For obtaining two accurate digits, Rodas appears to be the fastest, followed by

123

Sdirk4, Vode, Lsodes and Twostep Seidel. The latter is the best when less accuracy
is demanded, while the implicit codes are preferable for higher precisions. This
is due to the fact that they use higher order formulas (nicely represented by the
higher slopes of their diagrams). An interesting remark is that the slope of the
Twostep Jacobi diagram decreases when higher accuracies are required. This is due
to an imposed minimal step size of 0.01 sec., which makes the convergence of the
Jacobi iteration very slow on part of the time interval. Since Twostep was used
with a fixed number of only two iterations, this is directly reflected in the accuracy
of the solution. A minimal step size larger than 0.1 sec. creates similar problems
in Twostep Seidel. The gap between the two Twostep diagrams is due primarily
to the different values of the minimal step size used: 0.01 sec. for Jacobi and 0.1
sec. for Seidel. The explicit solver ET is not competitive at all. Its work-precision
diagram is situated to the far right of Figure 4.2. Among the other integrators,
Qssa is clearly the slowest, but by extrapolation it gains about one accurate digit
for the same CPU time. In both scenarios Chemeq performs better than the plain
Qssa scheme but worse than Extrapolated Qssa. As expected, the Lsodes and
sparse Vode diagrams are similar, except that the Lsodes one is shifted to the right.
Working with predefined sparsity data structures, Vode is consistently faster than
the general purpose Lsodes. However, despite its generality, for test problems B and

C Lsodes performs very well.

4.4.3 Problems D and E: AL model

The results are reported in Figure 4.3. It is interesting to compare code

performances to those obtained for test problems B and C, since the same urban

Problem B (CBM-IV URBAN). SDA inf

35r

~
r~ o w

Number of Accurate Digits

—
o

10
CPU time [seconds]

35r

Number of Accurate Digits
w

—
o

~
o

r~

PROBLEM C (CBM-IV RURAL). SDA_inf.

7T

05

CPU time [seconds]

124

Problem B (CBM-IV URBAN). SDA 1.

35r

Number of Accurate Digits

w
T

~
o
T

>
T

—
o
T

10
CPU time [seconds]

PROBLEM C (CBM-IV RURAL). SDA 1.

35

o
> o w

Number of Accurate Digits

—
o

05—

yARREE

10
CPU time [seconds]

Figure 4.2. Work-precision diagram for test problems B and ¢ (CBM-IV):
The upper pair of diagrams correspond to problem B and the
lower pair to problem C. Twostep Seidel (dashed), Twostep Ja-
cobi (dashed with “0”), Qssa (dots), Extrapolated Qssa (dots
with “0”), ET (dots with “x”) Chemeq (dash-dots), Sparse Vode
(solid), Sparse Sdirk4 (solid with “x”), Sparse Rodas (solid with
“x”) and Lsodes (solid with “0”).

125

and rural scenarios are simulated with both CBM-IV and AL. They differ however
in the number of reactions and species, the current problems D and E being much
larger. If a standard implementation of the implicit solvers was used, their linear
algebra workload would have increased as m?, with m the number of species, while
for dedicated explicit integrators the workload increases linearly with m. Thus,
at first sight, for sufficiently large problems use of explicit integrators seems to be
preferable. Because we use a sparse linear algebra implementation, the situation
becomes truly different. For the sparse implementation a rough estimation of the
linear algebra workload is given by the number of nonzero elements in the Newton
matrix. As seen in Table 4.1, this number increases almost linearly with m for the
test mechanisms considered here. This means that even for fairly large chemical
systems, sparse implicit solvers may very well remain competitive. Our test results
shown in Figure 4.3 clearly illustrate this. For both problems all sparse implicit
solvers outperform the dedicated explicit ones, with the exception of Twostep Seidel.
The gap between this code and its Jacobi version is again due to the fact that Seidel
iterations allow the use of larger values for the minimal step size. Still, this imposed
minimal step size causes convergence problems at part of the time interval, which
explains the curious slopes of Twostep in the range of high accuracies for the more
difficult urban scenario. Noteworthy is that the one-step solver Rodas is the fastest
in the 1% error region. For the more difficult urban problem, the two one-step
solvers Rodas and Sdirk4 are always faster than their BDF counterparts Vode and
Lsodes. The explicit solver ET fails to integrate problem D and is among the slowest
for problem E. The Chemeq diagram is in between that for Qssa and Extrapolated
Qssa. The latter clearly performs better in the rural cases than in the urban ones

for both CBM-1V and AL mechanisms.

126

Problem D (STEM URBAN). SDA i Problem D (STEM URBAN). SDA 1.

4 : — : 4 : —
35¢ 35F
3r 3r
2 2
° o
) a
0]
52.5’ 52.5,
5 5
Q Q
Q 5]
< <
S 2r 8 ok
[} [
o} Q
£ £
3 3
z z
157 15¢
1r 1r
7/
05 e ‘ 05 —
10 10
CPU time [seconds] CPU time [seconds]
Problem E (STEM RURAL). SDA inf Problem E (STEM RURAL). SDA L.
4 : e : 4 1
/ e
v
7/
35 35f /
T %
I 3 o
L] 2 ,
° o /
[8 o *
0] 7
257 T 25¢ ’
5 5 4
Q Q /
Q 0
< d ¥
S 2r 8 2k
[} [
o} Q
£ £
2 z
15 15f ¥
1r 1r
0
05 T ‘ 05 e
' 0 0k 10
CPU time [seconds] CPU time [seconds]

Figure 4.3. Work-precision diagram for test problems D and E (AL): The up-
per pair of diagrams correspond to test problem D, while lower
pair to test problem E. Twostep Seidel (dashed), Twostep Ja-
cobi (dashed with “0”), Qssa (dots), Extrapolated Qssa (dots
with “0”), ET (dots with “x”), Chemeq (dash-dots), Sparse Vode
(solid), Sparse Sdirk4 (solid with “x”), Sparse Rodas (solid with
“x”) and Lsodes (solid with “0”).

127

4.4.4 Problem F: stratospheric model

This problem has about the same dimension as the two CBM-IV problems, but
the integrators perform quite differently relative to each other as shown in Figure
4.4. The implicit integrators work best. There is not much difference between their
performances, but there is a large gap between them and the explicit codes, with
the largest for ET, Chemeq and the two Qssa solvers. In particular, for this problem
the implicit codes require less CPU time than for CBM-IV, whereas for T'wostep the
amount of CPU time almost remains equal. From an additional investigation we
learned that the absence of emissions in the stratospheric problem must play a role
here. Without emissions, concentration values vary less in between the one hour
subintervals. The implicit solvers enjoy this, since as a rule they allow larger step
sizes than Twostep. We have checked this observation by removing the emissions in
the CBM-IV model. In this case the implicit solvers also integrate much faster, the

CPU timings being then similar to those obtained for the stratospheric problem.

4.4.5 Problem G: aqueous model
As we have previously seen, this test problem has a large number of stiff eigen-
values, most of which cannot be associated to certain short lived species. This makes
the test problem G numerically challenging in the sense that the explicit methods
fail. Numerical results confirm that the explicit formulas described in Section 3
cannot solve this problem with a reasonable efficiency. We tested each routine with

the loosest restrictions on step size and tolerance for which the numerical results

Problem F (STRATO). SDA_inf. Problem F (STRATO). SDA_L.
4 T T T L A 4 U T T T LA |
/
/
//
350 1 350 o/ 1
i
i
oy
oy
3r q ki ry 1
2 2 s
ko) ko) 1o
a a o
9 9 g 7
§25) 1 §25) S 1
3 3 /7
3 3 /o
< < a
° g : ° g " 1
0] 0] and
o} o} /7
£ [0/
3 3 s
z z ;o
15¢ 1 15f ./ 0 1
7/
/// (0] e
1F 1 1F 7 X
0 e
p y *
. 0 ,
05 * 05 ‘0 ' ' ‘1
10 10
CPU time [seconds] CPU time [seconds]

Figure 4.4. Work-precision diagram for test problem F (STRATO): Twostep

Seidel (dashed), Twostep Jacobi (dashed with “0”), Qssa (dots),

128

Extrapolated Qssa (dots with “0”), ET (dots with “x¥”), Chemeq

(dash-dots), Sparse Vode (solid), Sparse Sdirk4 (solid with “x”),
Sparse Rodas (solid with “x”) and Lsodes (solid with “0”).

129

were still meaningfull. See the codes [39] for the exact setting of the parameters.
The timings obtained for integrating the first 10 seconds (or 1 hour) of evolution
are given in Table 4.11. When looking at the results, keep in mind the fact that
all the implicit solvers integrate the test problem along the five days interval in less
than 10 seconds CPU time. Among the dedicated integrators, Twostep Seidel per-
forms best. However, even this code selects very small step sizes, which is not the
case when a fully implicit implementation of the BDF2 formula is used (Vode with
restricted maximal order). The behaviour of the dedicated integrators is typical
for standard explicit formulas applied to general stiff problems. To make the terms
of comparison more clear, we estimated the CPU time that would be needed to
complete the five days simulation. This estimated time is given in the last column
of Table 4.11. The explicit solver ET gives a floating point exception on this test
problem and is not included in the table.

Some effort has been made to optimize the performance of the implicit solvers
for this test problem. Rodas and Sdirk4 were used with a minimal stepsize of 103
sec., while for Vode a minimum of 1078 sec. appeared to be best. No minimal step
size was prescribed for Lsodes. For sparse Vode the maximal order was restricted to
3. Although the original Vode had no problems integrating this model, the sparse
version selected tiny step sizes when a maximal order of 4 or 5 was used. The
work-precision diagram for the implicit schemes is given in Figure 4.5, which shows

that Rodas, Vode and Sdirk4 perform equally well.

Table 4.11. The timing of dedicated integrators on test problem G. The last
column represents the estimated CPU time needed to complete
the five days simulation.

130

Integrator | Simulated | CPU Estimated

interval time total CPU

Qssa 10 sec 19 min 350 days
Extrap Qssa 10 sec 33 min 650 days
Chemeq 10 sec 0.5 min 15 days
Twostep J 10 sec 9 min 270 days

Twostep S 3600 sec | 5.3 min 10.3 hours

Problem G (WET). SDA_inf.

350

~
~ o w

Number of Accurate Digits

—
o

05
2

CPU time [seconds]

350

Number of Accurate Digits

—
o
T

05

Problem G (WET). SDA_L.

w
T

r~
o
T

~
T

CPU time [seconds]

Figure 4.5. Work-precision diagram for test problem G (Aqueous): Sparse
(solid), Sparse Sdirk4 (solid with “x”), Sparse Rodas (solid with
“x”) and Lsodes (solid with “0”).

131

4.5 Results - part 2

4.5.1 Problem A: TMk model

The work precision diagram is given in Figure 4.6. Results are presented for
all the solvers discussed above, including EBI. The EBI results are obtained with
constant step sizes of length

h = 40/80,40/40,40/20,40/10,40/6,40/5,40/4,40/3 min.

The number of iterations within EBI was in all runs equal to 8 (cf. (Dentener,
1996)). The results show that the variable step size Rosenbrock solvers are clearly
superior to all others for 1% accuracy. Seulex appears to be faster than Vode,
but slower than the Rosenbrock codes. However, the gap between these solvers
decreases for higher accuracies. Among the Rosenbrock codes, Rodas3 and Ros3
have similar performance in the low accuracy domain; they are followed closely by
Rodas. EBI and Twostep perform reliably but cannot compete with Rodas3 over

the whole accuracy range.

132

Problem A (TMkK)
T T

SDA

O Il Il Il Il L1 Il Il Il Il Il Il Il Il
04 .05 .07 0.1 0.2 0.3 0.5 0.7 1
CPU time [seconds]

Figure 4.6. Work-precision diagram for test problem A (TMk): Sparse Ro-
das3 (solid with “x”), Sparse Ros3 (solid with “x”), Sparse Ro-
das (solid with “0”), Twostep Seidel (dots with “x”), Sparse Vode
(dots with “0”), Sparse Seulex (dashed with “0”) and EBI (dash-
dots with “0”).

4.5.2 Problems B and C: CBM-IV model
In Figure 4.7 the results for test problems B (one hour restart time) and
C are presented. For the rural problem all Rosenbrock solvers perform equally
well, followed by Seulex, while Vode and Twostep fall behind. This also holds for
the urban problem, but now a distinction exists between Rodas3,Ros3 and Seulex,
Rodas. Up to about 3 digits Rodas3 and Ros3 perform best. For accuracies higher

than 3 digits Rodas takes over.

133

The results for the urban problem with a 15 min. restart time are presented
in Figure 4.9. The relative performances between the solvers remains almost the
same. The main difference with the 1 hour restart time is seen in the CPU times.
All integrations become roughly 3 to 4 times more expensive, showing that all
solvers spend most of their time in the start-up phase. Recall that the start-up

phase has become longer as we have lowered hgtapt from 60 sec. to h =0.1

min
sec. The 60 sec. starting step size was found too large for the Rosenbrock solvers
for a good performance. This indicates that they must spent quite an effort in
resolving the initial transients. However, they remain competitive, in particular
Ros3 and Rodas3. The figure also contains results for the most simple Qssa solver

we previously applied in (Sandu et al., 1996a). However, this solver again lags

behind to all others.

Problem B (CBM-IV URBAN)

350

250

SDA
o

150

05F 7

0
03

Il
04 05

07 1
CPU time [seconds]

SDA

Problem C (CBM-IV RURAL)

051

LI B
7

05

0.7 1

CPU time [seconds]

134

Figure 4.7. Work-precision diagram for test problems B and C (CBM-IV):
Sparse Rodas3 (solid with “x”), Sparse Ros3 (solid with “x”),
Sparse Rodas (solid with “0”), Twostep Seidel (dots with “x”),
Spa)rse Vode (dots with “0”) and Sparse Seulex (dashed with
“0’7 .

4.5.3 Problems D and E: AL model

For problems D and E with 1 hour restart time the results are given in Figure

4.8. Tt is interesting to compare code performances to those obtained for the CBM-

IV model since the same urban and rural scenario’s are simulated. They differ,

however, in the number of species and reactions, the AL model being considerably

larger. For the urban problem Rodas3 and Ros3 are again the fastest, up to 3 digits,

while for higher accuracies Rodas becomes better. Seulex now performs somewhat

135

less than for the CBM-IV model, whereas Twostep is notably better positioned. In
the rural case all solvers perform close, except Vode; both in the rural and urban
case Vode falls behind. Notable is the close performance of Ros3 and Rodas3. As
a general conclusion, Rosenbrock codes are again superior to the BDF ones. The
better relative positioning of Twostep (as compared to the CBM-IV cases) is most
likely due to the increased number of species in AL.

The results for the urban problem with a 15 min. restart time are presented
in Figure 4.9. We see more or less the same behaviour relative to the 1 hour restart
time as for the CBM-IV problem. Now Twostep has become competitive to Rodas3
and Ros3 in the 10% error range, while the curve for Rodas reveals a rather strong
non-monotonic accuracy-efficiency behaviour. Again the Qssa solver we previously

applied in (Sandu et al., 1996a) severely lags behind to all others.

4.5.4 Problem F: stratospheric model
The work-precision diagram given in Figure 4.10 again reveals a very good per-
formance of the Rosenbrock solvers compared to the other three. The higher order
of accuracy of Rodas is again borne out and again notable is the close performance
of Ros3 and Rodas3. Vode and Seulex have similar performance, but are more
than 2 times slower than the Rosenbrock codes in the 1% accuracy range. Twostep
follows at a large distance. We should recall, however, that for this problem no

emissions were prescribed.

Problem D (AL URBAN)

g
a]
0]

Problem E (AL RURAL)
T 4

SDA

Figure 4.8.

|
2 3 4 5 678 10

0 Il Il Il Il Il Il Il
03 04 05 07 1 2 3 4 5 67
CPU time [seconds]

CPU time [seconds]

Work-precision diagram for test problems D and E (AL): Sparse
Rodas3 (solid with “x”), Sparse Ros3 (solid with “x”), Sparse
Rodas (solid with “0”), Twostep Seidel (dots with “x”), Sparse
Vode (dots with “0”) and Sparse Seulex (dashed with “0”)

136

Problem B (CBM-IV URBAN) - 15 min restart Problem D (AL URBAN) - 15 min restart
4 T T T T) T 4
P2
35 / 1 35 1
o
3 X] 3]
0
25¢ 1 25¢ 1
0

g 0 g
a 2+ 1 a2+ 1
0 0

15F 1 15F 1

1F 1 1F 0 1

X 0 0 R
0.5) PR 0.5p X 1
x T
- X~
0 L L L L I - L L L L L 0 L L L L L L L L L L
08 1 2 3 4 5 6 78 10 2 3 4 5 6 78 10 12 15 20 5
CPU time [seconds] CPU time [seconds]

Figure 4.9. Work-precision diagram for test problems B (CBM-IV urban) and
D (AL urban), with a restart each 15 minutes: Sparse Rodas3
solid with “x”), Sparse Ros3 (solid with “x”), Sparse Rodas
solid with “0”), Twostep Seidel (dots with “x”), Sparse Vode
dots with “0”), Sparse Seulex (dashed with “0”) and Qssa (dash-
dots with “x”).

137

Problem F (STRATO)

35F

25F

SDA
)

15f

051

0 Il Il Il Il
0.2 03 04 05 0.7 1 2
CPU time [seconds]

Figure 4.10. Work-precision diagram for test problem F (Strato): Sparse Ro-
das3 (solid with “x”), Sparse Ros3 (solid with “x”), Sparse Ro-
das (solid with “0”), Twostep Seidel (dots with “x”), Sparse
Vode (dots with “0”) and Sparse Seulex (dashed with “0”).

138

139

4.5.5 Problem G: aqueous model

As pointed out in [76], this test problem is the most difficult one from the
numerical point of view. The Jacobian f'(y) of the derivative function (3.1) contains
stiff eigenvalues for which the relation \; ~ —L; (with L; the destruction term
associated with species i) does not hold. Such eigenvalues are due to the rapid
gas-liquid phase interactions and cannot be associated with certain species; for
this reason, all the explicit solvers tested in [76] failed to efficiently integrate the
Aqueous model. As a consequence, in the present work Twostep was not applied
to this problem. The results plotted in Figure 4.11 for the other solvers are very
much in line with those for the stratospheric problem. In the low accuracy range the
Rosenbrock family has the lead again, the performances of Rodas, Rodas3 and Ros3
being very close to each other. Seulex is about three times slower for 2 accurate
digits, but seems to become the best for more than 4 digits; for higher accuracies,

Vode changes slope and is not competitive.

4.6 Overall conclusions and remarks

The answer to the question of which stiff integrator is “the best” for being
used in air quality models depends on a multitude of factors, some of the most
important being the specific chemical mechanism employed, the desired accuracy
level and the hardware on which the code runs. In the present work we considered
a variety of chemical models, we covered the whole range of accuracy levels of
practical interest and tested everything on two machines with completely different
architectures. The set of tested codes includes Twostep and sparse versions of

the extrapolation code Seulex, of the state-of-the-art BDF codes Lsode, Vode, the

Problem G (AQUEOUS)
T

35F

25F

SDA
)

15f

051

CPU time [seconds]

Figure 4.11. Work-precision diagram for test problem G (Aqueous): Sparse
Rodas3 (solid with “x”), Sparse Ros3 (solid with “x”), Sparse
Rodas (solid with “0”), Sparse Vode (dots with “0”) and Sparse
Seulex (dashed with “0”).

140

141

Runge-Kutta-type code Sdirk4 and the Runge-Kutta-Rosenbrock-type codes Rodas,
Rodas3, Ros3 and Ros4. We have not considered in this benchmark the widely used
BDF code Smvgear (Jacobson, 1994). This code is organized to specifically target
a vector machine; running it in scalar mode on box models would lead to less than
optimal results. We expect that for box models the performance of Smvgear will
not differ much from that of sparse Lsode and Vode, as it is based on the first BDF
code from Gear (1971). In the numerical ODE literature, this first Gear code has
been replaced by the related solvers Lsode and Vode.

Although we have used utmost precaution in implementing the models and
in testing the codes, still undiscovered errors and/or less optimal settings of user
parameters may have affected part of the numerical results. The interested reader
therefore is invited to repeat the experiments using our codes from (CGRER ftp

site, 1996). The present results give rise to the following main conclusions:

e The sparse implicit solvers work efficiently for all problems tested here, includ-
ing the gas-liquid phase one. In all the cases they give the fastest solution,
when two or more accurate digits are required. In general Rodas, Vode and
Sdirk4 have comparable performances, although their ranking relative to each
other may differ per problem. It should be noted that Vode appeared to be
somewhat sensitive to the choice of the absolute tolerances and the choice of

a minimal step size.

e For all the test problems considered here and within 4 digits of accuracy the
Rosenbrock solvers clearly provide the most cost-effective solutions among the

codes tested in this paper and in (Sandu et al., 1996a).

e The relative ranking between the four sparse Rosenbrock solvers differs per

142

problem, but only to a limited amount. For lower accuracies of practical inter-
est Rodas3 and Ros3 are usually the best. As expected, for higher accuracies
Rodas is mostly competitive; the performance of the solver Ros4 is close to
that of Rodas3 and Ros3. In passing we note that our test results do not
consistently show that the property of stiff accuracy is truly advantageous for

nonlinear problems.

The above conclusion about the computational speed and accuracy of Rosen-
brock methods is also supported by the comparison with the EBI method for
Problem A and with the Qssa method for Problems B,D with a 15 min. restart
time (the latter has been tested more extensively in (Sandu et al., 1996a)).

Noteworthy is that the Qssa solver lags very far behind in all our experiments.

Also robustness and ease of use are very important since in actual 3D transport
a subtle tuning of the ODE code is cumbersome due to the large variety
of conditions that will occur at different grid points. In this respect the
Rosenbrock solvers are advocated as well. With the preprocessor KPP at

hand, they are easy to use.

Concerning robustness we have to point out that large values of rtol (> 0.1 say)
combined with too large values for A, and hggay can cause the Rosenbrock
solvers to drift away from the real solution, see Table 4.12. In these cases
the initial transients are not resolved sufficiently accurately. Implicit solvers
can also get into trouble here through convergence failures in the iterative
modified Newton process. These problems can easily be avoided by choosing
hiin and hgtart sufficiently small and rtol < 0.01. Since Rosenbrock solvers

may increase the step size rapidly, they can remain cost effective even with

143
smaller starting values.

The extrapolation code Seulex never ran into a breakdown or returned a
negative result. Apparently this code works very robust. However, in the low

accuracy range Seulex is always significantly more expensive than Rodas3.

With regard to robustness, also EBI performs outstanding. The method does
not break down when used with a very large step size. We have only applied
it to the TMk model we got from (Dentener, 1996), but our experience is in
accordance with that reported in (Hertel et al., 1993) and (Krol, 1996) for
different variants of the CBM-IV mechanism. Of course, the main drawback
of the EBI approach is that it is intertwined with the chemistry and needs
to be adjusted and retested any time the chemistry model is changed. The
low accuracy of the solver is mainly due to the use of the first order Euler
backward method. Implementation of the EBI approach with a higher order

solver (e.g. Twostep) may lead to a notable improvement of accuracy.

Twostep also performs extremely well with regard to robustness. The entries
in Table 4.12 are due to negative SDA values, rather than breakdowns. This
solver can handle both very large step sizes and crude tolerances. It seems
to have only one serious limitation, which concerns gas-aqueous phase mod-
els. These models do require a linearly or fully implicit solver (Sandu et al.,
1996a). Even though in our test problems it lags behind Rosenbrock solvers,
Twostep remains, due to its explicit nature, an excellent candidate for very
large tropospheric gas-phase problems with very small operator split steps.

An additional advantage is that the Gauss-Seidel approach on which Twostep

144

is based, can be effectively extended towards a tridiagonal Gauss-Seidel ap-
proach for the coupled solution of chemistry and vertical turbulent diffusion

(Verwer et al., 1996a, Spee et al., 1996).

Of the dedicated explicit solvers, Twostep is clearly the best. This solver
outperforms the other explicit solvers on all problems, often with a wide gap.
Twostep is advocated for gas-phase problems only. This code should not
be applied to gas-liquid phase problems. In general T'wostep Seidel is more
efficient than Twostep Jacobi. However, Gauss-Seidel iteration must be pro-
grammed in line which makes Twostep Jacobi somewhat easier to use. It
is important to note that dedicated explicit solvers can sometimes be signif-
icantly improved by problem dependent modifications like lumping and/or
group iteration. Of course, this requires a considerable knowledge of the re-

action mechanism.

In most cases sparse Vode is more efficient than the related sparse BDF solver
Lsodes. We owe this to the fact that Vode uses a dedicated sparsity technique,
whereas Lsodes uses the general Yale sparse matrix package. We should also
mention that Lsodes is used without a precribed minimal stepsize. Some
additional runs with sparse Vode without a minimal step size as well, demon-
strated that this plays a minor role, the difference in sparse matrix treatment
being more important. Both have been applied with the extra storage option

for the Jacobian matrix so as to avoid Jacobian updates when possible.

The best sparse implicit solvers and the best explicit solver (Twostep) should
also be compared in 3D model applications. While box model tests are needed

to select and develop promising ODE solvers, in real 3D transport-chemistry

145

models other factors should be taken into account as well. Quite important
is the length of the time step in the operator splitting, since this determines
the number of restarts. Restarts are expensive for implicit codes and one-step
methods of Runge-Kutta type have an advantage here over multistep methods.
Also robustness and ease of use are important in 3D models, since a subtle
tuning of the ODE code is cumbersome due to the large variety of conditions
that will occur at different gridpoints. Finally, the issues of memory use,
vectorization [54, 92| and parallelization are of great practical importance
too. Optimal ODE solvers should be tested in a 3D software environment

where vectorization and parallelization take place.

Often the work-precision curves are non-monotonic, revealing the situation
that more CPU time is spent, yet a less accurate solution is obtained. This
non-monotonicity is seen mostly for very low tolerances and is caused by
the step size selection process (and dynamic iteration strategies in implicit
solvers). These work out non-smoothly, as is for example shown very clearly
in the diagrams in (Hairer et al., 1991). Inspection of our diagrams shows
that the only variable step size solver yielding monotonic curves in all tests

presented is Twostep.

Finally, one word to the interested modellers. In this paper we present several
options not considered before for choosing a chemical solver. As mentioned
above, the performance depends on a multitude of factors; thus selecting an
integrator should involve testing the most promising codes on the particu-
lar application considered. In this context our benchmark results should be

thought of as guidelines, but they are no substitute for a careful, problem

146

specific testing.

Table 4.12. The values of rtol for which the codes either break down or give
a solution with more than 100 % relative error (negative SDA).

147

Test B D E F G
Code
Rodas 1, .3, .1 1, .3 - - -
RodasR3 1 1 - - -
Ros3 1, .3 1,.3 - - -
Twostep 1,.3 1 - 3, .1 all
Vode 1 1,.3,.1]1 1, .3 1

148

CHAPTER 5
KPP - AUTOMATIC GENERATION OF KINETIC EQUATIONS

5.1 Introduction

A significant part of the research in the atmospheric chemistry community is
to develop chemical mechanisms able to accurately describe the chemical processes
that determine the composition of trace species in the atmosphere. These chemical
mechanisms are then used for simulating on computer the time evolution of the
components of the atmosphere.

The kinetic preprocessor (KPP) described here solves the important problem
of automatically translating the chemical equations into FORTRAN or C code that
computes the evolution in time of the species starting with the specification of
the chemical mechanism. KPP translates the chemical mechanism into a set of
ordinary differential equations (more exactly, into a subroutine that computes the
derivatives) and links them to a numerical integration routine.

The set of kinetic equations describing the chemical mechanism form a very
stiff ODE system. General purpose integrators do not always offer the best solution,
therefore many specialized numerical integration schemes have been proposed. KPP
allows the selection of a numerical integrator from a rich set of integration schemes
and provides a benchmarking platform for evaluating new integrators.

The complexity of the transport problem requires parallel processing power
to be solved. KPP is able to generate parallel MPI (Message Passing Interface)

code. In this way by simple providing KPP with a model description, it is capable

149

of generating correct parallel simulation code for the model.
In the following I will briefly outline the mathematical formulation of the
kinetic problem, the user view of KPP and a short description of preprocessor’s

capabilities and language. A complete KPP documentation can be found in [25].

5.2 The kinetic equations
We will first describe the problem with the help of an example. Consider the

following generalized reaction mechanism for photochemical smog:

We know the initial concentrations, for example:

and for each case we would like to trace the evolution of the concentrations in
time for the next, say, 10 hours.
We know that the chemical kinetics is described by a set of ordinary differential

equations of the form:

dCi .

i > KR(G)-[[a - > KR(m) -] ca
jéE€production[c;] l medestruction[c;] n

where K R(7) is the rate constant of reaction i.

To be more exact, let us consider the ozone O3. It is produced in reaction 2

and destroyed in reaction 3. The rate of variation of ozone concentration is therefore

given by:
dO;]
S8 = KR() (0] (03] [M] - KR(2) - [NO] - 0] (5.)
O3 pr;(riuction O3 des‘t;‘uction

If we denote the “ozone production term” by:
P(03) = KR(1) - [0] - [0y] - [M]
and the “ozone destruction term” by:

D(0s) = KR(2) - [NO]

Table 5.1. Photochemical smog mechanism.

150

REACTION RATE CONSTANT
(em®molec’sec™1)
NOy+hyr — NO+O 0.533 min~!
O+0,+M — O3+ M 61073« (L))"
NO+0; — NO;+ 0, 2.2 10 Zexp (=120)
RH +OH- — RO,-+H,0O 1.68 % 10~ exp (#)
RCHO +OH- — RC(0)Os-+H20 6.9 % 10~ %exp (%2)
RCHO +hv — ROy-+HO,-+CO 1.91E — 4 min~!
HO,-+NO — NO,+ OH- 3.7 %10 2ezp (%
ROy-+NO — NOy;+ RCHO + HOy | 4.2 % 10 2exp (%)
RC(0)O5-+NO — NO,+ RO, - +CO, 4.2% 107 2exp (122)
OH-+NO, — HNO; 1.11 %1071
RC(0)Oy-+NO; — RC(0)O;NO, 4.7 % 10712
RC(0)O0;NO, — RC(0)Os - +NO, 1.95 x 1010exp (=15242)

Table 5.2. Different smog scenarios.

Initial concentration [ppm| | Case 1 | Case 2 Case 3
RH 0.1 0.5 2.0
RCHO 0.1 0.5 2.0
NO 0.5 0.5 0.5
NO, 0.1 0.1 0.1
others 0 0 0

151

we obtain:
d[Os]
dt
This is a general pattern; the evolution of any species can be described in

= P(03) — D(0s) - [03] (5.2)

terms of P and D. In order to trace the evolution of the chemical system in time,
we have to write the equations (5.1) or (5.2) for all the species in the reaction
mechanism and then to solve numerically this system starting with the given initial

values (cases 1, 2 and 3).

5.3 Possible implementations to
solve the kinetic problem
There are several different ways to solve the kinetical equations above. We

will discuss three of them which have been used in practice:

e The hardcoded methode. This approach means that the production and
the destruction functions related to the chemical equations are written by
hand and then translated into a programming language. This has been used
in STEM-I and STEM-II developed by Carmichael et. al. [14]. The language
used was FORTRAN-77. The advantage of this method conststs in the fact
that the subroutines that implement the production and the destruction terms
can be coded very efficiently in order to run very fast on a given computer.
The major disadvantage is that in order to make even minor changes in the
chemical mechanism one has to rewrite all the equations and therefore to

rewrite all the code from scratch. This make the methode very unreliable.

o At the other end is the totally integrated method. Here we have the

chemistry equation given in a special file, written in a specific description

152

language. The program parses the equations and stores them in memory
as arrays of coefficients. Then the production and destruction functions are
implemented by scanning these arrays at run time. This solve the major
disadvantage of the first method. Now the code can adapt easily to any
chemical mechanism. This approach was taken by LARKIN in [64]. The
drawback of this approach is the fact that all the computation is done at

runtime which results in reduced speed.

e The last method is the preprocessing method. Here, as with the totally
integrated method, the chemical mechanism is described in a specific language.
Then a preprocessing step parses the chemical equations and generates the
apropriate code in a high level language (FORTRAN-77 or C). In this way
the speed is about the same as for the hardcoded method, and changes of the
chemical mechanism can be easily made. We also have the guarantee that the
generated code is correct. This methode was partially adopted by CHEMKIN
in [57].

Our implementation further extends the preprocessing method. A specific
language has been designed for specifying the chemical mechanism, the initial values,
integration options, including the capability to select the integration method and
the integration driver. The language is called KPP-language and a reference of its

syntax is given in section 5.6.

5.4 User view
There are several reasons for giving a different view of the KPP to the users.

First, a non-experienced user may be concerned about having to manage a big file

153

with a lot of information that he does not care about that much as long as it works.
The second reason, and may be the most important one, is that anyone working
in atmospheric chemistry field usually thinks in terms of these logical modules:

chemistry model, numerical integrator, driver.

5.4.1 The chemical model

The chemical model contains the description of the atoms, species, and equa-
tions. It also contains default initial values for the species and default options in-
cluding the best integrator for the model. In terms of files, the structure is detailed
in figures 5.2 and 5.3.

In the case described in figure 5.2, the main description file, i.e. the one passed
as parameter to KPP, can contain just a single line selecting the model. KPP trys
to find a file with the name of the model and the extension .def in the models
subdirectory. This file is then parsed. The content of the model definition file is
written in the KPP language. The model definition file has to point to a species file
and an equation file. Both are included in the description. The species file includes
further the atom definition file.

The species file list all the species in the model in a #DEFVAR, or #DE-
FRAD, or #DEFFIX section. The atom file lists the Periodic Table of Elements
in an ##ATOM section. The equation file contains the description of the equations
in an #EQUATIONS section.

All default values regarding the model are automatically selected. For con-
venience, the best integrator and driver for the given model are also automatically

selected.

DRIVER

~

main
matlab
exact
test
ncar
steml|
mpi3d
none

4 R
INTEGRATOR

MODEL

strato
tropo
smog
cbm4
wet

atmdvode
atmlsodes
atmrodas
atmros4
atmsdirk
atmseulex
gssa
exqgssa
radaus
rodas3
ros3
none

V Kinetic Description File

#DRIVER matlab
#MODEL strato

#INTEGRATOR gssa

i

il

KPP

—

Fortran
Code

V

Fortran

Headers

Map

Figure 5.1. KPP user perspective

154

'(Cexamplelk)

155

s ATk ~
models/'smog.spc
#MODEL smog # NCLUDECatoms
h #DEFVAR
Y #DEFRAD models/atom
models'smog.def UDEFFIX H#ATOMS
#INCLUDE smog.spo> — /
#INCL UDE_smog.eqi
#INTEGRATOR rodas3 &
#DRIVER matla- - - L models/'smog.eqn
#USE FORTRAN | int/rodas3.def #EQUATIONS
i 1 required options
\{__other defauilt options }) ;{wﬁ%m 7777777777777 :
{ tunning parameters
\i/
drv/imatlab.f int/r odas3 f

{ driver code}

{ integrator code }

Figure 5.2. Input files details (default integrator)

156

(")
(example2k) I .
models/'smog.spc
#MODELCsmog #INCLUDE aioms
#INTEGRATOR r0s3 #DEFVAR
#DRIVERCRem- -1 #DEFRAD modelsiatom
) S HDEFFIX AATOMS
models/'smog.def)
#INCLUDE Smog.spe——
#INCLUDE smog.eqn——
NTEGRATOR rodas3——| L
#DRIVER matlab — L models/smog.eqn
#USE FORTRAN 3 int/ros3.def #EQUATIONS
{ other default options 1 { required options }
f-- prions} J #INTFILE Todas® - {------------ 1
{ tunning parameters |
\\;// - \\://
drv/stem.f int/r os3.f

{ driver code}

{ integrator code }

Figure 5.3. Input files details (selected integrator)

If a different integrator or a different driver is desired, then by selecting them

in the main description file, they override the default settings as shown in Figure

9.3

157

5.4.2 The integrator

The integrator selection (either the default one from the model definition file
or the one selected by the user) points to an integrator definition file. This
file is also written in the KPP language and contains a reference to the auxiliary
file containing the integrator code, options required by the integrator and tuning
parameters.

Each solver may require KPP to generate different functions, for example one
integrator may need the production/destruction function in the aggregate form,
others may need it in the split form. Similarly, some integrators may need the full
Jacobian, and others may want the Jacobian in sparse format. These options are
selected through appropriate parameters given in the integrator definition file.

Some integrators have additional parameters that can be fine tuned for better
performance. The values for these parameters are also included in the integrator

definition file.

5.4.3 'The driver
The driver is basically the main program. It is responsible for calling the
integrator routine, reading the data from files and writing the results. Different
existing drivers differ from one another by their input and output data file format,
and by the auxiliary files created for interfacing with visualization tools. A program
that performs 3D atmospheric chemistry simulation is also called a driver, if it calls

the integrator routine generated by KPP for the chemistry integration.

158

5.5 KPP capabilities

The following is a list of the KPP-preprocessor capabilities:
e The preprocessor generates code for the following functions:

— F_VAR (V, R, A_VAR)
function for the derivatives of variables - Agregate form
— F_RAD (V, R, A_RAD)
function for the derivatives of radicals - Agregate form
— FSPLIT_VAR (V, R, P_VAR, D_VAR)
function for the derivatives of variables - Split form
— FSPLIT_RAD (V, R, P_RAD, D_RAD)
function for the derivatives of radicals - Split form
— JACVAR (V, R, JV)
function for the Jacobian of Variables
— JACRAD (V, R, JR)
function for the Jacobian of Radicals
— JACVAR_SP (V, R, JVS)
function for the Jacobian of Variables using sparse matrix representation
— JACRAD_SP (V, R, JRS)
function for the Jacobian of Radicals using sparse matrix representation
— JACVAR_VEC (JV, UV, JUV)

function for sparse multiplication

JACRAD_VEC (JR, UR, JUR)

function for sparse multiplication
INITVALQ)

function to update initial concentrations
UPDATE_SUN ()

function to update SUN light using TIME
UPDATE_RCONST ()

function to update rate constants
UPDATE_C()

function to update concentrations for transport
GETMASS(MASS)

function that compute total mass of selected atoms
INTEGRATE(DT)

Integrator routine

Driver - MAIN(Q)

Main program - driver routine

UTIL

Utility functions

BLOCK DATA SPARSE_DATA

Sparse data

SPARSE_UTIL

SPARSE Utility functions

159

160

— SOLVE (JVS, X)

function for sparse back substitution

e Balance checking All the species must be declared (this declaration resem-
bles the declaration of variables in programming languages like C and Fortran)
before their first appearance in any equation. When defining a species its ex-
act composition (i.e. the atomic structure of the molecule) can be specified

such that each equation can then be checked for atom balance.
e Generates FORTRAN-77 or C code

e Optimizes the code. The generated code is optimized by plugging into the
code the numerical values of all coefficients and rate constants and by perform-
ing all possible calculation at the preprocessing time. Repeated computations

are detected and avoided by the use of intermediate variables.

e Automatically inlines appropriate comments. Comments are automat-
ically inlined in the generated code to make it readable. Information like date
of creation, directory, input files are also provided. This is specially usefull to
distinguish between programs generated from different versions of the same

chemical model.

e Allows expressions in defining the rate coefficients. Part of the equa-
tion rates depend on the time of day, on temperature, on light intensity and so
on. The preprocessor treats them seperatelly and therefore allows expressions

in defining such equation rates.

e Generates code for the Jacobian of the Production and Destruction

functions. Implicit integration methods require this Jacobian. Generating

161
efficient code for the Jacobian improves the quality of such integrators.

e Support for sparse techniques. The Jacobians have a very good sparsity.
The preprocessor can generate code that computes them in the usual sparse

formats (row format, compressed row and compressed column format).

e Reordering species The KPP-preprocessor reorders species such that the
sparsity is preserved to a certain extent by an LU-decomposition. This is done

in an optimal way by using a diagonal Markowitz algorithm.

e Transparent mapping of species One of the cumbersome problems with
the STEM-II aproach is that in order to interpret the results one has to know
the numbering of species used when the program was coded. KPP generates

MAP files, header files and initialisation files (for MATLAB) that describes

this mapping.

o Off-line interface with MATLAB. The values of the concentration are
saved in specific data files during the integration. An initialization MATLAB
file is also generated, that reads all data in MATLAB and performs the species
translation. Therefore one can plot species calling them with their names

instead of their coresponding number.

e On-line interface with NCAR-Graphics Allows selected species to be

plotted, and monitorized during the integration.

5.6 KPP comand language
The KPP language allows us to specify the chemical equations, the initial

values, integration parameters, program code and many other options. All these

162

information are gathered in a filed called KPP model file. The KPP-preprocessor
parses this model file and generates the appropriate output files. It basically

generates a code file , header files and a map file.

e The code file is a C or FORTRAN source file that integrates the kinetic

equations described in the model file.

e The header files are C or FORTRAN header files used by the code file

and by any other user written file.

e The map file contains a summary of all the functions, subroutines and data
structures defined in the code file plus a summary of the numbering and

category of the species envolved.

The following general rules define the structure of a model file, sometimes

called equation file.

A KPP program is made up of KPP sections, KPP comands and program

fragments.

e Anything enclosed between { and } is a comment as is ignored by the prepro-

Cessor.

e Any name given by the user to denote an atom or a species for example has
to have less than 32 character in length and cannot contain blanks, tabs, new

lines, #, +, -, ;, :. All names are case insensitive.

e A section begins on a new line with a # sign followed by a section name. Then
a list of items separated by semicolon follow. The syntax of an item definition

is different for each particular section.

163

e A command begins on a new line with a # sign followed by a command name

and one or more parameters.

e A program fragment begins on a new line with #INLINE and a fragment type.
It ends with #ENDINLINE. Inbetween is a program fragment written in FOR-
TRAN or C as specified by the fragment type. This piece of code is inserted

in the code file in places determined also by the fragment type.

Following is the BNF-like specification of the language:

program :: module | module program
module :: section | command | code_fragment
section :: #ATOMS atom_definition_list |

#DEFVAR species_definition_list |
#DEFRAD species_definition_list |
#DEFFIX species_definition_list |
#EQUATIONS equation_list |
#INITVALUES initvalues_list |
#CHECK atom_list |

#LOOKAT species_list atom_list |
#MONITOR species_list atom_list |
#SETVAR species_list_plus |
#SETRAD species_list_plus |
#SETFIX species_list_plus |
#TRANSPORT species_list |

#LUMP lump_list |

command :: #INCLUDE file_name |
#JACOBIAN < OFF | ON | ALL | SPARSE > |
#DOUBLE < OFF | ON > |
#FUNCTION < AGGREGATE | SPLIT > |
#CHECKALL |
#LOOKATALL |
#TRANSPORTALL |
#XGRID integer |
#YGRID integer |
#ZGRID integer |
#USE < FORTRAN | C > |
#INTEGRATOR file_name |
#DRIVER file_name

164

code_fragment ::
#INLINE fragment_type fragment_code #ENDINLINE
fragment_type :: F_DECL | F_INIT | F_DATA | F_3DINIT | F_3DDATA |
C_DECL | C_INIT | C_DATA | C_3DINIT | C_3DDATA

atom_definition_list :: atom_definition |
atom_definition atom_definition_list
atom_definition :: name ;

species_definition_list :: species_definition |
species_definition species_definition_list

species_definition :: name = atom_composition;
atom_composition :: atom_count |

IGNORE |

atom_count + species_composition
atom_count :: count atom_name | atom_name
count :: integer

equation_list :: equation |
equation equation_list
equation :: expresion = expresion : rate ;
expresion :: term | term + expresion | term - expresion
term :: number species_name | species_name
rate :: program_expresion

initvalues_list :: initvalues_assignment |
initvalues_assignment initvalues_list
initvalues_assignment :: species_name = number ; |
VAR_SPEC = number ; |
RAD_SPEC = number ; |
FIX_SPEC = number ; |
ALL_SPEC = number ; |
CFACTOR = number ;

atom_list :: atom_name |
atom_name atom_list

species_list :: species_name |
species_name species_list

species_list_plus :: species_list |
VAR_SPEC; species_list |
RAD_SPEC; species_list |

lump_

lump ::
lump_

165

FIX_SPEC; species_list |
ALL_SPEC; species_list

list :: lump |
lump lump_list
lump_sum : species_name ;
sum :: species_name |
species_name + lump_sum

In the following we give a precise definition of each section.

ATOMS

This section defines all the atoms that will be further used. Usualy the names
of the atoms are the ones specified in the Periodic Table of Elemants. For this
table there is a predefined file containing all definitions that can be used by

the command:

#INCLUDE atoms

If this is the first line in the model file then we can use any atom in the

Periodic Table of Elements.

DEFVAR, DEFRAD, DEFFIX

These sections define all the species that will be used in the chemical mecan-
ism. Species can be variable, radical or fixed. The type is specified by
inclusion in the appropriate section. Moreover for each species we have to de-
clare the atom composition. If the species is a generic species and we do not
have an exact composition we can alwais ignore it. This can be done stating

that the species is composed by a special, predefined atom IGNORE.

EQUATIONS

166

This is the section were the chemical mechanism is specified. Each equation
is written in the natural way in which a chemist would write it, using only the
names of already defined species. At the end of each equation, separated by a
colon, has to be placed the rate constant. This does not necesarily need to be

a numerical value. Instead it can be a valid expresion in the target language.

INITVALUES

Here we define the initial concentration values for all species. If no value
is specified for a particular species, a default value is used. Omne can set
the default values using the generic species names: VAR_SPEC, RAD_SPEC,
FIX_SPEC, ALL_SPEC. In order to use coherent units for concentration and
rate constants, it is sometimes necessary to multiply each value by a constant
factor. This factor can be set by using the generic name CFACTOR. Then

each of the initial values will be multiplied by this factor before being used.

CHECK

This is a facility that enables atom balance checking in each equation. By
default, if this section is missing, no checking is performed. Else each equation
is checked to have proper balancing for each of the listed atoms. To enable
checking for all atoms one can use the command CHECKALL. By convention
an IGNORE atom in a species S matches any number of atoms of any type

that are not already explicitly defined in S.

LOOKAT

This section instructs the preprocessor what are the species for which the

evolution of the concentration, should be saved in a data file. By default

167

the LOOKATALL command is assumed, which activates all the species. If
an atom is specified then the total mass of the particular atom is reported.
This allows to check how the mass of a specific atom was conserved by the

integration method.

MONITOR

This list of species and atoms is similar to the one used in LOOKAT section.
The difference is that this list is used by the graphics driver to offer a feedback

of the evolution of the selected species during the integration.

SETVAR, SETRAD, SETFIX

Here we can change the type of an already defined species. The use of the
generic species VAR_SPEC, RAD_SPEC, FIX_SPEC, ALL_SPEC is also per-
mitted. The purpose of this section is to allow species to be defined in one
category or the other according to their usual behavior, and then depending
on the integration methode used, one can use or not the initial classification,

or can easily move one species to another category.

TRANSPORT

This section is only used for transport and chemistry models. It specifies
which species for which the chemistry part is computed should be transported.

TRANSPORTALL will transport all species.

LUMP

Here one can define various lumping of the species to reduce the stiffness of

some models. This facility is currently under development.

The commands have the following meaning:

168

¢ INCLUDE

The file name specified as a parameter will be parsed by the preprocessor be-
fore proceding to the next line. This allows the atoms definition, the species

definition and even the equation definition to be shared between several mod-

els.
{> JACOBIAN
— OFF - means the integrator does not need the jacobian and therefore the
preprocessor will not generate it.
— ON - should be used if the integrator needs separate jacobians for vari-
ables and radicals.
— ALL - should be used if the integrator needs the whole jacobian for all
species.
— SPARSE - should be used if the integrator needs the whole jacobian, but
in a sparse form. The format used is compressed on rows.
¢ DOUBLE

ON means use double precision, OFF means use single precision.

¢ FUNCTION

The functions that compute the right hand side of the differential equations

for variable and radical species are generated in one of the following formats:

— AGGREGATE - computes the normal derivatives.

— SPLIT - gives the derivatives in production-destruction form.

169

> CHECKALL, LOOKATALL, TRANSPORTALL

These commands, make all species to belong to the coresponding list as de-

scribed above.

¢ XGRID, YGRID, ZGRID

These commands are used only for the 3D-transport part, and allow setting

of the grid dimension on X, Y and Z directions.
& USE

— FORTRAN - means generate FORTRAN code. Note that the selected
driver and integrator should be available in FORTRAN.

— C - means generate C code. Note also that the selected driver and inte-

grator should be available in C.

> INTEGRATOR

The parameter here is a file name, without extension. The apropriate ex-
tension (.f or .c) is appended and the result selects the file that contain the
integrator to be used. This command allows use of different integration tech-
niques on the same model.This file will be copied into the code file in the
apropriate place. All integrators have to conform to the same specific calling

sequence. See section 5.7 for details.

¢ DRIVER

The parameter here is also a file name, without extension. The apropriate
extension (.f or .c) is appended, and the result selects the file that contain the
driver to be used. This file will be copied into the code file in the apropriate

place. See section 5.7 for details on how to write new drivers.

170

5.7 KPP data structures
In adition to the function that the preprocessor generates it also defines some

constants and a global data structure. All the constants are defined using #define

in C and PARAMETER in FORTRAN.

171

Defined constants

Name Description
NSPEC The number of species involved
NVAR The number of Variable species
NVARACT The number of Active species
NRAD The number of Radical species
NFIX The number of Fixed species
NREACT The number of reactions
NVARST Starting of variables in conc. vect.
NRADST Starting of radicals in conc. vect.
NFIXST Starting of fixed in conc. vect.
NONZERO_V Number of nonzero variable elements

LU_NONZERO_V

Number of nonzero variable LU elements

NONZERO_R Number of nonzero radical elements

CNVAR Nr of elem in compressed row format for variables
CNRAD Nr of elem in compressed row format for radicals
PI Value of pi

NLOOKAT number of species to look at

NMONITOR number of species to monitor

NX X grid dimension

NY Y grid dimension

NZ 7Z grid dimension

MAX XYZ maximum grid dimension

NS number of species to transport

I_.name Index of species name in concentration vector

172

Defined global variables

Name Dimension Description
C_DEFAULT | NSPEC Default concentration for all species
C NSPEC Concentration for all species
VAR NVAR Conc variables = C[NVARST..NVARST + NVAR]
RAD NRAD Conc radicals = C[NRADST..NRADST + NRAD]
FIX NFIX Conc fixed = C[NFIXST..NFIXST + NFIX]
RCONST NREACT Rate constants
TIME 1 current integration time
SUN 1 light intensity
TEMP 1 temperature
RTOLS 1 (scalar) relative tolerance
TSTART 1 integration start time
TEND 1 integration end time
DT 1 integration step
ATOL NSPEC Absolute tolerance
RTOL NSPEC Relative tolerance
STEPMIN 1 minimum allowed intergation step
STEPMAX 1 maximum allowed integration step
CFACTOR 1 Conversion factor
LOOKAT NLOOKAT | indexes of species to look at
SLOOKAT NLOOKAT | names of species to look at
MONITOR | NMONITOR | indexes of species to monitor
SMONITOR | NMONITOR | names of species to monitor
TRANS NS indexes of species to transport
STRANS NS names of species to transport
NMASS 1 number of atoms to check mass balance
SMASS NMASS names of atoms for mass balance

173

The names of parameters and global variables are important for writing new
integrators and new drivers.

In order to write a new integrator one has to write a function:

INTEGRATE(DT)

with DT the the time interval for the integration. All other parameters are
taken from the global data structure.

In order to write a new driver one has to write the MAIN function/subroutine.
From here it can call the INTEGRATE function as desired, INIT_VAL to initialize the

initial concentrations, and any other function defined by the preprocessor.

5.8 Other points
At the moment there are two kind of drivers: general purpose drivers, that are
integrator and model independent and special purpose drivers build to work only
with certain models or integrators. In the future we will try to have a set of general
purpose drivers and discourage the use of special purpose drivers.
The following is the list of available general purpose drivers, and the language

in which they are available.

Driver Description Language

main | offers MATLAB output and onscreen monitoring FORTRAN,C

maingr adds on-line graphics using NCAR C

3d solves the 3D model C

The KPP on line documentation, models and examples are available from the

CGRER home page at http://www.cgrer.uiowa.edu/

174

CHAPTER 6
RELATED TOPICS

6.1 Introduction

In air quality models flux or Dirichlet boundary conditions are specified for
the whole problem. Usually operator splitting is employed to decouple the non-
linear chemistry from the (linear) advection-diffusion part; and further, directional
splitting is used to reduce the advection-diffusion equation to a sequence of one-
dimensional subproblems. Sometimes advection is also decoupled from the diffusion.
In all the cases consistent boundary conditions are to be set for each subproblem.
In the first part of this chapter we discuss the correct setting of the intermediate
boundary conditions; in the second part we explore the possibility of avoiding this
complication alltogether while still maintaining the computational efficiency. The
new family of methods (ELADI - extended linearized alternating direction implicit)
performs the splitting “inside” the numerical method, rather than separating the op-
erators; thus splitting error becomes numerical error and can be estimated. Several
ideas are presented; more work needs to be done to carefully analyse the properties

of these methods.

6.2 Consistent boundary values
When operator splitting is employed to numerically simulate the time evolu-
tion of the system, consistent boundary conditions are to be specified for each of

the subproblems (except for the chemical interactions). By consistent boundary

175
conditions we mean that:
1. each subproblem is well posed;

2. the theoretical order of accuracy of the time split approximation is not lowered

by the actual specification of intermediate boundary conditions.

Several papers were devoted to an analysis of the impact of intermediate
boundary conditions on the accuracy of the solution (several ciations here). Our
approach goes along the lines of LeVeque (citation). Since the boundary conditions
are specified in terms of the exact solution of the entire problem, the idea is to
express the intermediate solutions in terms of this global solution. These relations

are then used to derive accurate boundary conditions.

6.3 How accurate should the
boundary conditions be
For initial-value problems with smooth enough solutions, operator splitting
offers an O(k?) approximation to the initial problem (O(k?) for symmetric splitting
) where k is the split time-step (Strang, citation). For boundary value problems
care has to be taken in specifying intermediate boundary conditions.
In what follows we will consider that each advection/diffusion subproblem

(i.e., along a direction)
uy = L(t)u + f(t,z) in Q

u(to, x) = uo(x), B(t)u = f(t,x) on 09
is well-posed in the (rather strong) sense that

176

2 2
Lmax (@l + lu(®)f3q < O

2 2 2
Lmax (18 2)Bq + 117)R + ol
(6.1)

The imprecision in specifying the boundary conditions, the initial values and
the forcing term should be of order O(kP) to guarantee that an O(kP) error is made
in the solution u (argument by linearity, bound ||u — @||).

The same holds true for the chemical subsystem

u' = f(t,u)
if, for example, f satisfies a one-sided Lipschitz condition. We then have

max |G(2) — u(t)| < C(k)|d(to) — ul(to)]

to<t<to+k

6.4 An example

Consider the advection of a rectangular profile over a square domain, as in
figure 6.1 a). We consider v; = v, = v = 1. The transported profile has concentra-
tion 1, on a concentration 0 background. We perform directional splitting, that is
we alternatively advect the profile along x and along y. Note that, if the profile was
to be advected in R? this splitting gave the exact solution. Boundary conditions
are of Dirichlet type, the value being 1 on the intersection of the domain’s inflow
boundary with the profile, and 0 elsewhere. Since the profile to be transported is
rectangular with sides parallel to the diagonal of the domain, and the advection
takes place along the diagonal, the boundary conditions are time-independent.

After a split step of length k, the difference between the exact and the ap-
proximated solution is

lu(k) — uspiit (k)| 70 = k*v*

177

a INITIAL b) AFTER STEPALONG X C) AFTER STEP ALONG Y

Figure 6.1. Splitting error for a simple test problem. A profile of height 1
is advected over a square domain; boundary conditions are of
Dirichlet type and are time invariant. A simple directional split-
ting is considered; this splitting is exact for an infinite domain.
The errors in the final solution are due to the incorrect prescrip-
tion of boundary values.

When approximating the equation on [0, 7] with a step-size k the error will be
1u(T) = wspii(T) 2o = Thv*

which shows a convergence order O(v/k) in L, norm. This is due to the boundary

conditions, and has nothing to do with the smoothness of the solution. Note that the

time-independence of boundary values is not sufficient to preserve the theoretical

order of 1; a necessary and sufficient condition is that boundary values are constant

along each side of the domain, as will be shown later.

6.5 Directional splitting
The following examples (two-dimensional transport equation and heat equa-
tion) will help us understand the key points. Let Q@ = [0,1] x [0,1]. For the
heat equation let L, = K98/0z*, L, = K90/dy?. Denote {0,1} x [0,1] = 0°Q,

178

[0,1] x {0,1} = 0¥Q and 00 = 0"Q U 9¥Q2. For the transport equation let L; =
—v10/0x, Ly = —v90/0y with v;,v, > 0. Denote the upwind boundaries by
{0} x[0,1] = 0°Q, [0,1] x {0} = 0¥ and 02 = F*QU¥Q). Since (on smooth enough
arguments) L; and L, commute we will consider only a simple (non-symmetric)
splitting.

Consider the initial-value problem (with Dirichlet boundary conditions) :

Uy = Llu + Lgu in Q,

u(0,) = up(x), u = (3 on 0
On the time interval [0, k] we approximate the above system by the sequence

ui = Ly, u*0,2z) = u(0,z), wu* = b" ondQ;

ui* = Lou™, u*(0,z) = u*(k,x), u™ = b ondQ.

Our goal is to approximate the exact solution u(t) at ¢ = k£ by v**(k) with an
O(k®) error. Question is, how should one set b*, b** to achieve this goal; are the
“intuitive” boundary conditions b* = b** = b good enough 7

To perform the analysis, we consider the first subproblem

u; = Lyuw*, w*(0,z) =u(0,z), u* =0b"on 0N .

The solution at (t,x)

t2
u*(t,z) = u*(0,z)+ tu;(0,z) + guft((],x) +...

t2
= u*(0,2) + tL1u(0,z) + §L%u*(0, x)+ ...
t2
= (I+tL + §Lf +..)u*(0,x)

= ™yt (0,z2) .

The idea is now to express u* in terms of u using the fact that u*(0,z) =

179

u(0,z), Vaz:
u*(t, x) = ety (0,) = ety (0,)
el (t,z) = etlretliy(0,z) = efrtiay (0, z) (6.2)
= u(t,x) .

Sending now = — 0%€2 and using the continuity of u on 2 U 02 and of u* on
Q2 U 0*Q) we have that
b*(t, &) = e 2b(t, &) VE € 0% . (6.3)
This relation makes sense, as b* (¢, z) is to be defined on 0*°Q2 and L, involves
only y-derivatives. The meaning of (6.3) is that b* is obtained from b by “undoing”
Ly for a time period of t. For the transport equation, the above relation translates
into b*(¢,x,y) = b(t,x,y — tvy). For the heat equation, (6.3) tells us to antidiffuse
b in the y direction for a period t.
For the second subproblem
u;t = Lou™, u™(0,&) =u*(k,&), u™ =0b" ondQ.
similar arguments lead to
w(t, &) = eyt €) VE€Q . (6.4)
and hence
b (t,€) = e DIp(t, €) VE € ' . (6.5)
For the transport equation, the above relation translates into b** (¢, z,y) = b(t,z +
(k — t)v1,y). For the heat equation, (6.3) tells us to diffuse b in the z direction for
a period t.

Remarks:

1. As can be seen from (6.4), for both examples the exact solution is recovered

(i.e. u**(k) = u(k)) provided that the correct boundary values are used.

2. For the transport problem splitting and setting the boundary conditions (6.3,

180
6.5) is equivalent to the method of characteristics. In fact,

3. For the heat equation, setting the “correct” boundary condition for the first

subproblem is problematic, since (6.3) is, of course, an ill-posed system.

4. The “intuitive” boundary conditions b* = b** = b lead to an O(k) error in

(6.1).

6.6 Numerical example
To illustrate the effect of boundary conditions on the accuracy of directional
split solution, consider the following 2-D convection-diffusion test problem:

Ct = TCy — YCy + (Cox+Cyy)y, —1<z,y<1l, 0<t<1. (6.6)

1+ 22+ 9?2
The initial and Dirichlet-type boundary values value are given by the exact solution

2 2
Cemact(t) = e4t+$ ty .
We discretized the space derivatives using standard central differences on a 61 x 61

uniform grid with meshsize h:

d N Cit1,j — Gi—1 Cij+1 — Ci—1,j

»J
+x; 5%

(Cit1y + Cimrg + Cigr + Cija — 4cij)

at T T
N 1
h2(1+ 2% +y2)
We integrated this system of ODE with Lsodes (in a classical method of lines ap-

proach) and found a relative error in norm 2 of the order 107°. Then we used a
locally one dimensional splitting with a split time step of 1/10 and integrated the
subsystems with Lsodes on each subinterval. The Dirichlet boundary conditions for
each subsystem were set equal to the exact solution in one experiment and were
properly corrected in another; the errors are reported in Figure 6.2 (left and right,

respectively). The error plots speak for themselves on the importance of correct

181

prescription of subsystems boundary conditions.

E_Inf=1.701e-01 E_2=3.762e-02 E_1=2.620e-02 E_Inf=3.111e-02 E_2=1.420e-02 E_1=1.131e-02

0.2 0.2

0.15 0.15

0.1

0.1

"
Iyt N
II// I/ I i 0"
'””"'"o',:o.'fzo o‘o‘o‘
'0

RS
) “\\\\ \\“\ “‘
005 lll\“ :“s“‘ 1\\“

———x

SR \\\\\‘ |
“..‘;““‘:\:3‘\“{\\\\\\\\\\\ |
\\

Figure 6.2. Relative errors for the local one dimensional splitting applied to
the test problem. The Dirichlet conditions were given by the
exact solution, applied directly (left) and corrected (right).

The equation(6.6) can be rewritten in the conservative form as:

1
-y po 0 A(72 2)2
o = div c| +div || Ve _(1&”3:2—%(6.7)
x 0 1-|-zlc%-|-y2 Y

4(z* + y?)*
= F(IE, Y, C, Cw)x —+ G(.’E, Y, C, cy)y — mc 5
where the last term can be thought of as a sink chemical reaction, and the fluxes

are given by

1

F(.’E, Y, C, C:c) = m r — YC (68&)
1

G(J?, Y, C, Cy) = mcy + xcC . (68b)

For the second numerical experiment we consider flux boundary conditions;

more exactly, we prescribe the value of F on {(z,y) € 0Q|x = —1,1} and the value

182

of G on {(z,y) € 0Qly = —1,1}. Replacing the spatial derivatives in the flux
expressions by standard one-sided differences one obtains equations from which
boundary values can be retrieved. In our numerical experiment we used third order

one sided differences. Results are given in figure 6.3.

E_Inf=2.979e-02 E_2=9.155e-03 E_1=7.342e-03

E_Inf=3.771e-02 E_2=1.964e-02 E_1=1.607e-02

0.04

0.04 " ‘—
N 0’ 0""”‘ 0
0,03 (KON / \ o)
(N L “,,,,,;,, o
oo S ':" f «w‘"’)f’fi?" "33&3‘3 (P
I \ il WIIIH [sl ',,.
Y o ﬂ%‘o’&‘%},ﬂa’{%%’ ".;«;,;;,,,n Vi -V
oo AR R . ,"' o
e o \,'
e | L .z',z »\«'0"!
v III;‘:“"‘ *\\\{\Q \\\\\"'{,""" ':m L l /Ill o“‘ % “ X
'I‘,l// \\\\\II' ‘ 60 TR i
’ i bl
30 < ')))' \\J‘

Figure 6.3. Relative errors for the local one dimensional splitting applied to
the test problem. The flux boundary conditions conditions were
calculated analytically and applied directly (left) and corrected

(right).

6.7 Impact of the nonlinear terms

183

on boundary conditions

Consider the atmospheric advection-diffusion equation

B(t, §u(t, &) = b(t,€), £ €0 (6.9)
u(to, §) = uo(§), £e
where
Lt,Su = =V (v(t,&u) + V(K (t,§)Vu)
B(t,&)u = a(t,€)-Vu+B(tEu, and
L'(t,)u = —V(v(t,&)u) + V(Ki(t, &) Vu)

After a tedious, but straightforward calculation we arrive at
THEOREM 6.7.1.

(i) For the “transport-first” splitting
ui(t,&) = L(t,&u*(t,&), u*(0,)=u(0,§), B(tEu*=0b* on N ;
u*(t,6) = f(&u (), w(0,8) =u(k,§)

the solution of the transport subproblem can be ezpressed in terms of the global
solution as
u'(t,6) = u(t,€) —tf(0,£u(0,8)) (6.10)
L {L0.7(0.€u(0,) + £(0.€,u(0.8)
+£u(0,€,u(0,) L(0,€)u(0,€) + fu(0,&,u(0,€)) £(0,&u(0,8))} + OF)
(ii) For the “chemistry-first” splitting
ui(t:€) = fEuN(LE), ur(0,6) = u(0,€)

ui*(t,€) = L(t,&)u**(t, &), uv™*(0,§) =u*(k,&), B, E)u** =b"* on 0N ;
the solution of the transport subproblem can be expressed in terms of the global

solution as
u”(t,€) = ut, &+ (k—1)f(0,&u(0,)) (6.11)

L L 00,60(0,6) + 10,6 u(0,)ul0,)}

|

184

—g {£u(0,&,u(0,€))L(0,€)u(0,€) + L(0,8) f(0,&,u(0,€))} + O(F)
(11i) For the symmetric splitting
ui = L(t,&u*, v 0,z) = u(0,x), B(t,&)u* = b* on 09 ;
upt = f(&uT), wr(0,2) = ui(k/2,2),

ui™ = L(t,&u™*, v (0,z) = u™(k,z), Bt Eu™ = b ondQ;
the solution of the transport subproblem can be expressed in terms of the global

solution as
W8 = (b6~ (0,6 u(0,) (6.12)
L L0,90,6 (0,) + £:(0,€,u(0,)
+fu(0,€,u(0,£))L(0,£)u(0,§)
+u0,€,u(0.)(0,6,u(0,)} + OF)
W 8,8 =l €+ (5~ (7(0,€,u(0,6)

G-y

2
AL 0.9u(0.6)+ L2(0.£)u(0,€) + O(K)

(L'u+ L*u+ Lf + fi + fulu+ fuf)

Remarks:

1. For Dirichlet boundary conditions, the “transport-first” splitting, relation
(6.11) shows that one needs to “undo” the chemistry in order to obtain con-

sistent boundary conditions.

2. For Dirichlet boundary conditions, the “chemistry-first” splitting, relation
(6.12) shows that we need to correct the boundary conditions by an extra

“chemistry prediction”.

185

3. For flux boundary conditions, the prescribed boundary flux need to be cor-

rected in all cases in order to obtain consistent boundary conditions.

6.8 Extended linearized alternating
direction implicit methods

Consider the following advection - diffusion - reaction system in Q € R3:
8cz~
ot

plus some initial and boundary conditions where

= Le¢i(z,t) + gi(cr, .., ¢p, 0, 1) (6.13)

Le=V(u-c)+ V(K - V)
is the elliptic operator describing the advection and the diffusion and ¢ represent
the chemical transformations, depositions, emissions. ¢; to ¢, are the concentrations
of the p reacting species. After the semidiscretization in space on a N-point grid €24
we get:
dc

pTi (e, t) + g(c,t), c(ty) =co (6.14)
where ¢ € RV*P and f describes both L and the boundary conditions. This system

is usually solved for t € [t, ¢1] using operator splitting:

= e,) =a (6.15)
L = gle) i) = (), (6.15b)

Solving (6.15b) is equivalent to solving transport only. Since the species are
individually transported (there is no coupling among species due to L) (6.15b) is
equivalent to solving p systems of dimension N (there is a coupling, given by space
discretization formula, between the values of ¢; at the N points of Qy). Similarly,
since the chemistry is local, g is not coupled in €, and hence solving (6.15b) is

equivalent to solving N systems of dimension p. With an implicit time stepping

186

method, the computational effort for (6.14) is O(N3p?), while for (6.15b - 6.15b) is

O(Np?® + pN?3), whence the computational advantage.

6.9 The methods
We consider systems of the form (6.14)

W _ r)+9y) s ylte) = vo (6.16)

dt
with the property that f and g can each be decoupled, but along different
coordinates.
The idea is now to employ W-methods for time stepping and to choose an
appropriate approximation for the Jacobian. This choice will enable us to make a

“decoupling” of the system into the subsystems f and g inside the method (unlike

the operator splitting, where the decoupling is made independent of the numerical

method).
An s-stage W-method is defined as:
Yni1 = Yo+ D biki, (6.17a)
i=1
i—1 i
ki = h(f+9)(yn+ Y cuki) +hAD 7ijk;, (6.17b)
7j=1 7j=1

where s and the formula coefficients b;, o;; and «;; are chosen to obtain a desired
order of consistency and stability for stiff problems. A is any approximation of the
Jacobian; the key point is, of course, that the order of the method is independent
of the choice of A. The only restriction is the one imposed by numerical stability.
It is easy to see that computing k; requires the numerical solution of a system of
the form

(I—hyA) -k =b

187

If the exact Jacobian is used (A = J) we are in the framework of classical
Rosenbrock methods. For (6.14) the Jacobian reads
J=F+G
where F' = f,, G = gy, so one needs to “invert” (I — hyF — hyG).
By the decoupling property, it is relatively easy to “invert” (I — hyF') and
(I — hy@) (operator splitting also takes advantage of this property). Hence, the
idea is to define A as follows:
I-hvA = (I -hyF)(I - hyG) (6.18a)
A = J-hFG (6.18b)
The hope is that, since both subprocesses are stable (see 6.15b, 6.15b) the resulting
scheme will also be stable.
The computational advantage is clear:
(I —hyA) ' =(I—-hyG) (I — hyF)?
In other words, at each step we treat implicitly subprocess f, then subprocess
g, with a computational load comparable to the load of operator splitting. The
coupling is done by the fact that in the right hand side of (6.17b) f and g are
treated together, while the main computational burden, viz. the decomposition of

(I — hyA) is managed by splitting into subprocesses.

6.10 Conservation properties
Many systems evolve along trajectories which conserve linear invariants, w”y(t) =
const,Vt. An example is total mass which, for balanced boundary fluxes and in ab-
sence of emissions and of depositions is preserved. We have that w” (f +¢) = 0 and

also wT (F + G) = 0.

188

A desirable property for a numerical method is to structurally preserve the lin-
ear invariants of the system. Multistep, Runge-Kutta and Rosenbrock are example
of such conservative methods.

Now suppose that each of the subprocesses f, g are conservative, i.e. w’ f =0
and w’g = 0. For example, transport is mass conservative, as well as the chemical
reactions. Then we have that w” F' = w"G = 0 and

wlA=w'F +w'G — hywTFG =0
From (6.17b) we have 4
w'k; = hw" f(yn + Zi aijk;) + hw' A i: Vijk; =0
hence from (6.17b) we obtain the stirlzlétural conservati]:i{cy:

W yp1 = why, + Z bw k; = w'y,

=1

6.11 Implicit - explicit ELADI
Implicit-explicit multistep methods (Crouzeix) are well-known. A similar ap-
proach can be obtained in the ELADI framework.
Suppose subprocess g is “fast” and requires an implicit treatment, while sub-
process f is “slow” and can be treated explicitly.
Then we can choose A = G.
In the absence of the “fast” component, the “slow” part f is integrated with

the explicit Runge-Kutta method:

Yni1 = Yo+) biki, (6.19a)

=1

i—1
j=1

189

6.11.1 Example: TVD advection - reaction
Suppose g describes chemistry plus diffusion, while f is the discretization of
the advection operator. One desirable property of the advection schemes is to be
TVD. Once a TVD discretization was chosen, we require that the restriction placed
by the time integration on the CFL condition is minimal.

For 2 stages, order 2 (6.19b - 6.19b) reads:

u = Yo+ hag f(yo)

y1 = Yo+ hbif(yo) + hbaf(u)

We will continue with an analysis “a la Shu and Osher”. Let 8, + 3» = 1.

Then
b — o b
= Buloo + "5 2R () + Balu+ 2k ()
CFL restriction is:
) B ﬁ2>
A< min | —— | —
=70 (bl —anfe " by

One possible solution, for a family of W-methods whose explicit correspon-
dents maintain CFL = 1 is: by = by = 1/2, a9y = 1, 791 = —27. Of course, we may
choose v = (2 — v/2)/2 for L-stability in the eventuality that an exact Jacobian is

used.

6.12 Benefits for atmospheric modeling
In the numerical simulation of atmospheric transport-chemistry processes, a
major task is the integration of the stiff systems of ordinary differential equations
describing the chemical transformations. Usually this is done using operator split-

ting. Two major drawbacks of this technique are known, but usually accepted:

190

e Separating the chemical transformations from vertical diffusion, for example,

may lead to large numerical errors.

e Each transport step modifies the chemical concentrations; since the chemical
rate equations are stiff, and the transport step modifies the pseudo-equilibrium
of the fast species, every restart of the chemical integrator is followed by a
transient phase. This transient is non-physical, on one hand, and consumes
about 50% of the chemistry computational time, on the other (since accuracy

restriction imposes very small step-sizes).

Both these drawbacks can be avoided with ELADI. However, memory restric-
tions may impose to still decouple horizontal transport from vertical transport (but
compute the chemistry and the vertical transport together).

One thought advantage of classical operator splitting is that each subpro-
cess can be treated with an appropriate step-size (in particular chemistry can be
integrated with much smaller step-sizes than required for transport). In our expe-
rience, outside the transient, stiff ODE solvers applied to chemical rate equations
can take steps of 1 hour or more. The very small steps usually assumed by chemical
integrators are due to the frequent restarts (and transients). Thus, we think that
eliminating the restarts will make feasible to integrate chemistry and transport with

the same step (see Hunsdorfer-Verwer, implicit- explicit approach).

6.13 About stability

In this section we will discuss the stability of the 1-stage, order 1 ELADI
formula. Consider the test problem

Y =My + Ay

191

and apply the method corresponding to linearized Euler. Denoting z; = h\; we

- ((1 —1;)2? 22)) .

The following lemma assures us that the method is stable.

obtain:

LEMMA 6.13.1. The function
21+ 29

Rlevzm) =1+ G502

has |R| <1Vz € C.

Proof.
1+ Z1R9
(1 — Zl)(l - 22)

Sl =

R - ‘

Let z; =a; + b;,1 =1, 2.
D — N = (a; +a)® + (b1 + b)? — 2a, (1 + a3 + b3) — 2a(1 + a2 + b?)
from which conclusion follows, as a; < 0. Moreover, |R| =14 21 =20 =0. O
For a strictly parabolic problem the one dimensional linearized model is
y'=> Ay
with real negative \; < 0. For such a prozblem the simple scheme is also stable, as

shown by the following

LEMMA 6.13.2. Let z, k=1,...,N be nonpositive real numbers. Then
N
0<1+ Nzk;lzk <1
= (1 — 2x)

Proof. The second inequality is obvious. For the first one we note that
N

N N
[Ha-z)=1->z+P>-> 2z
k=1 k=1 k=1
since P is a nonnegative quantity because z;, < 0 Vk. O

An extension of this analysis to higher order eladi formulas and to test prob-

lems with multiple splittings will be the subject of further investigations.

192

CHAPTER 7
CONCLUSIONS

7.1 Summary and concluding remarks

In air quality models the integration of stiff ODE’s modelling chemical interac-
tions is a major computational task: it counts for up to 90% of the total CPU time.
The chemical integration has to be carried out for every grid cell and for every op-
erator split interval; frequent restarts mean frequent transients, which substantially
reduce the average step size taken by numerical integrators.

Due to critical need for speed, many specially tailored methods have been
proposed. They are mainly of explicit type. The QSSA idea is extended and several
new methods in this class are proposed.

QSSA-based algorithms are explicit methods and yet they enjoy a remarkable
stability. They behave like implicit methods although their evaluation formulae
is explicit. In this thesis QSSA type methods are investigated theoretically, and
their excellent stability properties rigorously explained. In [92] the local truncation
error for Plain QSSA scheme is shown to be only O(h) for the components with
small lifetimes 7; < h. However, numerical experiments have shown that the QSSA
solutions still converge to the exact solution. The fact that the local order reduction
is not felt globally is in line with the theoretical convergence analysis presented here.

Although the QSSA methods are in general quite inaccurate, QSSA-based
methods preserve quite well the overall behaviour of the solution. This explains

why these methods have been successfully employed for many years for problems

193

where relatively large errors are accepted and small computing times are desired.

One of the main contributions of this work is to show that implicit methods
are very competitive, if they are carefully designed and rely on special sparse linear
algebra routines; in fact, they outperform different QSSA solvers, often by a wide
gap.

New fast implicit methods were designed for being used in air quality models.
They are of Runge-Kutta-Rosenbrock type, and thus only linearly implicit. An
iteration procedure is therefore not needed for computing the numerical solution -

this fact has a positive effect for the application, since:
e the computational time is lowered;
e enables cellwise vectorization;

e does not harm the linear stability of the methods (fact confirmed by experi-

ments).

In addition, methods in this family preserve the linear invariants of the system - like
total mass and mass of families of species. Thus no additional effort (e.g. lumping)
is necessary to impose mass conservation. Being of one-step type, these solvers
rapidly adjust the step size after an operator split restart; thus they vcan deal with
transients very efficiently. Ros3 is an L-stable, 3-stage formula of order 3, with an
embedded A-stable method of order 2. Rodas3 is a stiffly accurate pair of order
3(2), using 4 stages but only 3 function evaluations.

All the new implicit methods rely on very efficient sparse linear algebra rou-
tines developed in Chapter 3. The routine “Doolittle-2” uses a row-wise LU de-
composition algorithm without pivoting, and is paired by loop-free substitution

routines. Indirect addressing and data moving (at run time) are thus minimized;

194

overall this sparse scheme is about 3 times faster than Harwell’s MA28 on the test
problems of interest.

The answer to the question of which stiff integrator is “the best” for being
used in air quality models depends on a multitude of factors, some of the most
important being the specific chemical mechanism employed, the desired accuracy
level and the hardware on which the code runs. In chapter 4 a collection of bench-
mark problems is put together, spanning a wide range of chemical mechanisms and
chemical conditions. The new QSSA solvers, the new Rosenbrock solvers as well as
a number of methods from the literature are carefully tested. The main conclusions

of this benchmark are

e For all the test problems considered here and within 4 digits of accuracy
the Rosenbrock solvers provide the most cost-effective solutions. For lower
accuracies of practical interest Rodas3 and Ros3 are usually the best. As

expected, for higher accuracies Rodas is mostly competitive;

e Robustness and ease of use are very important since in actual 3D transport
a subtle tuning of the ODE code is cumbersome due to the large variety
of conditions that will occur at different grid points. In this respect the
Rosenbrock solvers are advocated as well. With the preprocessor KPP at

hand, they are easy to use.

e Among explicit codes, Twostep performs the best. It is however outperformed
by the Rosenbrock methods. QSSA type solvers show good stability, but their

lack of accuracy cause them to fall behind.

The cumbersome problem of translating a chemical scheme into code is ad-

dressed with the Kinetic Preprocessor (KPP). KPP not only generates the function

195

and the associated Jacobian, but also reorders the species and builds sparse data
structures, overall preparing a very efficient and sparse matrix routine, adjusted to
the desired chemical mechanism. KPP links this info with the numerical integrator
of choice, the result being a ready to run C or Fortran code.

The issue of boundary conditions in regional air quality models is discussed
in Chapter 6. It is shown that the splitting between chemistry and transport re-
quires a correction of the imposed boundary conditions - essentially by “undoing”
(integrating backwards) the chemical subsystem; dimensional splitting also requires
boundary corrections, which can be analysed along the lines of LeVeque. Several
ideas of time integration without splitting, but with the efficiency of splitting, are
exposed. The “extended linearized” ADI methods require no correction for the
boundary fluxes; however, work still needs to be done to rigorously prove the sta-

bility of these methods.

7.2 Future research

The development of chemical schemes for heterogeneous chemistry compo-
nents of air quality modeling puts new demands on the quality of numerical schemes.
For these models the traditional integrators (e.g. QSSA) may prove useless. One
example is the gas-and-liquid system from Chapter 4 on which all explicit integra-
tors fail (because of stability problems). The new multiple phase chemical models
raise new issues. For example, modeling the gas-aerosol equilibria by algebraic
relations transforms the ODE (ordinary differential equation) system into a DAE
(differential-algebraic equation) system and special techniques to numerically sim-

ulate the time evolution of such a constrained system has to be developed for this

196

application. In particular we need to design special, highly efficient DAE solvers for
use in heterogeneous chemistry modeling.
We think that further improvements of the chemical integrators are needed

and possible. Future investigation is to be carried out along the following directions:

1. The use of approximate Jacobians in implicit integrators. By replacing the
Jacobian with a matrix of higher sparsity, the cost of linear algebra is further
decreased. Stability, accuracy and conservativity aspects of such methods are

to be analyzed.

2. At every operator-splitting restart, the numerical integrator has to resolve the
transient part, which implies the use of small step-sizes and hence reduced
efficiency. We plan to investigate ways of reducing this overhead by properly
pre-adjusting the initial values and by using fully implicit methods in the first

several steps.

3. Partitioned methods (either partitioning the reactions into fast and slow ones,
or partitioning the species into stiff and nonstiff ones) offer a possibility to fur-
ther reduce computational time (see for example [80] and [97, 83]). This may
be done by efficiently combining an implicit method for the fast (stiff) part
with an explicit method for the slow (non-stiff) part. Possible candidates are
Partitioned Runge-Kutta methods (PRK) from [47], Implicit-Explicit Multi-
step methods (IEM) from [4] and SPARK methods from [55].

4. Positivity preserving. This aspect is important for preserving the stability of

the chemical system itself, but has not been fully explored so far.

197

5. Use of differential algebraic solvers for problems involving multiple phase equi-

libria.

For the solution of the transport problem, new research directions are sought

for

e estimation and control the splitting error; one possible way is to use extrapo-

lation;

e numerical methods that use an “internal splitting”, thus requiring no bound-
ary corrections. ELADI or implicit-explicit methods of Crouzeix are such

possible examples.

e monotone implicit methods that will allow the discretization of convection

and diffusion simultaneously.

D = Y S e e
o

{10.

{11.
{12.
{13.

{14.

{15.
{16.

{17.

O = T O e e L A

APPENDIX A

CHEMICAL MECHANISMS

Al
NO2 + hv = NO + O

0 {+ 02 + M} = 03

03 + NO = NO2

0 + NO2 = NO
0 + NO2 = NO3:
0 +NO = NO2:
03 + NO2 = NO3:
03 + hv = 0

03 + hv = 01D

0ib =20

01D + H20 = 20H:

03 + OH = HO2

03 + HO2 = OH

The CBM-IV mechanism
8.89E-3%SUN;
ARR(1.4E+3, 1175);

ARR(1.8E-12, -1370);
9.3E-12;
ARR(1.6E-13, 687);
ARR(2.2E-13, 602);
ARR(1.2E-13, -2450);
4.0E-2%RCONST (1) ;
2.8E-3*%RCONST(1) ;

ARR(1.9E+8, 390) ;

2.2E-10;
ARR(1.6E-12, -940);

ARR(1.4E-14, -580);

NO3 + hv = 0.89 NO2 + 0.89 O

+ 0.11 NO

NO3 + NO = 2 NO2

NO3 + NO2 = NO + NO2

NO3 + NO2 = ©N205

15.5%RCONST(1) ;
ARR(1.3E-11, 250);
ARR(2.5E-14, -1230);

ARR(5.3E-13, 256);

198

{18.
{19.

{20.

{21.
{22.
{23.
{24.
{25.
{26.
{27.
{28.
{29.

{30.

{31.
{32.
{33.
{34.
{35.
{36.
{37.
{38.

{39.

L L o L L L

o L W

N205 + H20 = 2 HNO3 : 1.3E-21;
N205 = ©NO3 + NO2 : ARR(3.5E+14, -10897);
2 N0 = 2 NO2 : ARR(1.8E-20, 530);

NO + NO2 + H20 = 2 HONO : 4.4E-40;

OH + NO = HONO : ARR(4.5E-13, 806);
HONO + hv = OH + NO : 0.17*RCONST(1);

OH + HONO = NO2 : 6.6E-12;

2 HONO = NO + NO2 : 1.0E-20;

OH + NO2 = HNO3 : ARR(1.0E-12, 713);

OH + HNO3 = NO3 : ARR(5.1E-15, 1000);
HO2 + NO = OH + NO2 : ARR(3.7E-12, 240);
HO2 + NO2 = PNA : ARR(1.2E-13, 749);
PNA = HO2 + NO2 : ARR(4.8E+13, -10121);
OH + PNA = NO2 : ARR(1.3E-12, 380);

2 HO2 = H202 : ARR(5.9E-14, 1150) ;

2 HO2 + H20 = H202 : ARR(2.2E-38, 5800);
H202 + hv = 2 OH : T7.1E-4*RCONST(1);

OH + H202 = HO2: ARR(3.1E-12, -187);

OH + CO = HO2 : 2.2E-13;

HCHO + OH = HO2 + CO : 1.0E-11;

HCHO + hv {+ 2 02} = 2 HO2 + CO : 3.2E-3*RCONST(1);
HCHO + hv = CO: 4.2E-3*RCONST(1);

199

{40.

{41.

{42.
{43.
{44.

{45.

{46.

{47.

{48.

{49.

{50.

{51.} OH = HCHO + X02 + HO2 :

{52.} PAR + OH =

{63.} ROR

{54.} ROR

{55.} ROR

0.87 X02 + 0.13 X02N

+ 0.11 HO2 + 0.11 ALD2

+ 0.76 ROR - 0.11 PAR

} HCHO + 0 = OH + HO2 + CO ARR(3.0E-11, -1550);
} HCHO + NO3 = HNO3

+ HO2 + CO 6.3E-16;
} ALD2 + 0 = (€203 + OH: ARR(1.2E-11, -986);
} ALD2 + OH = C203 ARR(7.0E-12, 250);
} ALD2 + NO3 = C203 + HNO3 : 2.5E-15 ;
} ALD2 + hv {+ 2 02} = HCHO + X02

+ CO + 2 HO2 : 4.5E-4%RCONST(1);
} C203 + NO = HCHO + X02
+ HO2 + NO2 ARR(5.4E-12, 250);

} €203 + NO2 = PAN ARR(8.0E-20, 5500);
} PAN = C203 + NO2 ARR(9.4E+16, -14000);
} 2 C203 = 2 HCHO + 2 X02 + 2 HO2 : 2.0E-12 ;
} C203 + HO2 = 0.79 HCHO
+ 0.79 X02 + 0.79 HO2 + 0.79 OH 6.5E-12;

ARR(1.1E+2, -1710);

8.1E-13;

1.1 ALD2 + 0.96 X02 + 0.94 HO2 + 0.04 XO2N

+ 0.02 ROR - 2.10 PAR

HO2

NO2 =

PROD

1.6E+3;

: 1.5E-11 ;

H

ARR(1.0E+15, -8000);

200

{56.

{57.

{58.

{59.

{60.

{61.

{62.

{63.

{64.

{65.

{66.

{67.

0 + OLE = 0.63 ALD2 + 0.38 HO2

+ 0.28 X02 + 0.3 C

+ 0.2 HCHO + 0.02

+ 0.22 PAR + 0.2 0

0

X02N

H : ARR(1.2E-11, -324);

ARR(1.4E-14, -2105)

OH + OLE = HCHO + ALD2 + X02

+ HO2 - PAR: ARR(5.2E-12, 504);
03 + OLE = 0.5 ALD2 + 0.74 HCHO

+ 0.33 CO + 0.44 HO2

+ 0.22 X02

+ 0.1 OH - PAR
NO3 + OLE = 0.91 X02 + HCHO

+ ALD2 + 0.09 XO

+ NO2 - PAR

2N

7.7E-15;

0 + ETH = HCHO + 0.7 X02 + CO + 1.7 HO2 + 0.3 OH

ARR(1.0E-11, -792);

OH + ETH = X02 + 1.56 HCHO + HO2 + 0.22 ALD2

ARR(2.0E-12, 411) ;

03 + ETH = HCHO + 0.42 CO + 0.12 HO2

ARR(1.3E-14, -2633);

OH + TOL = 0.08 X02 + 0.36 C

+ 0.44 HO2 + 0.56

T0O2 + NO

TO2 = HO2 + CRES

OH + CRES = 0.4 CRO + 0.6 X02 + 0.6 HO2 + 0.3 OPEN:4.1E-11;

NO3 + CRES = CRO + HNO3

RES

TO2

4.2;

2.2E-11;

ARR(2.1E-12, 322);

0.9 NO2 + 0.9 OPEN + 0.9 HO2 : 8.1E-12;

H

201

202

{68.} CRO + NO2 = PROD : 1.4E-11;
{69.} OH + XYL = 0.7 HO2 + 0.5 X02 + 0.2 CRES + 0.8 MGLY
+ 1.10 PAR + 0.3 T02 : ARR(1.7E-11, 116);

{70.} OH + OPEN

X02 + C203 + 2 HO2 + 2 CO + HCHO:3.0E-11;

{71.} OPEN + hv

C203 + CO + HO2 : 6.0E-3*RCONST(1);

{72.} 03 + OPEN

0.03 ALD2 + 0.62 C203
+ 0.7 HCHO + 0.03 X02 + 0.69 CO
+ 0.08 OH + 0.76 HO2 + 0.2 MGLY
: ARR(5.4E-17,-500) ;

{73.} OH + MGLY

X02 + C203 : 1.7E-11;

{74.3} MGLY + hv

C203 + CO + HO2 : 1.86E-2*%RCONST(1) ;
{75.» 0 + ISOP = 0.6 HO2 + 0.8 ALD2 + 0.55 OLE + 0.5 X02
+ 0.5 CO + 0.45 ETH + 0.9 PAR : 1.8E-11 ;

{76.} OH + ISOP

HCHO + X02 + 0.67 HO2
+ 0.4 MGLY + 0.2 C203
+ ETH + 0.2 ALD2 + 0.13 X02N : 9.6E-11 ;

{77.} 03 + ISOP

HCHO + 0.4 ALD2 + 0.55 ETH + 0.2 MGLY

+ 0.06 CO + 0.1 PAR + 0.44 HO2 + 0.1 OH :

1.2E-17;
{78.} NO3 + ISOP = X02N : 3.2E-13;
{79.} X02 + NO = NO2 : 8.1E-12;
{80.} 2 X02 = PROD : ARR(1.7E-14, 1300);
{81.} X02N + NO = PROD : 6.8E-13;

{1}
{2}
{3}
{4}
{5}
{6}
{7}
{8}

{9}

{103}
{11}
{12}
{132}
{14}
{15}
{16}
{173
{18%}
{19}
{20}

A.2 The Lloyd- Atkinson- Lurmann mechanism

NO2 + hv = NO + 03 :

NO + 03 = NO2 + 02 :

NO2 + 03 = NO3 + 02 :

NO + NO3

2N02

NO2 + NO3 = N205 :

N205 = NO2 + NO3 :

NO2 + NO3 = NO + NO2 + 02 :

NO3 + hv = 0.15N0 + 0.85N02 + O.

NO3 + HO2 = HNO3 + 02 :

03 + H20 + hv = 20H :
NO + OH = HONO :

HONO + hv = NO + OH :
NO2 + OH = HNO3 :

HNO3 + hv = NO2 + OH :
HNO3 + OH = NO3 + H20 :
N205 + H20 = 2HNO3 :

CO + OH = HO2 + CO2 :
03 + OH = HO2 + 02 :

NO + HO2 = NO2 + OH :

NO2 + HO2 = HNO4 :

9.236E-3*SUN;
ARR(2.2E-12,-1430) ;
ARR(1.2E-13,-2450) ;
ARR(1.7E-11,150) ;
1.327E-12;
2.013E-2;
ARR(2.5E-14,-1230) ;
8503 + 02 :
3.039E-2%SUN;

0;
9.34E-22%RCONST (1) ;
7.35E-12;
1.893E-3*SUN;
1.2794E-11;
6.684E-T*SUN;
1.629E-13;

0;

2.22E-13;
ARR(1.6E-12,-1000) ;

ARR(3.7E-12,240);

1.333E-12; {1.785E-12;}

203

204

{21} HNO4 = NO2 + HO2 : 0.02313;

{22} 03 + HO2 = OH + 202 : ARR(1.4E-14,-600) ;
{23} HO2 + HO2 = H202 + 02 : 5.816E-12;

{24} H202 + hv = 20H : 7.829E-6%SUN;

{25} H202 + OH = HO2 + H20 : 1.57E-12;

{26} NO2 + H20 = HONO + HNO3 - NO2 : 4.00E-24;
{27} HNO4 + hv = NO2 + HO2 : 1.11E-5%SUN;

{28} HN0O4 + OH

NO2 + H20 + 02 :ARR(1.3E-12,380);

{29} S02 + OH = S04 + HO2 : 1.E-20;
{30} HCHO + hv = 2H02 + CO : 1.569E-5%SUN;
{31} HCHO + hv = CO + H2 : 6.063E-5*SUN;

{32} HCHO + OH

HO2 + CO + H20 :1.00E-11;

{33} HCHO + HO2 = AHO2 : 1.00E-14;
{34} AHO2 + NO = ACO2 + HO2 + NO2 : ARR (4.2E-12,180);
{35} AHO2 + HO2 = AC02 + H20 + 02 : 2.00E-12;

{36} 2AH02 = AC02 + 2H02 + 202 : 1.00E-13;

{37} AC02 + OH = HO2 + H20 + CO2 : 3.20E-13;
{38} NO3 + HCHO = HNO3 + HO2 +CO : 6.00E-16;
{39} ALD2 + OH = MCO3 + H20 : ARR(6.9E-12,250) ;

{40} ALD2 + NO3 = HNO3 + MCO3 : 2.70E-15;

{41} ALD2 + hv = MO2 + HO2 + CO :2.383E-6*SUN;

{42} ALD2 + hv = CH4 + CO : 6.063E-5%SUN;
{43} MCO3 + NO2 = PAN : 4 .70E-12;
{44} PAN = MCO3 + NO2 : ARR(2.2E+16,-13435) ;

{45} MC0O3 + NO = MO2 + NO2 + C02 : ARR(4.2E-12,180);

205

{46} M0O2 + NO

HCHO + NO2 + HO2 : ARR(4.2E-12,180);

{47} CH4 + OH = MO2 + H20 : 6.35E-15;

{48} C2H6 + OH = ET02 + H20 : ARR(1.7E-11,-1232);
{49} ET02 + NO = ALD2 + HO2 + NO2 : ARR(4.2E-12,180);
{50} C3H8 + OH = R302 : ARR(1.18E-11,-679);

{51} R302 + NO = 0.03R3N2 + 0.46ALD2 + 0.97NO2 +

0.97HO2 + 0.49KET : ARR(4.2E-12,180);
{52} ALKA + OH = RAD2 : ARR(2E-11,-500) ;
{---- IN THE NEXT REACTION
BETA 1...9 WHERE REPLACED BY NUMBERS,
AS READ FROM LILING STEM CODE --—-}
{53} RAO2 + NO = 0.9261N02 - 0.1892N0 + 0.263RAN2 +
1.0482ALD2 + 0.3KET +
0.1879ET02 + 0.1116M02 +
0.28H02 + 0.1057R302 + 0.06RA02 :ARR(4.2E-12,180);
{54} ALKA + NO3 = HNO3 + RAO2 : 4.00E-17;

{55} RAN2 + OH

RAN1 + H20 : 2.00E-12;

{56} RAN1 + NO

2.5N02 - 0.5NO + O.8HCHO
+ 2.1ALD2 : ARR(4.2E-12,180);

{57} M02 + MO2 1.4HCHO + 0.8H02 + 02 : ARR(1.5E-13,220);

{58} 2ET02 = 1.6ALD2 + 1.2H02 : 5.00E-14;

{59} R302 + R302 = 1.9ALD2 + 0.28KET + 0.37H02 :5.00E-14;

{60} HO2 + M02 = ROOH + 02 : 3.00E-12;
{61} HO2 + ET02 = ROOH + 02 : 3.00E-12;
{62} HO2 + R302 = ROOH + 02 : 3.00E-12;

{632}
{64}
{65}
{662

{67}
{68}
{69}
{70}
{71}
{72}
{73}
{74}

{75}

{76}
{77}
{78}
{79}
{80}
{81}
{82}
{83}
{84}

206

HO2 + RAO2 = ROOH + 02 : 3.00E-12;

HO2 + MCO3 = ROOH + 02 : 3.00E-12;

KET + OH = K02 : ARR(1.2E-11,-890);

K02 + NO = 0.05RAN2 + 0.95N02 + 0.94ALD2 +
0.94MC0O3 : ARR(4.2E-12,180);

KET + hv = MCO3 + ET02 + H20 : 2.401E-6*SUN;

KET + NO3 = HNO3 + K02 : 7.00E-16;

K02 + HO2 = MGLY + MO2 + H20 : 3.00E-12;

ETHE + OH = E02 : ARR(1.66E-12,474);

E02 + NO = NO2 + 2.0HCHO + HO2 : ARR(4.2E-12,180);

ALKE + OH = P02 : ARR(4.1E-12,537);

P02 + NO = NO2 + ALD2 + HCHO + HO2 : ARR(4.2E-12,180);

ETHE + 03 = HCHO + 0.4CHO2 + 0.12H02 + 0.42C0 +
0.06CH4 : ARR(1.2E-14,-2633);

ALKE + 03 = 0.525HCHO + 0.5ALD2 + 0.2CHO2 +
0.2CR02 + 0.23H02 + 0.215M02 : ARR(7.8E-14,-2105);

CHO2 + NO = HCHO + NO2 : 7.00E-12;

CHO2 + NO2 = HCHO+ NO3 : 7.00E-13;

CHO2 + H20 = ACO2 : 4.00E-18;

CRO2 + NO = ALD2 + NO2 : 7.00E-12;

CRO2 + NO2 = ALD2 + NO3 : 7.00E-13;

CRO2 + H20 = ACTA : 4 .00E-18;

E0O2 + EO2 = 2.4HCHO + 1.2H02 + 0.4ALD2 : 5.00E-14;

P02 + P02 = 2.2ALD2 + 1.2HO2 : 5.00E-14;

HO2 + EO2 = ROOH + 02 : 3.00E-12;

207

{85} HO2 + P02 = ROOH + 02 : 3.00E-12;
{86} S02 + CHO2 = S04 + HCHO : {0;} 7.00E-14;
{87} S02 + CR0O2 = S04 + ALD2 : {0;} 7.00E-14;
{88} ALKE + NO3 = PRN1 : 1.26E-13;
{89} PRN1 + NO2 = PRN2 : 6.80E-12;
{90} PRN1 + HO2 = PRPN + 02 : 3.00E-12;

{91} PRN1 + NO = 2NO2 + HCHO + ALD2 : ARR(4.2E-12,180);

{92} CHO2 + HCHO = 0ZID : 1.36E-14;
{93} CHO2 + ALD2 = Q0ZID : 1.36E-14;
{94} CRO2 + HCHO = 0ZID : 1.36E-14;
{95} CRO2 + ALD2 = 0ZID : 1.36E-14;

{96} AROM + OH

0.84T02 + 0.16CRES + 0.16H02 : 1.52E-11;
{97} TO2 + NO = NO2 + HO2 + 0.72MGLY + 0.18GLYX

+ DIAL : ARR(4.2E-12,180);

{98} GLYX + hv = PROD : 7.389E-5%SUN;

{99} GLYX + OH = HO2 + 2C0 + H20 : 1.15E-11;
{100} MGLY + hv = MCO3 + HO2 + CO : 1.755E-4%SUN;
{101} MGLY + OH = MCO3 + CO + H20 : 1.73E-11;
{---- IN THE NEXT REACTION

BETA 12, 13 WHERE REPLACED BY NUMBERS
AS GIVEN IN LILING’S STEM CODE ----}
{102} CRES + OH = 0.83H02 + 0.9Z02 + 0.9TC03
-0.90H - 0.0315N02 : 4.25E-11;
{103} NO3 + CRES = HNO3 : 1.00E-11;

{104} OH + DIAL = TCO3 : 2.80E-11;

{105} TCO03
{106} TPAN

{107} TCO3

+

NO2 = TPAN :

TCO3 + NO2:

4 .70E-12;

ARR(2.2E+16,-13435) ;

NO = NO2 + 0.92H02 + 0.89GLYX + 0.11MGLY +

0.05MC03 :

{108} 702 + NO = NO2 :

{109} DIAL + hv

{110} HO2 + TO2

{---- HERE
{113} AHO2

{114} ISOP

ARR(4.2E-12,180);

ARR(4.2E-12,180);

0.98H02 + 0.02MCO3 + TCO3 : 9.236E-5%SUN;

= ROOH + 02 : 4.00E-12;
{111} HO2 + TCO3 = ROOH + 02 : 4.00E-12;
{112} HO2 + Z02 = ROOH + 02 : 1.00E-12;
COMES AEROSOL PART ----}
= HCHO + HO2 : 0;
+ OH = RIO2 : 8.505E-11;
+ NO = 0.9ND2 + 0.45MVK + 0.45MACR +

{115} RID2

0.9HO2 + 0.9HCHO :

{116} RI0O2 + HO2 = ROOH :

{117} MVK + OH = VRO2 :

ARR(4.2E-12,180);
3.00E-12;

ARR(3.0E-12,500) ;

{118} VRO2 + NO = 0.9NO2 + 0.6MC0O3 + 0.6HAC +

0.3H02 + 0.3HCHO + 0.3MGGY : ARR(4.2E-12,180);

{119} VR0O2 + HO2 = ROOH :

{120} OH +
{121} MAO3
{122} MPAN
{123} MAO3
{124} MAO3

{125} MACR

M

+

+

ACR = MAO3 :

NO2 = MPAN :

MAO3 + NO2 :

3.0E-12;
1.02E-11;
4 .7E-12;

ARR(2.2E+16,-13435) ;

NO = 3NO3 - 2NO + HO2 + MGGY :ARR(4.2E-12,180);

HO2 = ROOH :

OH = MRO2 :

3.00E-12;

ARR(3.86E-12,500) ;

208

209

{126} MRO2 + NO = 0.9NO2 + 0.9H02 +

0.9HCHO + 0.9MGGY : ARR(4.2E-12,180);

{127} MRO2 + HO2 = ROOH : 3.00E-12;
{128} HAC + OH = HACO : 1.5E-11;
{129} HACO + NO2 = IPAN : 4 .7E-12;
{130} IPAN = HACO + NO2 : ARR(2.2E+16,-13435) ;

{131} HACO + NO = NO2 + HO2 + HCHO : ARR(4.2E-12,180);

{132} HACO

+

HO2 = ROOH : 3.00E-12;

{133} ISOP + 03 = 0.5HCHO + 0.2MVK + 0.3MACR + 0.2CH02 +
0.06HO02 + 0.2MVKO + 0.3MAOO :ARR(7.0E-15,-1900);

{134} MVK + 03 = 0.5HCHO + 0.2CHO2 + 0.21H02 + 0.2MCRG +
0.15ALD2 + 0.5MGGY + 0.15MCO3 :ARR(4.0E-15,-2000);

{135} MACR + 03 = 0.65HCHO + 0.2CHO2 + 0.36H02 +

0.15N02 - 0.15NO + O0.BMGGY + 0.2MCRG :

ARR(4.4E-15,-2500) ;

{136} MVKO + NO = MVK + NO2 : ARR(4.2E-12,180);
{137} MVKO + NO2 = MVK + NO3 : ARR(4.2E-13,180);
{138} MVKO + H20 = PROD : 3.4E-18;

{139} MAOO + NO = MACR + NO2 : ARR(4.2E-12,180) ;

{140} MAOO + NO2 = MACR + NO3 : ARR(4.2E-13,180);

{141} MAOO + H20 = MACA : 3.4E-18;

{142} MCRG + NO

MGGY + NO2 : ARR(4.2E-12,180);

{143} MCRG + NO2 = MGGY + NO3 : ARR(4.2E-13,180);

{144} MCRG

+

H20

PYVA : 3.4E-18;

{145} HAC + hv = HCHO + 2H02 : 4.618E-6*SUN;

{146} MGGY
{147} MGGY
{148} 1ISOP

{149} INO2

{150} INOD2

{151} INO2

+

+

+

hv

OH

NO3

NO

NO2

HO2

{152} MVK + NO3

{153} MVN2 + NO

{154} MVN2 + HO2

{155} MACR
{156} MACR
{157} MAN2

{157} MAN2

+

+

+

+

NO3
NO3
NO

HO2

{159} HAC + NO3 =

{160} MAOO + HO2

{161} MVKO
{162} MVKO
{163} MAOO
{164} MCRG
{165} MACA
{166} PYVA
{167} DOL6

{168} DOL7

+

+

HO2

S02

S02

S02

OH

OH

03

03

MCO3 + HO2 :

MCO3 :

= INO2 :

1.385E-3*SUN;
1.7E-11;

ARR(3.00E-12,-450) ;

2N02 + HCHO + 0.5MVK + 0.5MACR :

PROD :

PROD :

MVN2 :

ARR(4.2E-12,180);
ARR(4.2E-13,180);
3.00E-12;

6.00E-14;

2N02 + HCHO + 0.5MCO3 +

0.5MGGY + 0.5H02 :

PROD :

MAN2 :

2N02 + HCHO + MGGY :

= PROD :

HNO3 + HACO :

ROOH :

ROOH :

S04 + MVK :

S04 + MVK :

PROD :

PROD :

0.11SUCA

0.19GLUA :

MAO3 + HNO3 :

S04 + MACR :

ARR(4.2E-12,180) ;
3.0E-12;
3.3E-15;

6.7E-15;

3.00E-12;
5.2E-16;
3.00E-12;
3.00E-12;

{0;} 7.00E-14;
{0;} 7.00E-14;
{0;} 7.00E-14;
ARR(1.2E-11,500);
5.00E-14;
5.44E-17;

3.46E-17;

ARR(4.2E-12,180);

210

211

{169} DOL8 + 03 = 0.15ADIA : 2.21E-17;

{170} CPET + 03 = 0.39GLUA : 1.03E-15;

{171} CHEX + 03 = 0.15ADIA : 2.16E-16;

{172} OH + HO2 = H20 + 02 : ARR(4.6E-11,230);
{173} ROOH + hv = HCHO + OH + HO2 : 4.618E-6*SUN;

{174} ROOH + OH

0.5M02 + 0.50H + O0.5HCHO : 1.00E-11;

{175} DMS + OH = S02 + MSA : 8.3E-12;
{176} NO3 + NO3 = 2NO2 + 02 : ARR(8.5E-13,-2450) ;
{177} OH + PAN = PROD : ARR(1.23E-12,-651);

{178} NO3 + HO2 = 0.60H + 0.6N02 + 0.4HNO3 : ARR(2.3E-12,170);

A.3 The TMk model
#EQUATIONS {of reduced methane/CO/HOx/NOx chemistry:
Frank Dentener}
{ 1.} NO2 + hv {+ 02} = NO + 03

: RJF(ISTEP,1);{j1l..j11 now from file}

{ 2.} HNO3 + hv = NO2 + OH : RJF(ISTEP,2);

{ 3.} 03 + hv {+H20} = 2 OH : j3;

{ 4.} H202 + hv = 2 OH : RJF(ISTEP,4);

{ 5.} MEP + hv {+ 02}= HCHO + HO2 + OH: RJF(ISTEP,5);
{ 6.} HCHO + hv {+ 2 02} = 2 HO2 + CO : RJF(ISTEP,6);
{ 7.} HCHO + hv = CO : RJF(ISTEP,7);

{ 8.} N205 + hv = NO3 + NO2 : RJF(ISTEP,8);

{ 9.} NO3 + hv {+02} = NO2 + 03 : RJF(ISTEP,9);

212

{10.} NO3 + hv = NO + 02 : RJF(ISTEP,10);

{11.} PNA + hv = NO2 + HO2 : RJF(ISTEP,11);

{12.3} 03 + NO = NO2 : ARR(2.E-12, -1400.0);
{13.3} HO2 + NO = OH + NO2 : ARR(3.7E-12, 250.0);
{14.3} CH302 + NO {+02} = HCHO +HO2 + NO2 : ARR(4.2E-12, 180.0);
{15.} OH + NO2 = HNO3 : ZF3BOD(RX1_15,RX2_15);
{16.} OH + HNO3 = NO3 + H20 : RX1_16;

{17.} 03 + NO2 = NO3 : ARR(1.2E-13, -2450.0);
{18.3} NO3 + NO = 2 NO2 : ARR(1.5E-11,170.0);
{19.3} NO3 + NO2 = N205 : ZF3BOD(RX1_19,RX2_19);
{20.} N205 {+M} = NO3 + NO2 +M : RX1_20;
{21.} OH + PNA = NO2 : ARR(1.3E-12, 380.0);
{22.} HO2 + NO2 = PNA : ZF3BOD(RX1_22,RX2_22);
{23.} PNA = HO2 + NO2 : RX1_23;

{24.} 03 + HO2 = OH +02 : ARR(1.1E-14, -500.0);
{25.} 03 + OH = HO2 : ARR(1.6E-12, -940.0);
{26.} OH + CO = HO2 + CO2 : RX1_26;

{27.} HCHO + OH = HO2 + CO : 1.0E-11;

{28.3} N205 {+ H20} = 2 HNO3 : 5E-5;

{29.} CH4 + OH = CH302 + H20 : ARR(2.9E-12,-1820.0);
{30.} 2 HO2 {+H20} = H202 : RX1_30;

{31.} OH + H202 = HO2 : ARR(2.9E-12, -160.0);
{32.} MEP + OH = CH302 + H20: 0.7*ARR(3.8E-12,200.0);

{33.} MEP + OH

HCHO + OH + H20 : 0.3*ARR(3.8E-12,200.0) ;

{34.} CH302 + HO2 = MEP + OH : ARR(3.8E-13,800.0);

{35.

}

{emi}

D = S S e e e
o

{10.
{11.
{12.
{13.
{14.
{15.
{16.
{17.
{18.
{19.

{20.

O e L e e e L T

HO2 + OH = H20 + 02 : ARR(4.8E-11,250.0);
SOURCE = NO : fnoxemi;

A.4 The stratospheric model
0+ 02=203: 8.018216E-17;
0 + 03 = 202 : 1.575705E-15;
01D + N2 = 0 + N2 : 2.838868E-11;
01D + 02 =0 + 02 : 4.276308E-11;
01D + 03 = 202 : 1.200000E-10;
H20 + 01D = 20H : 2.200000E-10;
H2 + 01D = OH + H : 1.000000E-10;
CH4 + 01D = CH20 + H2 : 7.500000E-12;
CH4 + 01D = CH3 + OH : 1.425000E-10;
H + 02 = HO2 : 6.353884E-15;
H+ 03 =0H+02 : 1.998353E-11;
H2 + OH = H20 + H : 1.388923E-15;
OH + 03 = HO2 + 02 : 3.259930E-14;
OH+ 0=02+H: 3.616461E-11;
OH + OH = H20 + 0 : 1.5564272E-12;
HO2 + 0 = OH + 02 : 6.868940E-11;
HO2 + 03 = OH + 202 : 1.386665E-15;
H + HO2 = 20H :7.000000E-11;
HO2 + OH = H20 + 02 : 1.351923E-10;
HO2 + HO2 = H202 + 02 : 2.769464E-12;

213

{21.
{22.
{23.
{24.
{25.
{26.
{27.
{28.
{29.
{30.
{31.
{32.
{33.
{34.
{35.
{36.
{37.
{38.
{39.
{40.
{41.
{42.
{43.

{44.

HO2 + HO2 + H20 = H202 + 02 + H20 :

H202 + OH = H20 + HO2 :

NO + 03 = NO2 + 02 :

NO + HO2 = NO2 + OH :

NO2 + 0 = NO + 02 :

NO2

NO2

NO2

NO3

NO3

NO3

N205

HNO3

HNO4

HNO4

N205

Cl +

Cl +

Cl +

Cl +

Cl +

Cl +

+

+

+

+

+

+

03 = NO3 + 02 :

OH = HNO3 :

HO2 = HNO4 :

0 = 02 + NO2 :

NO = 2N02 :

NO2 = N205 :

NO2 + NO3 :

+ OH

H20 + NO3 :

+ OH

H20 + NO2 + 02 :

HO2 + NO2 :

2HNO3 : 0.000000E+00;
02 = C100 :

03 = C10 + 02 :

H2 = HC1 + H :

HO2 = HC1 + 02 :

HO2 = OH + C10 :

H202 = HC1 + HO2 :

Cl0 + 0 =C1 + 02 :

Cl0 + OH

Cl0 + OH

HO2 + C1 :

HC1 + 02 :

.515415E-29;
.494801E-12;
.062488E-15;
.042107E-11;
.068500E-11;
.699133E-18;
.724129E-13;
.690292E-14;
.000000E-11;
.033154E-11;
.325973E-13;
.405991E-06;
.890063E-13;
.273406E-12;

.163299E-07;

.032678E-16;
.878682E-12;
.696898E-15;
.639785E-11;
.357771E-12;
.899010E-13;
.009038E-11;
.808230E-11;

.000000E+00;

214

215

{46.3} C10 + HO2 = 02 + HOC1 : 8.718280E-12;
{47.} C10 + NO = NO2 + C1 : 2.127376E-11;
{48.3} C10 + NO2 = C1ONO2 : 2.886454E-14;
{49.3} C10 + C10 = C1 + 0C10 : 1.201307E-15;
{50.} C10 + C10 = C1 + C100 : 1.174783E-15;
{51.} C10 + C10 = C12 + 02 : 1.379878E-15;
{52.} C10 + C10 = C1202 : 3.330338E-15;
{63.} C100 = C1 + 02 : 1.694865E+04 ;
{54.3} C1202 = 2C10 : 4.773959E-04;

{55.} HC1 + OH = H20 + C1 : 6.100684E-13;
{56.} HOC1 + OH = H20 + C10 : 3.781814E-13;
{57.} C10NO2 + 0 = C10 + NO3 : 1.055174E-13;
{58.} C10NO2 + OH = HOCl + NO3 : 3.021112E-13;
{69.} C10NO2 + C1 = C12 + NO3 : 1.319240E-11;
{60.} C10NO2 = HOC1 + HNO3 : 0.000000E+00;
{61.} Br + 03 = Br0 + 02 : 6.185505E-13;
{62.} Br + HO2 = HBr + 02 : 1.249643E-12;
{63.} Br + CH20 = HBr + HCO : 6.185505E-13;
{64.} BrO + 0 = Br + 02 : 4.990544E-11;
{65.} Br0 + HO2 = HOBr + 02 : 4.918275E-11;
{66.} Br0 + NO = Br + NO2 : 2.583341E-11;
{67.} Br0 + NO2 = BrONO2 : 7.684217E-14;
{68.} Br0 + C10 = Br + 0C10 : 9.497781E-12;
{69.} Br0 + C10 = Br + C100 : 7.213454E-12;
{70.} Br0 + C10 = BrCl + 02 : 1.172819E-12;

{71.
{72.
{73.
{74.
{75.
{76.
{77.
{78.
{79.
{80.
{81.
{82.
{83.

{84.

D = S S e e e
o

L e L L e e o o

Br0 + Br0 = 2Br + 02 :
HBr + OH = Br + H20 :
CO+0H=H: 1.502401E-13;

CH4 + OH

CH3 + H20 :

CH20 + OH = HCO + H20 :

CH20 + 0 = HCO + OH

Cl + CH4

CH3 + HC1 :

Cl + CH20 = HC1 + HCO :

HCO + 02

COo + HO2 :

CH3 + 02

CH302 :

CH30 + 02 = CH20 + HO2 :

CH302 + NO = CH30 + NO2 :

CH302 + HO2

CH300H + 02 :

CH300H + OH

CH302 + H20 :

02 + hv = 20 : 2.643E-10 * SUN%*%*3;
03 + hv = 0 + 02 :

03 + hv = 01D + 02 :

HO2 + hv = 0H + 0 :

H202 + hv = 20H :

NO2 + hv = NO + O :

NO3 + hv

NO2 + 0 :

NO3 + hv NO + 02 :
N205 + hv = NO2 + NO3 :

HNO3 + hv = OH + NO2 :

.467250E-

.100000E-

.532251E-

.000000E-

.501231E-

.334368E-

.153519E-

.250373E-

.883651E-

.377921E-

.851990E-

.044377E-

.182046E-

.120E-04

.070E-03

.817E-04

.537E-05

.289E-02

.359E-01

.883E-02

.594E-04

.269E-05

216

12;

11;

15;
11;
14;
14;
11;
12;
14;
16;
12;
11;

12;

* SUN;
* SUN**2;
* SUN**2;
* SUN;
* SUN;
* SUN;
* SUN;
* SUN**2;

* SUN**2;

{11.
{12.
{13.
{14.
{15.
{16.
{17.
{18.
{19.
{20.
{21.
{22.
{23.
{24.

{25.

B s Y S S S Y
NS

O JE o T o e SO R S

L L o L o e L e e

HNO4 + hv

HNO4 + hv

Cl2 + hv = 2

0C10 + hv =

C1202 + hv =

HOC1 + hv =

C10NO2 + hv

C10NO2 + hv

BrCl + hv =

BrO + hv = B

HOBr + hv =

BrONO2 + hv

CH20 + hv

CH20 + hv

CH300H + hv

NO2 + hv =

0 {+ 02

+

M}

NO

03 + NO

0 + NO2

NO

0 + NO2 =

0 + NO

03 + NO2

OH + NO3 : 4.
HO2 + NO2 : 9.
Cl : 3.
0 + C10 : 1

Cl + C100 : 3.
OH + C1 : 4.
= Cl + NO3 : 2.
=Cl + NO2 + O : 2.
Br + C1 : 1
r+0: 5.
Br + OH : 1
= Br + NO3 : 2.
HCO + H : 7.
CO + H2 : 8.
= CH30 + OH : 2.

557E-05

113E-05

692E-03

.243E-01

421E-03

606E-04

254E-04

505E-05

.867E-02

950E-02

.284E-03

074E-03
553E-05
303E-05

285E-05

A.5 The aqueous model

-1370) ;

687) ;

602) ;

NO + O 8.89E-3*SUN;

= 03 ARR(1.4E+3, 1175);

2 : ARR(1.8E-12,
9.3E-12;

NO3 ARR(1.6E-13,

NO2 ARR(2.2E-13,

NO3 ARR(1.2E-13,

-2450) ;

SUN**2 ;
SUN**2 ;
SUN;
SUN;
SUN;
SUN;
SUN**2 ;
SUN**2 ;
SUN;
SUN;
SUN;
SUN;
SUN;
SUN;

SUN;

217

{ 8.
{9.
{10.

{11.
{12.
{13.

{14.

{15.
{16.
{17.
{18.
{19.

{20.

{21.
{22.
{23.
{24.
{25.
{26.
{27.

{28.

“w W

L e

L o v

L e o

218

03 + hv = 0 4 .0E-2*RCONST(1) ;
03 + hv = 01D 2.8E-3*RCONST(1) ;
0D =0 ARR(1.9E+8, 390) ;
01D + H20 = 20H 2.2E-10;
03 + OH = HO2 ARR(1.6E-12, -940);
03 + HO2 = OH ARR(1.4E-14, -580);
NO3 + hv = 0.89 NO2 + 0.89 O

+ 0.11 NO 15.5*%RCONST(1) ;
NO3 + NO = 2 NO2 ARR(1.3E-11, 250);
NO3 + NO2 = NO + NO2 ARR(2.5E-14, -1230);
NO3 + NO2 = N205 ARR(5.3E-13, 256);
N205 + H20 = 2 HNO3 1.3E-21;
N205 = NO3 + NO2 ARR(3.5E+14, -10897);
2 N0 = 2 NO2 ARR(1.8E-20, 530);
NO + NO2 + H20 = 2 HONO 4.4E-40;

OH + NO = HONO
HONO + hv = OH + NO
OH + HONO = NO2

2 HONO = NO + NO2

OH + NO2 = HNO3
OH + HNO3 = NO3

HO2 + NO = OH + NO2

ARR(4.5E-13, 806);
0.17+RCONST(1) ;
6.6E-12;

1.0E-20;
ARR(1.0E-12, 713);
ARR(5.1E-15, 1000);

ARR(3.7E-12, 240);

{29.

{30.

{31.
{32.
{33.
{34.
{35.
{36.
{37.
{38.
{39.

{40.

{41.

{42.

{43.

{44.

{45.

{46.

{47.

{48.

L L = JE VU S o

L o

HO2 + NO2 = PNA

PNA = HO2 + NO2

OH + PNA = NO2

2 HO2 = H202

2 HO2 + H20 = H202
H202 + hv = 2 OH

0H + H202 = HO2

OH + CO = HO2

HCHO + OH = HO2 + CO
HCHO +

HCHO + hv = CO

HCHO + 0 = OH + HO2 + CO

HCHO + NO3 = HNO3

219

ARR(1.2E-13, 749);

ARR(4.8E+13, -10121);

ARR(1.3E-12, 380);
ARR(5.9E-14, 1150) ;
ARR(2.2E-38, 5800);
7.1E-4*RCONST(1) ;
ARR(3.1E-12, -187);
2.2E-13;

1.0E-11;

hv {+ 2 02} = 2 HO2 + CO : 3.2E-3*%RCONST(1);

4 . 2E-3*%RCONST(1) ;

ARR(3.0E-11, -1550);

+ HO2 + CO : 6.3E-16;
ALD2 + 0 = (€203 + OH: ARR(1.2E-11, -986);
ALD2 + OH = €203 ARR(7.0E-12, 250);
ALD2 + NO3 = C203 + HNO3 : 2.5E-15 ;
ALD2 + hv {+ 2 02} = HCHO + X02
+ CO + 2 HO2 : 4.5E-4*RCONST(1);

C203 + NO = HCHO + X02

+ HO2 + NO2 : ARR(5.4E-12, 250);
C203 + NO2 = PAN ARR(8.0E-20, 5500);

PAN = C203 + NO2

ARR(9.4E+16, -14000);

220

{49.} 2 €203 = 2 HCHO + 2 X02 + 2 HO2 : 2.0E-12 ;
{50.3} C203 + HO2 = 0.79 HCHO

+ 0.79 X02 + 0.79 HO2 + 0.79 OH : 6.5E-12;

{51.} OH = HCHO + X02 + HO2 : ARR(1.1E+2, -1710);
{52.} PAR + OH = 0.87 X02 + 0.13 X02N

+ 0.11 HO2 + 0.11 ALD2

+ 0.76 ROR - 0.11 PAR : 8.1E-13;
{53.} ROR = 1.1 ALD2 + 0.96 X02 + 0.94 HO2 + 0.04 X02N

+ 0.02 ROR - 2.10 PAR : ARR(1.0E+15, -8000);
{54.} ROR = HO2 : 1.6E+3;
{55.} ROR + NO2 = PROD : 1.5E-11 ;

{56.} 0 + OLE = 0.63 ALD2 + (.38 HO2
+ 0.28 X02 + 0.3 CO
+ 0.2 HCHO + 0.02 X02N

+ 0.22 PAR + 0.2 OH : ARR(1.2E-11, -324);

{57.} OH + OLE = HCHO + ALD2 + X02

+ HO2 - PAR: ARR(5.2E-12, 504);

{58.} 03 + OLE = 0.5 ALD2 + 0.74 HCHO
+ 0.33 CO + 0.44 HO2
+ 0.22 X02
+ 0.1 OH - PAR : ARR(1.4E-14, -2105) ;
{59.} NO3 + OLE = 0.91 X02 + HCHO
+ ALD2 + 0.09 XO02N

+ NO2 - PAR : T7.7TE-15;

221

{60.} 0 + ETH = HCHO + 0.7 X02 + CO + 1.7 HO2 + 0.3 OH :
ARR(1.0E-11, -792);

{61.} OH + ETH = X02 + 1.56 HCHO + HO2 + 0.22 ALD2
ARR(2.0E-12, 411) ;

{62.} 03 + ETH

HCHO + 0.42 CO + 0.12 HO2: ARR(1.3E-14, -2633);

{63.} OH + TOL

0.08 X02 + 0.36 CRES

+ 0.44 HO2 + 0.56 T02: ARR(2.1E-12, 322);

{64.} TO2 + NO = 0.9 NO2 + 0.9 OPEN + 0.9 HO2 : 8.1E-12;

{65.} T02 = HO2 + CRES :4.2;

{66.} OH + CRES = 0.4 CRO + 0.6 X02 + 0.6 HO2 + 0.3 OPEN:4.1E-11;
{67.} NO3 + CRES = CRO + HNO3 : 2.2E-11;

{68.} CRO + NO2 = PROD : 1.4E-11;

{69.} OH + XYL = 0.7 HO2 + 0.5 X02 + 0.2 CRES + 0.8 MGLY

+ 1.10 PAR + 0.3 TO2 : ARR(1.7E-11, 116);

{70.} OH + OPEN

X02 + C203 + 2 HO2 + 2 CO
+ HCHO : 3.0E-11;

{71.} OPEN + hv

C203 + CO + HO2 : 6.0E-3*RCONST(1);

{72.} 03 + OPEN = 0.03 ALD2 + 0.62 C203
+ 0.7 HCHO + 0.03 X02 + 0.69 CO
+ 0.08 OH + 0.76 HO2

+ 0.2 MGLY : ARR(5.4E-17, -500);

{73.} OH + MGLY X02 + C203 : 1.7E-11;

{74.} MGLY + hv

C203 + CO + HO2 : 1.86E-2%RCONST(1) ;

{75.3 0 + ISOP = 0.6 HO2 + 0.8 ALD2 + 0.55 OLE + 0.5 X02

+ 0.5 CO + 0.45 ETH + 0.9 PAR : 1.8E-11 ;
{76.} OH + ISOP = HCHO + X02 + 0.67 HO2

+ 0.4 MGLY + 0.2 C203

+ ETH + 0.2 ALD2 + 0.13 X02N : 9.6E-11 ;
{77.} 03 + ISOP = HCHO + 0.4 ALD2 + 0.55 ETH + 0.2 MGLY

+ 0.06 CO + 0.1 PAR + 0.44 HO2 + 0.1 OH:

1.2E-17;

{78.} NO3 + ISOP = XO02N : 3.2E-13;
{79.} X02 + NO = NO2 : 8.1E-12;
{80.} 2 X02 = PROD : ARR(1.7E-14, 1300);
{81.} X02N + NO = PROD : 6.8E-13;
{62/RG71} S02 + OH = HO2 + PROD : 1.0870e-12;
{63/RG72} S02 = PROD : 1.3833e-06;

{Methane and Methylperoxyl Radical Reactions}

{} CH4 + OH = CH302 : ARR(2.4E-12,-1710);

{} CH302 + NO = CH30 + NO2 : ARR(4.15E-12,180) ;

{} CH302 + HO2 = PROD : ARR(1.7E-13,1000);

{} 2 CH302 = 0.76 CH30 + 0.62 HCHO + PROD : ARR(1.62E-13, 220);
{} CH30 + 02 = HCHO + HO2 : ARR(7.12E-14,-1080);

{82/RE21} HO2 = HO2aq : 3.3000e-01;

{83/RE22} HO2aq = HO2 : 2.2492e+01;

{84/RE31} H202 = H202aq :3.3000e-01;

222

{85/RE32}
{86/RE41}
{87/RE42}
{88/RE51}
{89/RE52}
{90/RE61}
{91/RE62}
{92/RE71}
{93/RE72}
{94/RE81}
{95/RE82}
{96/RE91}
{97/RE92}
{98/RE101}
{99/RE102}
{100/RE111}
{101/RE112}
{102/RE121}
{103/RE122}
{104/RE131}
{105/RE132}
{106/RE141}
{107/RE151}
{108/RE152}

{109/RE171}

H202aq = H202

03 = 03aq :

03aq = 03

HCHO = HCHOaq :

HCHOaq

HCOCH

HCOOHaq = HCOOH :

HCHO :

HCOOHaq

ROOH = CH302Haq :

CH302Haq = ROOH
X02 = CH302aq :
CH302aq = X02

HNO3 = HNO3aq

HNO3aq = HNO3

NO3 = NO3aq
NO3aq = NO3 :
NH3 = NH3aq :
NH3aq = NH3
S02 = S02aq :
S02aq = S02 :
OH = OHaq :
OHaq = OH
N205 =

H20aq

N

2.

3.

.0790e-01;
.0500e-02;
.3012e+05;
.4000e-01;

.1931e+00;

.8422e+00;

.4000e-01;
.6358e+01;
.4000e-01;
.5579e-01;
.4000e-01;
.1811e+03;
.4000e-01;
.3622e+02;
.4000e-01;

.6599e+04;

4000e-01;

6351e+00;

HNO3aq + HNO3aq :

HPLUSaq + OHMINaq

HPLUSaq + OHMINaq = H20aq

HCOOHaq = HPLUSaq + HCOOMINagq

2.4000e-01;

2.4000e-01;

1.4871e+02;

7.5000e-02;
2.3636e-05;
7.1958e-04;

8.6000e+06;

223

{110/RE172}
{111/RE181}
{112/RE182}
{113/RE191}
{114/RE192}
{115/RE201}
{116/RE202}
{117/RE211}
{118/RE212}
{119/RE221}

{120/RE222}

{121/RWO1}

{122/RW02}

{123/RWO3 }

{124/RW05}

{125/RW06}

{126/RWO7}

{127/RW08}

{128/RW09}

{129/RW10}

HPLUSaq + HCOOMINaq = HCOOHaq

HO2aq = HPLUSaq +
HPLUSaq + 02MINag

S02aq = HS03MINaq

HS03MINaq +

HSO3MINaq

S032MINag +

+

HPLUSaq

02MINaq :

HO2aq
HPLUSaq :

= S02aq

S032MINaq + HPLUSaq

HPLUSaq

= HSO03MINaq

NH3aq = NH4aq + OHMINagq

NH4aq + OHMINaq = NH3aq :

HNO3aq = NO3MINaq + HPLUSaq :

NO3MINaq + HPLUSaq = HNO3aq

FE3PLUSaq = FE2PLUSaq + OHaq :

H202aq = OHaq + OHaq :

HCHOaq + OHaq

HCOOHaq

+ HO2aq + H20aq :

HCOOMINaq + OHaq = 02MINaq + CO2aq :

HCOOHaq + OHaq = 02MINaq

+ HPLUSaq + C02aq :

HSO3MINaq + OHaq = S042MINaq + HPLUSaq

HMSAaq + OHaq = S042MINaq

+ HCHOaq + HPLUSaq :

FE2PLUSaq + OHaq = FE3PLUSaq

+ OHMINaq: 0.2380E-05 ;

H202aq + OHaq = H20aq + HO2aq

.6016e-04;
.6000e+05;
.5353e-05;
.6000e+06;
.6606e-06;
.0000e+04;
.3029e-04;
.0000e+05;
.8820e-04;
.2000e+09;

. 7494e-07;

.4583E-03 ;

.7219E-05;

.1107E-04 ;

.1771E-04

.7T196E-06 ;

:0.2491E-04;

0.5535E-05 ;

b

0.1495E-06;

224

{130/RW11}

{131/RW13}

{132/RW14}

{133/RW15}

{134/RW16}

{135/RW17}

{136/RW18}

{137/RW19}

{138/RW20}

{139/RW21}

{140/RW22}

{141/RW23}

{142/RW24}

03aq + OHaq = HO2aq : 0.1661E-04;

02MINaq + FE2PLUSaq = FE3PLUSagq

+ H202aq + OHMINaq + OHMINaq : 0.5535E-07;

02MINaq + FE3PLUSaq = FE2PLUSaq : 0.8303E-06;

02MINaq + CUPLUSaq = CU2PLUSaq

+ H202aq + OHMINaq + OHMINaq : 0.4982E-04;
02MINaq + CU2PLUSaq = CUPLUSaq : 0.4428E-04;
02MINag + 03aq = OHaq + OHMINaq : 0.8303E-05;
HO2aq + FE2PLUSaq = FE3PLUSaq

+ H202aq + OHMINaq : 0.6642E-08;
HO2aq + FE3PLUSaq = FE2PLUSaq + HPLUSaq :
0.5535E-10;

HO02aq + CUPLUSaq = CU2PLUSaq

+ H202aq + OHMINaq 0.5535E-05;

HO2aq + CU2PLUSaq = CUPLUSaq + HPLUSaq:0.2768E-06;

H202aq + HSO3MINaq = S042MINaq

+ H20aq + HPLUSaq 0.5535E-14;
H202aq + FE2PLUSaq = FE3PLUSaq

+ OHaq + OHMINaq : 0.5535E-14 ;
H202aq + CUPLUSaq = CU2PLUSaq

+ OHaq + OHMINaq 0.2214E-08 ;

225

{143/RW25}

{144/RW26}

{145/RW27}

{146/RW28}

{147/RW29}

{148/RW30}

{149/RW31}

{150/RW32}

{151/RW34}

{152/RW35}

{153/RW39}

{154/RW40}

{155/RW42}

{156/RW43}

{157/RW44}

CUPLUSaq = CU2PLUSaq + 02MINaq :

CUPLUSaq + FE3PLUSaq = CU2PLUSaq

+ FE2PLUSaq :

0.

1661E-06;

CUPLUSaq + 03aq = CU2PLUSaq

+ OHaq + OHMINaq :

FE2PLUSaq + 03aq = FE3PLUSaq

+ OHaq + OHMINaq :

FE3PLUSaq + HSO3MINaq = FE2PLUSaq

+ S042MINaq + HPLUSaq

03aq + HSO3MINaq

03aq + S032MINaq

03aq = H202aq

HO2aq + 02MINaq = H202aq + OHMINaq :

: 0.

0.2500E-03 ;

0.5535E-07 ;

0.4539E-08 ;

0.5535E-14 ;

S042MINaq + HPLUSaq:

S042MINaq

2355E-04 ;

HO2aq + HO2aq = H202aq

S032MINaq + HCHOaq = HMSAaq

+ DHMINaq
HMSAaq + OHMINaq

+ HCHOaq :

:0

0

1384E-06 ;

S032MINaq

1993E-10 ;

CH302aq + 02MINaq = CH302Haq

+ 0HMINaq
CH302Haq + OHaq

CH302Haq + OHaq

:0.2768E-06 ;

HCHOaq + OHaq

CH302aq + H20aq

0.1716E-08;

0.5535E-05 ;

0.5535E-06 ;

0.4594E-08 ;

0.1495E-06 ;

0.1052E-06 ;

3

3

H

b

H

H

H

H

H

226

{C02 reactions}

C02aq = HPLUSaq + HCO3MINaq : 1.0E-4;

HPLUSaq + HCO3MINaq = C02aq : 1.2178E-12;

C02aq + H20aq = H2C03aq :

H2C03aq = C02aq + H20aq : 0*1.19E+1;
H2C03aq = HPLUSaq + HCO3MINaq :
HPLUSaq + HCO3MINaq = H2C03aq :

HPLUSaq + HCO3MINaq = C02aq :

C02aq + H20aq = HPLUSaq + HCO3MINaq :

227

0%3.0E-2;

0*8.0E+6 ;
0%4 .7E+10;
0x1.5E+4;

0*1.0E-2;

1]

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

228

REFERENCES

T. Alishenas and O. Olafsson. Modeling and velocity stabilization of con-
strained mechanical systems with comparative study of two test problems.
Preprint, NADA, Royal Institute of Technology, Stockholm, 1993.

H. Amann. Ordinary Differential Equations: An Introduction to Nonlinear
Analysis. Walter de Gruyter, 1990.

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Green-
baum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LA-
PACK User’s Guide, second edition. Technical report, SIAM, Philadelphia,
PA, 1995.

U. M. Ascher, S. J. Ruuth, and B. T. R. Wetton. Implicit-Explicit methods
for time dependent PDE’s. Technical Report 93-15, 1993.

R.D. Atkinson, D.L. Baulch, R.A. Cox, R.F.JR. Hampson, J.A. Kerr, and
J. Troe. Evaluated kinetic and photochemical data for atmospheric chemistry.
International Journal of Chemical Kinetics, 21:115-190, 1989.

G. Bader and P. Deuflhard. A semi-implicit mid-point rule for stiff systems of
ordinary differential equations. Numer. Math., 41:373-398, 1983.

Ch. Bischof, A. Carle, G. Corliss, A. Griewank, and P. Hovland. ADIFOR gen-
erating derivative codes from FORTRAN programs. Technical report, Math-
ematics and Computer Science Division, Argonne National Laboratory, Ar-
gonne, Illinois, 1992.

Ch. Bischof, A. Carle, P. Khademi, and A. Mauer. The ADIFOR2.0 system
for the automatic differentiation of FORTRANY7 programs. Technical report,
Mathematics and Computer Science Division, Argonne National Laboratory,
Argonne, Illinois, 1994.

H.G. Bock. Numerical treatment of inverse problems in chemical reaction
kinetics. Modelling of Chemical Reaction Systems, K.H. FEbert, P. Deuflhard
and W. Jaeger editors, Springer Series in Chem. Phys., 18:102—-125, 1981.

K. E. Brenan, S. L. Campbell, and L. R. Petzold. Numerical Solution of
Initial-Value Problems in Differential-Algebraic Equations. Elsevier Science
Publishers, 1989.

P.N. Brown, G.D. Byrne, and A.C. Hindmarsh. VODE: A Variable Step ODE
Solver. SIAM J. Sci. Stat. Comput., 10:1038-1051, 1989.

229

[12] G.D. Byrne and A.M. Dean. The numerical solution of some chemical kinetics
models with VODE and CHEMKIN II. Computers Chem., 17:297-302, 1993.

[13] D. G. Cacuci. Sensitivity theory for nonlinear systems. I. Nonlinear functional
analysis approach. II. Extensions to additional classes of responses. J. Math.
Phys., 22:2794-2812, 1981.

[14] G.R. Carmichael, L.K. Peters, and T. Kitada. A second generation model
for regional-scale transport/ chemistry/ deposition. Atmospheric environment,
20:173-188, 1986.

[15] G.R. Carmichael, A. Sandu, and F.A. Potra. Sensitivity Analysis for Atmo-
spheric Chemistry models via Automatic Differentiation. Atmospheric Enuvi-
ronment, 31:475 — 489, 1997.

[16] B.W. Char, K.O. Geddes, G.H. Gonnet, M.B. Monagan, and S.M. Watt. Maple
V Language Reference Manual. Springer-Verlag, New York, 1991.

[17] M. Chin, D. Jacob, J. Munger, D. Parrish, and B. Doddridge. Relationship of
ozone and carbon monoxide over north america. J. Geophys. Res., 99:14,565—
14,573, 1994.

[18] Y. S. Cho. Ph.d. thesis. The University of Iowa, 1986.

[19] Y. S. Cho and G.R. Carmichael. Evaluation of liquid phase chemical produc-
tion of sulfate using sensitivity analysis. Atmospheric Environment, 20:1959—
1988, 1986.

[20] Y.S. Cho, G.R. Carmichael, and H. Rabitz. Sensitivity analysis of the advection-
diffusion equation. Atmospheric Environment, 21:2589-2598, 1987.

[21] Y. S. Cho, G.R. Carmichael, and H. Rabitz. The relationship between primary
emissions and acid deposition in eulerian models determined by sensitivity
analysis. Water, Air and Soil Pollution, 40:9-31, 1988.

[22] D. P. Chock and S. L. Winkler. A comparison of advection algorithms coupled
with chemistry. Atmospheric Environment, 28(16):2659-2675, 1994.

[23] D. Dabdub and J.H. Seinfeld. Extrapolation techniques used in the solution of
stiff odes associated with chemical kinetics of air quality models. Atmospheric
Enwvironment, 29:403-410, 1995.

[24] V. Damian-lordache. KPP - a chemical development environment. Technical
report, The University of lowa, lowa City, TA 52246, 1996.

[25] V. Damian-lordache, A. Sandu, M. Damian-lordache, G. R. carmichael, and
F. A. Potra. KPP - A symbolic preprocessor for chemistry kinetics - User’s
guide. Technical report, The University of Iowa, Iowa City, IA 52246, 1995.

[26]

[27]

28]

[29]

[30]
[31]
[32]
33]
[34]

[35]

[36]

[37]

[38]

[39]

230

J. J. B. de Swart and J. G. Blom. Experiences with sparse matrix solvers in
parallel ODE software. Technical report, Centrum voor Wiskunde en Infor-
matica, Kruislaan 413, 1098 SJ Amsterdam, 1995.

J. E. Dennis. On the kanrovitch hypothesis for Newton’s method. SIAM
Journal on Numerical Analysis, 6:493-507, 1969.

J. E. Dennis and R. B. Schnabel. Numerical Methods for unconstrained opti-
mization and nonlinear equations. Prentice Hall Inc, Englewood Cliffs, New
Jersey 07632, 1985.

R. Dentener and P. Crutzen. Reaction of NyOs on tropospheric aerosols :
impact of the global distributions of NO,, O3 and OH. Journal of Geophysical
Research, 98:7149-7163, 1993.

P. Deuflhard. Recent progress in extrapolation methods for ordinary differen-
tial equations. SIAM Review, 27:505-535, 1985.

J. J. Dongarra, J. R. Bunch, C. B. Moller, and G. W. Stewart. LINPACK
User’s Guide. Technical report, STAM, Philadelphia, PA, 1979.

J.J. Dongarra and E. Grosse. Distribution of software via electronic mail.
Communications ACM, pages 403—407, 1987.

I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices.
Oxford Science Publications, Clarendon Press Oxford, 1986.

A. M. Dunker. The decoupled direct method for calculating sensitivity coeffi-
cients in chemical kinetics. J. Chemical Physics, 81:2385, 1984.

S.C. Eisenstat, M.C. Gursky, M.H. Schultz, and A.H. Sherman. Yale Sparse
Matrix Package. ii. The nonsymmetric codes. Research Report 114, Depart-
ment of Computer Science, Yale University, 1977.

S.C. Eisenstat, M.C. Gursky, M.H. Schultz, and A.H. Sherman. Yale Sparse
Matrix Package. i. The symmetric codes. Int. J. Num. Meth. Eng., 18:1145—
1151, 1982.

A.S. El-Bakry, R.A. Tapia, T. Tsuchia, and Y. Zhang. On the Formulation of
the Primal-Dual Newton Interior-Point Method for Nonlinear Programming.
To appear in Journal of Optimization Theory and Applications, 1996.

S. Elliot, R.P. Turco, and M.Z. Jacobson. Tests on combined projection /forward
differencing integration for stiff photochemical family systems at long time step.
Computers Chem, 17:91-102, 1993.

ftp.cgrer.uiowa.edu. Ftp site. Ftp site at The Center for Global and Regional
Environmental Research, University of Iowa, (pub/Ode_benchmark, pub/KPP),
1996.

[40]

[41]

[42]

[43]

[44]

[45]

[46]
[47]

[48]

[49]

[50]

[51]

[52]

[53]

231

M. W. Gery, G.Z. Whitten, J.P. Killus, and M.C. Dodge. A photochemical
kinetics mechanism for urban and regional scale computer modelling. Journal
of Geophysical Research, 94:12925-12956, 1989.

G. Golub and C. F. van Loan. Matriz computaions. Johns Hopkins University
Press, Baltimore and London, 1983.

W. Gong and H.R. Cho. A numerical scheme for the integration of the gas
phase chemical rate equations in 3D atmospheric models. Atmospheric Envi-
ronment, 27A:2147-2160, 1993.

A. Griewank, C. Bischof, G. Corliss, A. Carle, and K. Williamson. Derivative
convergence for iterative equation solvers. Optimization methods and software,
2:321-355, 1993.

A. Griewank and G. Corliss. Automatic differentiation of algorithms: Theory,
implementation, and application. SIAM, Philadelphia, Pennsylvania, 1991.

E. Hairer, Ch. Lubich, and M. Roche. The Numerical Solution of Differential-
Algebraic Systems by Runge-Kutta Methods. Springer-Verlag, Berlin, New-
York, 19809.

E. Hairer, S.P. Norsett, and G. Wanner. Solving Ordinary Differential Equa-
tions I. Nonstiff Problems. Springer-Verlag, Berlin, 1993.

E. Hairer and G. Wanner. Solving Ordinary Differential Equations II. Stiff and
Differential-Algebraic Problems. Springer-Verlag, Berlin, 1991.

O. Hertel, R. Berkowicz, J. Christensen, and O. Hov. Test of two numeri-
cal schemes for use in atmospheric transport-chemistry models. Atmospheric
Environment, 27A:2591-2611, 1993.

E. Hesstvedt, O. Hov, and I. Isaacsen. A numerical method to predict sec-
ondary air pollutants with an application on oxidant generation in an urban
atmosphere. WMO publication, 510:219-226, 1978.

E. Hesstvedt, O. Hov, and I. Isaacsen. Quasi-steady-state-approximation in air
pollution modelling: comparison of two numerical schemes for oxidant predic-
tion. Int. J. Chem. Kinet., 10:971-994, 1978.

A. Hindmarsch. ODEPACK: A systematized collection of ODE solvers. Ed.
North Holland, Amsterdam, 1983.

M. Hochbruck, C. Lubich, and H. Selhofer. Exponential integrators for large
systems of differential equations. SIAM Journal of Scientific Computing, to
appear, 1997.

D.J. Jacob, J.A. Logan, G.M. Gardner, C.M. Spivakovsky R.M. Yevich, S.C.
Wofsy, S. Sillman, and M.J. Prather. Factors regulating ozone over the United

[54]
[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

232

States and its export to the global atmosphere. J. Geophys. Res., 98:14,817—
14,826, 1993.

M.Z. Jacobson and R.P. Turco. SMVGEAR: a sparse-matrix, vectorized Gear
code for atmospheric models. Atmospheric Environment, 17:273-284, 1994.

L. O. Jay. Structure-Preserving Integrators. University of Minnesota AH-
PCRC, Preprint 95-038, 1995.

L.O. Jay, A. Sandu, F.A. Potra, and G.R. Carmichael. Improved QSSA meth-
ods for atmospheric chemistry integration. SIAM Journal on Scientififc Com-
puting, 18:182-202, 1997.

R. J. Kee, F. M. Rupley, and J. A. Miller. CHEMKIN II: A FORTRAN
package for the analysis of gas phase chemical kinetics. Technical report, Sandia
National Laboratory, Livermore, CA, 1989.

X. Lin, M. Trainer, and S. Liu. On the nonlinearity of tropospheric ozone
production. Journal of Geophysical Research, 93:15,879-15,888, 1988.

F.W. Lurmann, A.C. Loyd, and R. Atkinson. A chemical mechanism for use
in long-range transport/acid deposition computer modeling. Journal of Geo-
physical Research, 91:10,905-10,936, 1986.

J. Matthijsen. Private Communication. 1995.

G.J. McRae, W.R. Goodin, and J.H. Seinfeld. Numerical solution of the at-
mospheric diffusion equation for chemically reacting flows. Journal of Compu-
tational Physics, 45:1-42, 1982.

Hoa D. Nguyen and Seungho Paik. Solution Domain decomposition with Finite
Difference Methods for PDE. Numerical methods for PDE, 11:453-466, 1995.

Jorge Nocedal. Theory of Algorithms for Unconstrained Optimization. Acta
Numerica, pages 1-37, 1991.

U. Nowak. A short user’s guide to LARKIN. Technical report, Konrad-Zuse-
Zentrum fuer, Informationstechnik Berlin, 1982.

J. Olson, M. Prather, T. Berntsen, G. R. Carmichael, R. Chatfield, P. Connell,
R. Derwent, L. Horowitz, S. Jin, M. Kanakidou, P. Kasibhatla, R. Kotomarthi,
M. Kuhn, K. Law, S. Sillman, J. Penner, L. Perliski, F. Stordal, A. Thompson,
and O. Wild. Results from the IPCC Photochemical Model Intercomparison
(PhotoComp): Some Insights into Tropospheric Chemistry. submitted to Jour-
nal of Geophysical Research, March 1996.

K. Olszyna, E. Bailey, R. Simonaites, and J. Meagher. O3 and NO, rela-
tionships at a rural site. Journal of Geophysical Research, 99:14,557-14,563,
1994.

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

233

D. Parrish, J. Holloway, M. Trainer, P. Murphy, G. Forbes, and F. Fehsenfeld.
Export of north american ozone pollution to the north atlantic ocean. Science,
259:1436-1439, 1993.

F.A. Potra, K. Kortanek, and Y. Ye. On some efficient interior point meth-
ods for nonlinear convex programming. Linear Algebra and its Applications,
152:191-222, 1991.

M.J.D. Powell. Convergence properties of algorithms for nonlinear optimiza-
tion. Report DAMTP 1985/NA1, University of Cambridge, Department of
Applied Mathematics and Theoretical Physics, Cambridge, October 1985.

M. Prather. Intercomparison of tropospheric chemistry/ transport models. Sci-
entific assesment of ozone depletion, World meteorological organization, 1995.

A. Prothero and A. Robinson. On the stability and accuracy of one-step meth-
ods for solving stiff systems of ordinary differential equations. Math. of Com-
put., 28:145-162, 1974.

H. Rabitz, M. Hramer, and D. Dacol. Sensitivity analysis in chemical kinetics.
Anual review of physical chemistry, 34, 1983.

D. Ralph and S. Wright. Superlinear convergence of an interior point method
for monotone variational inequalities. Preprint MCS-P556-0196, Argonne Na-
tional Laboratory, 1996.

A. Sandu, J. G. Blom, E. Spee, J. G. Verwer, F.A. Potra, and G.R. Carmichael.
Benchmarking stiff ODE solvers for atmospheric chemistry equations IT - Rosen-
brock Solvers. Report on Computational Mathematics 90, The University of
Iowa, Department of Mathematics, lowa City, July 1996.

A. Sandu, F.A. Potra, V. Damian, and G.R. Carmichael. Efficient imple-
mentation of fully implicit methods for atmospheric chemistry. Journal of
Computational Physics, 129:101 — 110, 1996.

A. Sandu, M. van Loon, F.A. Potra, G.R. Carmichael, and J. G. Verwer.
Benchmarking stiff ODE solvers for atmospheric chemistry equations I - Im-
plicit vs. Explicit. Report on Computational Mathematics 85, The University
of Iowa, Department of Mathematics, lowa City, January 1996.

R. D. Saylor and G. D. Ford. On the comparison of numerical methods for
the integration of kinetic equations in atmospheric chemistry and transport
models. Atmospheric Environment, 29:2585-2593, 1995.

A.H. Sherman and A.C. Hindmarsh. GEARS: a package for the solution of
sparse, stiff ordinary differential equations. Lawrence Livermore Laboratory
Report, UCRL-84102.

234

[79] D. Shyan-Shu Shieh, Y. Chang, and G.R. Carmichael. The evaluation of nu-
merical techniques for solution of stiff ODE arising from chemical kinetic prob-
lems. Enwvironmental Software, 3, 1988.

[80] S. Sillman. A numerical solution for the equations of tropospheric chemistry
based on an analysis of sources and sinks of odd hydrogen. Journal of Geo-
physical Research, 96:20735-20744, 1991.

[81] D. Simpson. Biogenic VOC in Europe. Part II: implications for ozone control
strategies. EMEP MSC-W, 1994.

[82] D. Simpson, Y. Andersson-Skold, and M.E. Jenkin. Updating the chemical
scheme for the EMEP MSC-W oxidant model: current status. EMEP MSC-
W, Technical Report 2/93, 1993.

[83] S. Skelboe and Z. Zlatev. Exploiting the natural partitioning in the numerical
solution of ODE systems arising from atmospheric chemistry. Report, Univer-
sity of Copenhagen, Department of Computer Science, Copenhagen, Denmark,
1996.

[84] D. Stoffer. Variable steps for reversible integration methods. Computing, 55:1-
99, 1995.

[85] M. van Loon. Numerical smog prediction I: the physical and chemical model.
CWI Report NM-R9/11, 1995.

[86] M. van Loon. Numerical smog prediction IT: Grid refinement and its application
to the Dutch smog prediction model. CWI Report NM-R95xx, 1995.

[87] J. Verwer. Gauss-Seidel iterations for stiff ODEs from chemical kinetics. SIAM
Journal of Scientific Computing, 15:1243-1250, 1994.

[88] J. Verwer, J. G. Blom, and W. Hunsdorfer. An Implicit-Explicit Approach for
Atmospheric Transport-Chemistry Problems. Applied Numerical Mathematics,
20:191-209, 1996.

[89] J. Verwer, J. G. Blom, M. van Loon, and E. J. Spee. A comparison of stiff
ODE solvers for atmospheric chemistry problems. Atmospheric Environment,
30:49-58, 1996.

[90] J. Verwer and W. Hunsdorfer. A note on Splitting Errors for Advection-
Reaction Equations. CWI Report NM-R942.

[91] J. Verwer and D. Simpson. Explicit Methods for Stiff Odes from Atmospheric
Chemistry. Applied Numerical Mathematics, 18:413-430, 1995.

[92] J. Verwer and M. van Loon. An evaluation of explicit Pseudo-Steady-State
Approximation achemes for stiff ODE systems from chemical kinetics. Journal
of Computational Physics, 113:347-352, 1994.

[93]

[94]

[95]

[96]

[97]

235

P. Werbos. Applications of advances in nonlinear sensitivity analysis. System
modelling and optimization, Springer-Verlag:762-777, 1982.

R. Yamartino, J. Scire, G.R. Carmichael, and Y.S. Chang. The CALGRID
mesoscale photochemical grid model. Atmospheric Environment, 26 A:1493—
1512, 1992.

N. N. Yanenko. The method of fractional steps. Springer-Verlag, New-York,
Heidelberg, Berlin, 1971.

T. R. Young and J. P. Boris. A numerical technique for solving stiff ODE
associated with the chemical kinetics of reactive flow problems. Journal of
Physical Chemistry, 81:2424-2427, 1977.

Z. Zlatev. Computer Treatment of Large Awr Pollution Models. Kluwer Aca-
demic Publishers, 1995.

