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Abstract

One of the most popular approaches to pairwise Markov Random Fields structure
learning is through optimizing the L1-regularized log-likelihood. At the end of the
optimization task, parameters of irrelevant edges are reduced to zero. The main
challenge when using this particular method is the fact that the space of possible
edges is extremely large which makes it infeasible for large number of variables. To
work around this issue, incremental methods such as Grafting were introduced.
This method constructs a working set by activating one edge at a time and hence
avoids performing inference at each optimization step over the set of all possible
edges. The activation step is done by computing the gradient for each feature in
the model and activate the edge that possesses the feature with the highest gradient
that is above the defined L1 coefficient. This however comes at the price of testing
every possible edge for activation which grows exponentially with the number of
variables and their corresponding features.
This paper introduces our method, Priority Grafting, that works around this
issue by mining the partially constructed structure of the Markov network, using
efficient heuristics, and assigns a priority value to each edge. Priority Grafting

tests edges for activation in order of decreasing priority. We use a priority queue,
an optimized data structure, to store edges and their relevant priorities. Unlike
Grafting, our method selects the first encountered edge that has a feature gradient
that is above the L1 coefficient. Inspired by the results of Grafting Light, we
run the intermediate optimization tasks for a limited number of steps. This provides
gain in computational time but might result, in some cases, in some spurious edges
that are later removed using a pruning procedure. Priority Grafting converges
faster than Grafting and produces exactly the same structure as shown in our
preliminary results.

Introduction

Current structure learning methods of Markov random fields [5] fall into two main categories:
constraint-based and score-based methods. Constraint based methods haven’t been very popular. On
one hand, they lack robustness to statistical noise in the empirical distribution which can give rise
to incorrect independence assumptions.On the other hand, they only produce the structure of the
model without learning any parameters [6]. Score-based methods construct an objective function
by combining a likelihood term with a penalty term to avoid spurious edges. They then search for
structures that optimize the objective. One well established approach is based on the L1 regularized
likelihood [1], which allows the objective to be formulated as a cost function over the set of parameters.
At the end of the optimization task, parameters of irrelevant edges are reduced to zero. The main
challenge when using this particular methods is the fact that the space of possible edges is extremely
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large which makes it infeasible. To work around this issue incremental methods were introduced. The
most popular one is based on Grafting [10, 7]. The main idea is to define a set of active features
on which we run optimization and a set describing the search space. The active set is initiated as an
empty set, then at each iteration, a greedy test is performed to select the feature that would introduce
the best improvement to the cost function and we add. The active set is then updated by inserting
the selected feature into it. In our implementation of Grafting we activate the edge that contains the
selected feature. In other words we include all related features to the edge containing the selected
feature. The procedure is performed until an optimal active set is constructed, i.e. no inactive feature
is able to significantly improve the cost function in case it is selected. One drawback of Grafting is
the fact that the selection task is greedy and might become infeasible in models with extremely large
number of variables.

A modified version called Grafting Light [13] has been introduced as a faster extension to
Grafting. It aims at reducing the computational cost by running one gradient step each time a new
feature is selected. This however lacks a solid theoretical proof that the optimal solution is reached
and does not solve the time complexity of the activation test.

The main drawback that we notice in all scoring-based methods is that they do not exploit the partially
constructed structure that is being built in the process of incremental structure learning. This presents
a valuable source of information that provides information about the importance of candidate edges.

We introduce Priority Grafting, a method that mines the partially constructed structure of a
given Markov network, using efficient heuristics, and assigns a priority value to each edge. Priority
Grafting tests edges for activation in order of decreasing priority. We use a priority queue [11], an
optimized data structure, to store edges and their relevant priorities. Unlike Grafting, our method
selects the first encountered edge that has a feature gradient above the L1 coefficient. Although, this
might result in some extra edges, our method removes them using a pruning procedure.

Priority Grafting converges faster than Grafting and produces exactly the same structure as
shown in our preliminary results.

The intuition behind the defined heuristics is to limit the interaction between two sets of variables to
flow over only one edge relating their respective most central nodes. In case we test that edge for
relevancy, any relevant connection between the two sets of nodes would result in a positive result.
The opposite case informs us that it is very unlikely that there is any relevant relation between the
two sets of nodes. Priority Grafting, assigns edge priorities to all possible edges between both
sets of nodes accordingly.

The paper is structured as follows. The first section introduces the Grafting. In the second section
we present Priority Grafting and summarize the algorithm. Experimental results and future
work are presented in the third section.

1 Structure learning using Grafting

In this section we introduce notations for the rest of the paper and we define the problem L1-
regularized pseudo-likelihood structure learning problem. Throughout this paper we consider the
case of the exponential family pairwise Markov Random fields. In this case, the probability of a set
of variables X is:
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), i = 1 . . . N , the likelihood based parameter learning
of MRF structure is to find the best parameter vector that has the maximum log-likelihood or minimal
negative log-likelihood L(w) value, where
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Algorithm 1 Grafting based structure learning
repeat

Select the k

th feature using the selection criteria C1.
Activate the edge corresponding to the k

th feature.
Optimize the L1-regularized L using gradient descent algorithm over the active set.

until no feature is activated
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w and f correspond to the vectors of w
k

and f

k

respectively. This can be cast as a structure learning
problem. In fact, structure learning consists in detecting edges between variables. These edge have
corresponding features and weight. An edge is created whenever at least one corresponding weight is
learned to be non zero.

The most natural way to approach this problem is to create a set of weights corresponding to
all possible edges and minimize L(w) using methods like quasi-Newton [8], stochastic [12], or
exponentiated gradient methods [2]. In either case we are required to compute the gradient of L, rL.
The k

th coordinate of rL is:
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To promote sparsity of the learned weights and hence of the learned Markov network, an L1 regular-
ization term is added to rL as follows:

L(w) = L(w) + �||w||1 (4)

This can be seen as introducing a prior for the model parameters using a Gaussian distribution of the
form N(0, 1/�2

). This prior will force irrelevant parameters to have zero values at the solution.

However the set of parameters w
k

is combinatorial and grows drastically with the number of variables.
Hence, this approach to structure learning can be infeasible for a large number of variables.

1.2 Grafting

Unlike traditional methods, Grafting does not runs optimization over the whole set of weights.
Instead, it performs a selection step where it activates one weight at a time. After each activation
Grafting runs optimization on the active set and learn the corresponding parameters. This can be
seen as an incremental feature selection task [9, 4]. Using these parameters Grafting runs the next
selection test. This method converges when no new parameter is activated. The power of Grafting
comes from the fact that selection task does not require inference, which is the most expensive
operation in the structure learning framework as it has to run at each optimization iteration.

The selection step is performed by selecting the j

th feature using the following selection criteria C1:

C1 :

⇢
j = argmax

k
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j

L| > �

(5)

Grafting-based structure learning steps are summarized in algorithm 1.

The main drawback with Grafting is the fact that the search space is large and hence the activation
step becomes expensive with large number of variables. On the other hand Grafting gradually
constructs the structure of the MRF by activating edges at each iteration and hence grows a partial
structure at each iteration. Although this partial structure contains rich information about the
dependencies and independencies between variables, it is not exploited in the process.
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2 Priority Grafting

In this section we present Priority Grafting. This method is an extension of Grafting that
performs efficient partial structure mining heuristics. These heuristics are used to assign edge
priorities to be followed when running the activation step. Unlike Grafting, this method selects the
first encountered feature that has a gradient above the L1 coefficient. This takes advantage of the
priority ordering and results in an early stopping of the selection task.

2.1 Priority assignment

In this section we treat the partially constructed MRF structure as a graph G(E, V ), where E refers
to the set of constructed edges and V denotes the set of all model variables.

All candidate edges, i.e. edges that are in the search space are initiated with the same priority. At
each priority assignment iteration we aim at reducing the priority of a set of edges that are proved to
be less relevant than what they were assumed to be at earlier iterations. This is done by mining the
partially constructed structure of the MRF.

The first step is to detect central nodes V

c

in G. A central node is a node that has a number of
neighbors that exceeds a predefined threshold ⌧

n

. We then construct all possible edges between the
set of central nodes that are not in E and we denote it by E

c

(not a subset of E). Each edge (i, k) in
E

c

is scored by the cardinality of the set ˆ

E(i,k) that contains all possible inactive edges between N

i

and N

k

referring respectively to the neighbors of i, and the neighbors of k, i.e.:

score(i,k) = #(

ˆ

E(i,k)) (6)

The next step is to select the highest scoring edge from E

c

, i.e.

(i, j) = arg max

(i,j)2Ec

score

i,j

(7)

Assuming that (i, j) is selected and that the set of features K refers to the edge (i, j). Then (i, j) is
considered not relevant if all features f in K satisfies the following criteria:

C2 : |�
f

L| < � (8)

In case, the edge (i, j) is found to be non relevant then we reduce the priority of all edges in ˆ

E(i,k)
by 1.

The intuition behind these heuristics is the fact that we limit the flow of influence between variables
in the set N

i

and the set N
k

to pass only via the the edge (i, j). Hence in case there is a relevant
relation between these two sets of variables it will force (i, j) to be relevant.

2.2 Structure learning with Priority Grafting

Pruning to graft algorithm is to be viewed as an extension of Grafting. The key difference is
the structure mining heuristics that assign priority values to candidate edges and provides a priority
ordering for the iterations of the selection task. This is meant to boost the speed of the selection task
by down scoring irrelevant edges. This is most effective when using a priority queue where we iterate
over the edges following a decreasing order of their priority. However the priority reassignment
procedure comes at a computational cost and hence it is unrecommended to perform it at the first
grafting steps, mainly because the partially constructed structure is not large enough to be informative.
Hence we consider the density of the partially constructed graph which is given by:

d =

#E

n

2
(9)

We define a threshold ⌧

d

above which we start performing the priority reassignment tasks.
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Algorithm 2 Priority Grafting
Initialize priority queue using same priorities for all edge.
repeat

Optimize the L1-regularized L using gradient descent algorithm over the active set for a limited
number of iterations
if Graph density above threshold then

Perform priority queue update.
end if
Iterate over the priority queue and select the first feature f satisfying C2.
Activate the edge corresponding to feature f .

until no feature is activated
Optimize the L1-regularized L using gradient descent algorithm over the active set until conver-
gence.
Perform pruning of non relevant edges.

Inspired by Grafting Light, we run the intermediate optimization tasks for a limitted number of
iterations, this might result in extra edges. After the last optimization operation which is run until
convergence, the weights of these edges are reduced to very small values. We use a pruning step in
which we deactivate edges that have corresponding weights that less than a predefined threshold ✏.
The steps of Priority Grafting are shown in algorithm 2.

3 Experiments

Our aim is to show that Priority Grafting learns the same structure as the traditional baseline
method of Grafting but does it noticeably faster.

3.1 Data

Our experiments were performed on the Mushroom data set made public on UCI website 1. The
dataset consists of 5644 data points each containing 23 variables. Each variable has a different
number of possible states that range from 2 to 12. We assume that the dataset is a sequence of random
variables that are independent and identically distributed.

3.2 Pseudo negative log likelihood as performance metric

The pseudo-likelihood [3] method has been very popular in replacing computing the likelihood either
in the learning or the testing step. The goal is to replace the likelihood by a more tractable objective.
Although we use the likelihood formulation for the training of the model to get accurately trained
models, we use the pseudo-log likelihood for testing. The pseudo likelihood formulation is based on
the following approximation:
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Where N

i

is the set of variables in the Markov Blanket (direct neighbors in the Markov network)
of x

i

. Since each variable has a limited number of neighbors, this yields a drastic gain in running
time complexity compared with the the classic likelihood formulation. In fact, taking the above
approximation into consideration we get:
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For M different data points x(m), the negative pseudo log likelihood is hence given by:
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3.3 Settings and Results

We split the data set into training and testing sets. Each containing half of the total data points. We
set ⌧

d

to 0.05 and ⌧

n

to 4. Figures 1 and 2 show that Priority Grafting learns the same structure
as Grafting. It is shown in tables 1 and 2 that both methods yield the same negative pseudo log
likelihood values. However Priority Grafting comes with less computational time for edge
selection.

((a)) Priority Grafting ((b)) Grafting

Figure 1: Learned structure (� = 0.7)

((a)) Priority Grafting ((b)) Grafting

Figure 2: Learned structure (� = 0.6)

4 Conclusion and future work

In this paper we present preliminary work of the development of Priority Grafting, an extension
of the previously introduced grafting method. Priority Grafting aims at reducing the running
time of Grafting using edge priority done by exploiting the partially constructed structure of MRF

6



Table 1: � = 0.7

Method Avg. edge selection time (ms)

ˆ

nll number of edges

Grafting 17.04 32.4519 12
Priority Grafting 3.64 32.4519 12

Table 2: � = 0.6

Method Avg. edge selection time (ms)

ˆ

nll number of edges

Grafting 15.24 31.2475 17
Priority Grafting 3.21 31.2475 17

and assigning different priority values to the inactive edges. The priority ordering is exploited with a
priority queue data structure. Since Priority Grafting selects the first feature having a gradient
above the L1 coeficient, iterating over the priority queue in a decreasing priority order makes feature
selection noticeably faster than in the case of Grafting.

Experimental results on the Mushroom data showed that Priority Grafting produces the same
structure as Priority Grafting. It also learns the exact same weights and produces the same
negative pseudo log likelihood measures. We have also showed that selection time is noticeably lower
in the case of Priority Grafting.

Future work will aim at refining the heuristics for graph mining and optimizing it to reduce its
computational cost. We will also apply Priority Grafting on other datasets that have more
important dependency relations between their variables. To further prove the advantage of Priority
Grafting we will focus on datasets with an important variable dimension where the cost of feature
selection for Grafting is very high.
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