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Abstract

In this work, we address the problem of real-time hand detection problem for
automatic stroke patient rehabilitation assessment system. We employ the state-
of-the-art object detector, Faster R-CNN, to detect hands of various skin-tones
and under illumination variations. We got preliminary experimental results of
reasonable mean average precision score with real-time test speed in this work. As
our future works, we will apply the Faster R-CNN detection to other objects and
integrate the detection modules to the stroke patient rehabilitation system.

1 Introduction

In this work, we address the hand detection problem from video for real-time applications. This work
is designed with a purpose of application to a bigger project: helping stroke rehabilitation with an
autonomous rehabilitation exercise evaluation system. In the system, a stroke survivor performs some
pre-defined exercises which consist of grasping some objects, moving them from one place to another,
releasing the objects, and manipulating the objects. In order to assess the quality of the exercises
without any humans in the loop, the system should detect and track hands, torso, and other objects
and it should also recognize which grasp type the survivor uses and assess the quality of the grasp.

Object detection is a fundamental computer vision problem. In order to develop higher level vision
algorithms such as grasp detection, action recognition, and event detection which are employed in
the stroke rehabilitation system, we need more reliable and accurate detection method. Thus, in this
work, we focus on the hand detection problem among all the building blocks of the large system.
However, we expect that the hand detection problem addressed in this work can be applied to other
detection problems such as torso and other object.

2 Related Works

Li and Kitani proposed a pixel-level hand detection method in [1] in order to apply it to the stroke re-
habilitation system. They used random tree regressors with various features (color, texture, histogram
of oriented gradients, SIFT, ORB, super-pixel features). In order to account for various skin-tones,
background clutter, various poses, and illumination changes, they trained the multiple regressors
conditioned on the illumination and they used the mixture of multiple regressors as a final model.
Even though they tried to build a model which is robust and accurate, it is still not very robust to the
various skin-tones and illumination conditions.

Recently, there have been great advances in the object detection task [2]-[5] and these advances have
been driven by convolutional neural networks (CNNs) [6], [7]. In the CNN based detection method,
CNN is mainly employed as a classifier. In [2], a region proposal method such as selective search
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generates object-like regions. Then CNN classifies each region into categories and this method is
called region-based CNN (R-CNN) method. Although R-CNN achieves state-of-the-art detection
performance in terms of mean average precision (mAP), it is slow at test-time to be deployed for
real-time applications due to many independent forward passes of the CNNs. In [3], they modified
the network architecture to share computation of convolutional layers between object proposals and
this method is called Fast R-CNN. In [4], which is called Faster R-CNN, the object proposal task
is incorporated into the CNNs rather than having an external region proposal module. Fast R-CNN
and Faster R-CNN achieve the 25 and 250 times faster test-time speed than R-CNN without loss of
detection accuracy respectively. In this work, we employ Faster R-CNN because our goal is apply the
hand detection module to the real-time stroke rehabilitation system.

3 Approach

In order to detect hands in each image, we need not only a hand classifier but also a bounding box
regressor for hands. In this work, we formulate the hand detection problem as a structured prediction
problem. In this formulation we want to predict [x
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, y
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, x
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, y

max

] which correspond to the
top-left and bottom-right coordinates of the hand, for a given image. There are only two classes in
this problem definition: hand and background.

Faster R-CNN [4] consists of two networks on top of shared convolutional layers. One network is
region proposal network (RPN), another network is Fast R-CNN for object classification. Convolu-
tional layers are shared across the two networks to efficiently train a model and to train the entire
model in an end-to-end manner.

In the forward pass, an input image is fed into the shared convolutional layers. The output of the
shared convolutional layers are convolutional feature maps. The feature maps are fed into RPN. The
proposed regions are fed into Fast R-CNN detector along with convolutional feature maps. Then the
Fast R-CNN module classifies each region. Detailed illustration of the Faster R-CNN algorithm is
described in [4].

We follow the 4-step training algorithm in [4].

1) RPN training: Initialize the RPN with pre-trained ImageNet model, and train the RPN.

2) Fast R-CNN training: Train the detection network (Fast R-CNN) using the region proposals
generated by step 1).

3) RPN fine-tuning: Fine-tune the layers which are unique to RPN. Fix the shared convolu-
tional layers.

4) Fast R-CNN fine-tuning: Fine-tune the layers which are unique to Fast R-CNN. Fix the
shared convolutional layers.

In the RPN training, intersection over union (IoU) scores between ground truth bounding boxes and
proposed bounding boxes are used to generate positive (object) and negative (background) examples.
The boxes with IoU score greater than 0.7 are treated as positive examples and the boxes of IoU
score lower than 0.3 are treated as negative examples. The loss function for the RPN consists of a
classification (of objectness) term and a box regression term. The trained RPN is utilized when Fast
R-CNN is being trained. RPN generates the region proposals during the forward pass and weights
of the RPN are also updated during backward pass of the Fast R-CNN. In this work, we use the
pre-trained ImageNet model for Zeiler and Fergus network (ZFNet) [10] architecture to initialize the
weights of step 1) and 2).

We aim to train a model for hand detection in this work. However, this work can be generalized and
applied to other objects which are used in the stroke rehabilitation system such as torso, cylindrical
object, hour-glass object, round-top object, and etc. The only issue for other object detection is how
to collect sufficient amount of data for training. We do not deal with the data collection issue in this
report because it is out of scope.
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4 Experiments

4.1 Dataset and implementation details

Figure 1: Training loss with respect to iterations. Each plot corresponds to each step of 4-step training
pipeline.

We used Oxford hand dataset [8]. This dataset consists of 13050 hand instances: 9163 instances
are used for the training and 2031 instances are used for the test. We did not use the validation
instances. We used the python and C++ implementation of Faster R-CNN by the author [4]. The code
is implemented with an open sourced deep learning library Caffe [9]. Hyper parameters such as the
number of scales and aspect ratios of anchor boxes were set to the same values used in [4]. For the
training and testing, we ran the system on a Tesla K80 GPU equipped linux machine. We used 80k
iterations per each training stage and the entire training time took about 12 hours to train the model
with the Oxford hand dataset.

We had a training loss convergence issue as shown in the Fig. 1. Training loss of RPN and Fast
R-CNN decreased in stage 1 even though there were some amount of fluctuations. However, in stage
2, the training losses were not converged. We could not fully address this convergence issue. However
it turns out that the trained model is working. We will further investigate this issue as a future work.

4.2 Quantitative results

The system achieved a mAP of 0.564 with ZFNet architecture [10]. If we use more advanced network
architectures such as VGGNet [13] or ResNet [14], an increased mAP is expected. We would
investigate this further as our future works.
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Figure 2: Successful cases of hand detection. Note that in spite of various illuminations, skin-tones,
occlusions, poses the system detects the hands successfully.
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Figure 3: Failure cases of hand detection. Note that there are some false positives of similar textured
objects such as ears and faces.
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4.3 Qualitative results

Some successful detection results are depicted in the Fig. 2. We marked the detected hands with
red bounding boxes along with the confidence values. Multiple hands with different skin-tones,
various illumination conditions, small resolutions and severe occlusions are detected precisely. Some
representative failure cases are illustrated in the Fig. 3. The system detects the hand when there
are visible hands in the image. However, there are many false positive detections when the similar
textured regions such as ears and faces exist. Incorporating negative images without any hands to the
training dataset could be a possible solution to this problem. We expect that this would also increase
the mAP score.

4.4 Test-time speed

Test-time speed of the hand detection is 100ms per image (=10 frames per second) on the average
when using ZFNet [10] architecture on the linux machine equipped with Tesla K80 GPU. This is a
reasonable speed for real-time detection module. However, if the rehabilitation system consist of
more modules such as torso detector, grasp classifiers, and etc, 10fps hand detection would not be a
sufficient speed. More speed up could be achieved if network compression techniques are employed.

5 Conclusion

We addressed the real-time hand detection problem for stroke rehabilitation system. We applied
Faster R-CNN to get robust and accurate detection for various skin-tones and illuminations. The
experimental results in this work are preliminary for the future steps. We will investigate deeper
and advanced network architectures such as VGGNet [13] and ResNet [14]. Furthermore, we can
apply CNNs to grasp recognition task and other detections task as well. The test-time computation
complexity is still not very light, because for the stroke rehabilitation system, we have a grasp
recognition and a tracking modules as well as a hand detection module. Thus, as another future work,
we could apply the deep compression techniques [11], [12] to the system to get some further speed
up.
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