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Abstract

In many real-world applications of learning, the available data are incomplete,
which poses significant computational challenges. In many proposed methods to
learn the model containing latent variable, we need repeated inference to iteratively
update parameters. Inferences are usually expensive for large models. In this study,
we propose a framework that quickly trains Markov random fields with latent
variables by avoiding repeated inferences. We used a variational learning objective
that substitutes belief propagation dual problems for two corresponding inference
problems, augmented with Bethe entropy. We demonstrate the effectiveness of
the proposed method in the task of image segmentation, showing that regarding
training time, our approach is superior to traditional methods, converging faster to
the optimal solution.

1 Introduction

In many applications such as natural language processing, computational biology, and computer vision,
labeling all the data is a very expensive process and often impractical. For example, in computer
vision, gathering annotated data is very difficult; or in some scientific applications, obtaining the
labels involves repeated experiments that may be hazardous; in drug prediction, deriving active
molecules of a new drug involves expensive expertise that may not even be available [11]. In the
presence of weakly labeled data, some parts of data distribution are hidden; by using latent variables
we can capture the hidden structure of the distribution. Including latent variables in probabilistic
graphical model, however, is challenging due to the computational costs imposed by the unknown
values of latent variables.
Several approaches have been developed to deal with learning latent variables. The traditional method
is expectation maximization [10] in which we maximize the posterior probability of the parameters
given the data, marginalizing over latent variables. EM iteratively alternates between an E step,
computing an expectation of the likelihood by including the latent variables as if they were observed,
and an M step, maximizing the expected likelihood found on the E step. The resulting parameters
in the M step are used to begin another E step, and the process is repeated. Since computing the
likelihood of the observed labels, marginalizing over the latent variable is expensive, variational
methods of EM were introduced [7]. In variational EM, we iteratively minimize the KL divergence
to the empirical distribution, and estimate the expectation of the latent variables.
EM and variational EM methods are expensive because they need repeated inference to update the
parameters. Inference by itself is not an easy process. For large models, inferences such as belief
propagation and Gibbs sampling need many iterations to converge. So, overcoming the need for
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repeated inference for such complex models are necessary.
Taskar et al. and Meshi et al. in [21, 13] speed up learning by applying the dual of inference to make
a joint convex minimization for fully supervised data. Schwing et al. [20] used the same idea in the
case when we have latent variables. Our proposed method is based on the methodology introduced
by Bach et al. [3]. They aimed to address the computational bottleneck incurred by continuous latent
variable models for hinge-loss Markov random fields (HL-MRFs) [2]. Their proposed framework,
paired-dual learning, quickly trains HL-MRFs with latent variables by avoiding repeated inferences.
Paired-dual learning uses an equivalent variational learning objective that substitutes dual problems
(ADMM [5]) for the two corresponding inference problems, augmented with entropy surrogates
to make the learning problem well formed. By computing the gradient of paired-dual learning
objective with respect to the parameters using the intermediate states of inference, they formulate a
fast, block-coordinate joint optimization.
In this study, instead of HL-MRF, we apply the proposed method for discrete Markov random field
network. Besides, we use belief propagation for dualization of inference problems, augmented with
Bethe approximation. Bethe entropy approximation is a substitution for negative conjugate dual [23].
They are computed by marginal distributions on the node and edges, which correspond to the mean
parameters.
For evaluation, we apply our method to image segmentation task. In image segmentation, each pixel
is classified into a semantic category. Since annotating data is a very expensive process, we weakly
annotated data. So, our task is to train a model that can finally label the unknown pixels. In our
experiments, we show that the time for learning MRF with latent variable is reduced significantly
compared to EM and subgradient. Our proposed method, we call it Bethe PDL, converges much
faster than two baselines, while having the same accuracy as slow traditional methods.

2 Related Work

Various approaches have been proposed to learn the models with latent variables. [10, 12] used
marginal MAP inference by averaging over the hidden variables, and then optimizing over the
variables of direct interest. In many domains, marginal MAP can provide significant improvement
over joint MAP estimation, which jointly optimizes hidden and output variables. Nevertheless,
marginal MAP can be NP-hard even when the underlying graphical model is a tree-structured [10].
Liu et al. [12] proposed an efficient variational algorithm that approximately solves marginal MAP.
Hidden-state conditional random field (HCRF) [18] is an extension of CRF to include hidden variables.
It learns a set of latent variables conditioned on local features. Observations need not be independent
and may overlap in space and time. HCRF model combines the ability of CRFs to use dependent input
features and the ability of HMMs to learn latent structure. They have many applications including
but not limited to object recognition [17] and gesture recognition [24]
The hidden-unit conditional random fields [22] is a generalization of conditional random fields (CRFs)
in which binary stochastic hidden units appear between the data and the labels. These units are
conditionally independent given the data and the label sequence. Unlike CRFs, they can represent
nonlinear dependencies at each frame. Poon et al. [16] introduced a deep architecture, sum-product
networks, which are directed acyclic graphs with variables as leaves, sums and products as internal
nodes, and weighted edges. Interior nodes in an SPN can be interpreted as latent variables. They state
that all tractable graphical models can be cast as SPNs, and then learning algorithms for SPNs, based
on backpropagation and EM was proposed.
The other notable class of learning with latent variables is latent structured support vector machine
(LSSVM) [28]. LSSVM is an extension of the Structural SVM framework to include latent variables.
They identify a formulation for which there exists an efficient algorithm to find a local optimum using
the Concave-Convex procedure. The Concave-Convex Procedure [29] is a general framework for
minimizing non-convex functions, which falls into the class of Difference of Convex programming.
LSSVM has applications in a wide range of areas such as object detection [30], human action
recognition [25], and link prediction [26]
Marginal structured SVM [15] was also proposed for structured prediction with hidden variables,
which inherits the general advantages of structured SVM. In this model, the uncertainty of the hidden
variables is considered by incorporating marginal MAP inference that averages over the possible
hidden states. They also introduced a unified framework that includes both their method and LSSVM
and HCRFs methods as special cases. The main drawback of these methods is that they require
repeated inference which a very expensive process. To lift this restriction, for fully-supervised
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learning, large-margin methods can use the dual of loss-augmented inference to form a joint con-vex
minimization [21, 13]. Schwing et al. [20] extended this idea to latent variable learning for discrete
MRF. They proposed a unified framework for structured prediction with latent variables, which
includes hidden conditional random fields and latent structured support vector machines as special
cases. They describe a local entropy approximation for their formulation by dualizing one of the
two inference subroutines, and derive an efficient message-passing algorithm that is guaranteed to
converge. Consequently, they speed up the learning of discrete models with latent variables.
Bach et al. [3] introduced a framework called paired-dual learning. In order to make the training
process faster, they used a tractable entropy surrogate and avoid repeated inferences. They formulate
an objective with a pair of dual inference problems using ADMM [5]. To compute gradients of
the learning objective, instead of full inference, they used incomplete dual inference optimizations.
They showed that paired-dual learning is able to train accurate models in a small fraction of the time
required by traditional algorithms. On their study, they focus on hinge-loss Markov random fields
(HL-MRFs) [2], a class of probabilistic graphical models, which represent structured domains with
continuous variables.
There are also some other studies to deal with latent variable in HL-MRF. HL-MRF with latent
variable are trained for task such as group detection in social media [4] online-education analytics
[19] and automobile-traffic modeling [6]. Using dual inferences in learning objective function has
been taken into consideration in many works. For fully-supervised settings, Taskar et al. [21] dualize
inference problem as part of large-margin learning, making a joint quadratic program. [13] use
dual decomposition for LP relaxations of inference in discrete graphical models. [20] extend this
idea to latent-variable models by dualizing one of the two inference problems and passing messages
corresponding to the discrete states. Domke et al. [9] used dualization as part of a technique to reduce
structured prediction for non-structured logistic regression.
Our work is similar to the [3] since we are formulating a learning objective function using a pair of
dual inferences. However, we apply belief propagation dualization. In addition, our study concentrates
on discrete random Markov field, which is a general graphical model used in many applications.

3 Background

3.1 Belief Propagation on pairwise MRF

Belief propagation [14] is a message passing algorithm proposed by Pearlin, for performing inference
on graphical models. It calculates the marginal distribution for each unobserved node, conditioned on
the observed nodes. It is proved that belief propagation exactly computes marginals on tree graphs.
However, belief propagation has empirically demonstrated to be effective on loopy graphs. The belief
propagation algorithm works by sending messages along the edges of the graph. The beliefs are equal
to the marginal probabilities for graphs. BP is an iterative process in which neighboring variables talk
to each other, passing messages regarding different states a variable can take. After some amount
of iterations, the conversation will converge so that the marginal probabilities or ”beliefs” of all the
variables can be determined. By considering pairwise MRF, the probability distribution will be:
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By normalizing the belief, we can approximate the marginal probabilities. We described the sum-
product form of BP algorithm. There is another procedure which uses max-product to estimate the
state configuration with maximum probability.

3.2 Variational Learning with Latent Variables

When there are latent variables, we usually maximize the marginal likelihood of the labels given
observed variable, marginalizing out over latent variables. If we consider x as observation, y as labels
which are available during training, z as latent variable, and ✓ as model parameters, the marginal
likelihood can be written as:

p(y|x; ✓) =
X

z

p(y, z|x, ✓) (4)

The probability distribution p(u; ✓) with the exponential family form with exponential parameter ✓
and sufficient statistics � is:

p(u; ✓) =
1

Z(✓)
exp(✓T�(u)) (5)

where Z(✓) is partition function or normalized function:

Z(✓) =
X

u

exp(✓T�(u)) (6)

Using conditional probability p(y|x; ✓) can be written as:

p(y|x; ✓) = p(y, z|x; ✓)
p(z|x,y; ✓) (7)

Therefore, plugging the aforementioned definitions to p(y|x; ✓), the logarithm of probability distribu-
tion p(y|x; ✓) will be:

log p(y|x; ✓) = log p(y, z|x; ✓)� log p(z|x,y; ✓) = logZ(x,y; ✓)� logZ(x; ✓) (8)

Using variational methods for log partition function Z [10]:
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In equation 9, the first term is energy function and the second term is entropy. Plugging equation 9 to
equation 8 will result in:
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where � is a regularization parameter. To solve optimization equation 11, we can use expectation
maximization. To do so, first we solve the conditional inference over z. This process looks like an
expectation step. Then by fixing z, we solve the outer max-min over y, z, ✓; this process resembles
the maximization step. These two steps are repeated until convergence. The other traditional approach
to solve this optimization problem is subgradient in which we compute subgradients of the outer
maximization over ✓ by solving the inner min-max and differentiating. For these two approaches, we
require at least two inferences per iteration, which is a very expensive process especially for large
models.

4 Paired-Dual Learning on MRF

Optimizing the variational learning objective of equation 11 is intractable. To make this learning
objective tractable, we replace the inference with dual inference. Using belief propagation dualization,

4



the primal objective will be replaced by its duals. We know that log partition function can be written
as [23]:

logZ(✓) = sup
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Where ⌧ are pseudomarginals which can be interpreted as beliefs. The Bethe entropy is an approxi-
mation of the exact dual function A⇤
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optimization problem 12.
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So, we can consider the Lagrangian accord with the Bethe variational problem 12:
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The final optimization problem using dualization will be:
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⇢2�(ŷ,ẑ) max

q2�(z)
< ✓, ⌧

q

> +H(⌧
q

)� < ✓, ⌧
⇢

> �H(⌧
⇢

)+

�

2

||✓||2+Constraints (18)

The last term ”Constraints” are the constraints we defined which are included in 16. Our final
optimization problem is equation 18. As mentioned earlier, a naive approach to solve this optimization
problem is to use subgradient of outer maximization and then solving the inner joint optimization.
Another approach can be first solving inference for z, then solving the outer joint optimization
and repeat this process till convergence. These methods repeatedly perform complete inference in
equation 18 which is a very expensive process especially for large models.
We apply the methodology introduced for paired-dual learning to learn this model. It speeds up
training by interleaving updates of ✓ into dual optimizations over ⇢ and q. This method enables
optimization using partial solutions to inference. The basic idea is iterating small inference update
with learning updates; we do not solve inference to completion. First, we improve z a little bit, next
we improve y slightly, and then we take the gradient with respect to ✓. We can stop after a fixed
number of iterations or when ✓ has converged. Learning procedure is shown in algorithm 1. The
output of algorithm 1 is the updated weighs. Using these weights we can get the value for latent
variables using inference and obtain the belief of unlabeled node.

5 Experiments

5.1 Data set

For our experiments, we use scene understanding dataset [8] used for geometric and semantic scene
understanding. The dataset contains 715 images chosen from existing public datasets: LabelMe,
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Algorithm 1 Paired-Dual learning on pairwise MRF using Belief Propagation and Bethe entropy
1: procedure BETHE_PDL(data) . Create a pairwise MRF and learn the parameters using given

data
2: ✓ = random(1, n) . initializing parameters ✓
3: while ✓ has not been converged do
4: ⌧

q

= BP (data, Iter = 1) . run BP inference for one step using 2 on partial labeled data
5: H

Bethe

(⌧
q

) . Bethe entropy for partial labeled data
6: ⌧

⇢

= BP (data, Iter = 1) . run BP inference for one step using 2 as if data is unlabeled
7: compute H

Bethe

(⌧
⇢

) . Bethe entropy as if data is unlabeled
8: 5

✓

= ⌧
q

� ⌧
⇢

. take the gradient w.r.t ✓
9: Update ✓ using 5

✓

10: ✓ . return the updated weights

MSRC, PASCAL VOC and Geometric Context. The selection criteria were for the images to be
of outdoor scenes, have approximately 320-by-240 pixels, contain at least one foreground object,
and have the horizon position within the image (it need not be visible). Semantic and geometric
labels were obtained using Amazon’s Mechanical Turk (AMT). The labels are: 0 sky, 1 tree/bush,
2 road/path, 3 grass, 4 water, 5 building, 6 mountain, 7 foreground object. Due to lack of time, we
chose a small subset of these images for our training and test. We also scaled down images to 8⇥ 10.
We randomly select 16 pixels to be latent variable and the task is to learn the model containing latent
variables.

5.2 Experiment Setup and Evaluation

In this section, we evaluate the performance of our introduced Bethe paired-dual learning on image
segmentation problem. Additionally, we compare Bethe paired-dual learning with subgradient
and expectation maximization as baselines regarding convergence and learning speed. To solve
optimization problem 11, subgradient method requires two inferences in each optimization step.
Expectation maximization, in the other side, is an iterative process of inference over latent variables
and subgradient descent to update the parameters. Thus, these two methods have at least two full
inferences in each step of updating the parameters. Bethe paired-dual learning, however, solves
optimization problem 11 using partial solution to inference. Particularly, we run incomplete inference
in each updating step.
We first create Markov random field that includes latent variables. For inference, we use sum-product
message passing algorithm to get the marginals (beliefs) of nodes about the labels; but we did not
perform full inference; instead, we update message only once. During each outer iteration of each
algorithm, we store the current weights and later use these weights to measure the primal objective,
11, and predictive performance on training and test data. In our experiments, for updating the weight
parameters, we used L-BFGS-B [1] algorithm which is limited-memory BFGS to handle simple
box constraints on variables. It is an iterative method which works by identifying fixed and free
variables at every step (using a simple gradient method), and then using the L-BFGS method for the
free variables only to get higher accuracy.
In image segmentation task, variable x indicates pixel, y indicates label of the pixel and z is hidden

variable which are actually unknown labels for pixels. We set the L2 regularizer to 0.1. In belief
propagation, we used sum-product message passing where messages are updated synchronously. For
evaluation, we keep track of time required for learning optimization problem 11 using our Bethe
PDL method and two baselines. We observed that for training 40 scaled down images (8 ⇥ 10),
EM optimizes the learning objective in 907.17 seconds, subgradient needs 1112.55 seconds, while
Bethe PDL optimizes the objective only in 63 seconds which is a significant improvement. It will be
desirable, especially for very large models.
We are also interested to analyze the primal objective trend of our method and two baselines during the
optimization process. So, we used the weights stored in the outer iteration of these three algorithms
to measure the primal objective. Figure 1 shows the resulting primal objective values. As can be seen,
Bethe PDL quickly optimizes the learning objective. It reaches to its optimal value, whereas two
baselines are in their very beginning steps of learning.
We plot the training and test accuracy during optimization steps. Figure 2 shows the average accuracy
of all training and test data during optimization. Bethe PDL reaches to its highest accuracy earlier
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Figure 1: Primal objective score for Bethe PDL, EM, and subgradient in each optimization step.
Objective score for Bethe PDL converges much faster.

(a) Average accuracy of training data (b) Average accuracy of test data

Figure 2: Average accuracy of training and test data for Bethe PDL, EM, and subgradient.

than baselines while we are not observing such behavior for test data. This can happen due to several
reasons. We might need more training data, or more interesting and informative features than only
(R,G,B) values. Scaling down image would influence the accuracy adversely. We plan to improve
the proposed method to gain more accuracy for training as well as test data.

6 Conslusion

In this study, we extend the paired-dual learning framework for discrete Markov random fields
that includes latent variables. We substitute the inferences in objective with dual inferences using
belief propagation approach. Paired-dual learning was proposed for fast training of latent variable
HL-MRFs. Similar to PDL, we evaluate gradients using incomplete dual inference optimization to
avoid repeated, full inference. We have demonstrated the effectiveness of our approach on the image
segmentation task using pairwise MRF. We show that the time required to learn Bethe PDL model
is significantly less than the time needed for EM, and subgradient. Besides, Bethe PDL optimizes
the learning objective much faster than these two baselines. We will continue this work by using
more complex, informative features while learning with more training samples. We will also include
resulting segmented images learnt from our framework.
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