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Age-of-information (AoI) is used to characterize the freshness of information,

and is critical for information monitoring, tracking, and control, which is typi-

cally required in many network applications, such as autonomous vehicles, vir-

tual/augmented reality, and Internet-of-Things (IoT). Both inter-arrival times

and delays of packets affect AoI performance, and thus traditional delay-efficient

algorithms do not necessarily exhibit low AoI performance. This calls for “age-

efficient” algorithm design in communication networks, which forms the focus

of this chapter. In particular, we first discuss the recent advances in the age-

efficient algorithm design for three different types of common network traffic: (i)

elastic traffic (cf. Section 1.1): packets are allowed to be delivered without any

specific deadline constraints; (ii) inelastic traffic (cf. Section 1.2): packets will be

dropped if they are not delivered within a specific deadline; (iii) heterogeneous

traffic (cf. Section 1.3): different packets may have different size. To facilitate our

discussions, we explicitly consider the discrete-time model and emphasize the

difference between age-efficient and delay-efficient algorithm design paradigms.

Then, we examine “fresh” scheduling design for remote estimation with the goal

of optimally balancing the tradeoff between the estimation accuracy and the

communication cost (cf. Section 1.4).

1.1 Age-Efficient Scheduling for Elastic Traffic

In this section, we focus on the age-efficient scheduling design for elastic traffic,

where packets are allowed to be delivered without any specific deadline con-

straints. We first consider a simple Geo/Geo/1 queue to illustrate the difference

between the AoI metrics and the traditional delay metric (i.e., average delay).

Then, we consider the age-efficient scheduling algorithm design in wireless net-

works.

1.1.1 Delay and AoI Analysis in the Geo/Geo/1 Queue

We consider an infinite-buffer single server queue. In each time slot, a packet

arrives at the queue with probability λ ∈ (0, 1], and a packet at the front of the
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queue is served with probability µ ∈ (0, 1]. In such a queue, both inter-arrival

and inter-service times are geometrically distributed, so the queue is called a

Geo/Geo/1 queue.

Let ∆[t] and H[t] be the AoI associated with the receiver of the single server

queue and the delay of the Head-of-Line (HoL) packet at the queue in time slot t,

respectively, where ∆[t] is the time since the generated time of the latest packet

received by the receiver. Noting that the HoL delay measures the duration from

the time that the HoL packet was generated to the current time and that at

most one packet can be served in each time slot, we have ∆[t + 1] = H[t] + 1

whenever a packet is served in time slot t and ∆[t+ 1] = ∆[t] + 1 otherwise, i.e.,

∆[t+ 1] =

{
H[t] + 1, if a packet is served in time slot t;

∆[t] + 1, otherwise.
(1.1)

Fig. 1.1 shows one sample path of the AoI.
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Figure 1.1 The evolution of the AoI.

The number of packets or the queue length in the Geo/Geo/1 queue evolves

as a Markov chain, which is shown in Fig. 1.2. Here, α , Pr{one arrival, no
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Figure 1.2 The Markov chain of a Geo/Geo/1 queue.

departure} is the probability that the queue length increases by one and β ,
Pr{no arrival, one departure} is the probability that the queue length decreases

by one. From this Markov Chain, we can calculate the average delay, average

peak AoI, and average AoI, as shown in the following theorem.

theorem 1.1 If λ < µ, then average delay D, average peak age ∆
(p)

, and
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average age ∆
(avg)

are expressed as follows:

D =
1− λ
µ− λ

, (1.2)

∆
(p)

=
µ− λ2

λ(µ− λ)
, (1.3)

∆
(avg)

=
λ3 + µ3 − λ3µ− λ2µ

λµ2(µ− λ)
. (1.4)

Proof Let πn denote the steady-state distribution of the Markov Chain. Accord-

ing to the local balance equation and the normalizing condition (i.e.,
∑∞
n=0 πn =

1), we can obtain πn:

πn = γn(1− γ), n = 1, 2, 3, . . . (1.5)

where γ , α/β = λ(1− µ)/(µ(1− λ)). Since λ < µ, we have γ < 1 and thus the

mean queue length can be calculated as follows:

E[Q] =

∞∑
n=0

nπn = (1− γ)

∞∑
n=0

nγn =
γ

1− γ
=
λ(1− µ)

µ− λ
. (1.6)

The average delay of an incoming packet consists of the average queueing delay

and its average service time, where the average queueing delay is the total average

service time of all existing packets in the system. According to the BASTA

(Bernoulli arrivals See Time Averages) property (Srikant & Ying 2013, Section

3.4.3), the average delay D is expressed as follows:

D = E[Q]E[S] + E[S] =
λ(1− µ)

µ− λ
1

µ
+

1

µ
=

1− λ
µ− λ

, (1.7)

where S is the service time that is identically and independently geometrically

distributed with mean 1/µ, and we use the fact that all packets experience iden-

tical and independent service time distribution.

Since the average peak age is the sum of the average delay and the average

inter-arrival time in a First-Come-First-Serve queue, the average peak age can

be calculated as follows:

∆
(p)

= D + E[IA] =
1− λ
µ− λ

+
1

λ
=

µ− λ2

λ(µ− λ)
, (1.8)

where IA is the inter-arrival time that is i.i.d. geometrically distributed with

mean 1/λ. The calculation of the average age ∆
(avg)

is much more involved and

is available in (Talak, Karaman & Modiano 2019, Theorem 5).

In the light traffic regime (i.e., λ ↓ 0), the average delay is close to 1/µ, which is

the average service time of a packet and thus is the minimum delay experienced

by a packet. In contrast, both average peak age and average age blow up to

infinity, since the inter-arrival time is extremely large, and thus, it takes a really

long time to receive a packet update. On the other hand, in the heavy traffic
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regime (i.e., λ ↑ µ), all these three metrics are dominated by the queueing delay

and thus increase to infinity.
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Figure 1.3 Average delay/age in the Geo/Geo/1 queue.

We verify these theoretical results via simulations with µ = 0.5. We plot both

theoretical and simulated results with varying arrival rate λ. From Fig. 1.3, we

can observe that simulated values exactly match their corresponding theoretical

results, which validates the correctness of these theoretical results. In addition,

we can observe that in the light traffic regime, the average delay is quite small,

while both the average peak age and average age are rather large. In contrast,

all three metrics are large in the heavy traffic regime.

From the AoI analysis of the Geo/Geo/1 queue, we learned that the AoI

performance is poor in both low-rate and high-rate regimes. This implies that

an age-efficient scheduling design should take into account not only the queueing

congestion as in the traditional delay-efficient scheduling algorithms but also

the arrival rates. We will discuss the age-efficient scheduling design in the next

subsection.

1.1.2 Age-Efficient Scheduling Algorithms

In this section, we consider the age-efficient scheduling design for elastic traffic

in wireless networks. We first introduce the network model and then develop an

age-efficient scheduling algorithm. Finally, we demonstrate the efficiency of the

proposed scheduling algorithm via various simulations.

System Model: We consider a wireless network with N links, where each link

represents a pair of transmitter and receiver within the transmission range of
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each other. Due to the wireless interference, the success or failure of transmission

over a link depends on whether one of its interfering links is also active in the

same time slot, commonly called the link-based conflict model . Let Sn[t] = 1

denote that link n is scheduled in time slot t and Sn[t] = 0 otherwise. We call

S[t] , (Sn[t])Nn=1 the feasible schedule denoting the set of links that can be active

simultaneously in time slot t. Let S be the collection of all feasible schedules.

Fig. 1.4 shows a network with 4 wireless links, where the neighboring links (e.g.,

link 1 and link 2) interfere with each other and thus cannot be scheduled at the

same time. In such a network, either one link or two links can be scheduled at

the same time, and none of the three links can be simultaneously active. Here,

(0, 0, 0, 0), (1, 0, 0, 0), (1, 0, 1, 0) , (0, 1, 0, 1) are feasible schedules, while (1, 1, 1, 0)

and (1, 1, 0, 1) are not feasible.
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Figure 1.4 A wireless network with 4 links: a line denotes a transmitter-receiver pair
and a dash line means that there is an interference between two links.

We use An[t] to denote the number of packets arriving at link n in time slot t

that is independently distributed over links, and independently and identically

distributed (i.i.d.) over time with finite mean λn > 0. We assume that each link n

independently experiences i.i.d. ON-OFF channel fading over time with Cn[t] = 1

denoting that the channel is available for link n in time slot t. We maintain a

queue at each link and assume that packets are served in the order that they

arrive, i.e., First-Come-First-Served (FCFS). Let Qn[t] be the queue length at

link n in time slot t, denoting the number of packets waiting for transmission,

and thus its evolution can be described as follows:

Qn[t+ 1] = max{Qn[t] +An[t]− Cn[t]Sn[t], 0}, (1.9)

where the maximum operation is due to the fact that the queue length is non-

negative.

Let ∆n(t) and Hn(t) be the age associated with the receiver of link n and

the delay of the Head-of-Line (HoL) packet at link n in time slot t, respectively.

Noting that the HoL delay measures the duration from the time that the packet

was generated to the current time and that at most one packet can transmit

over a link in each time slot, we have ∆n[t + 1] = Hn[t] + 1 whenever a packet

is successfully delivered over link n in time slot t and ∆n[t + 1] = ∆n[t] + 1
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otherwise, i.e.,

∆n[t+ 1] =

{
∆n[t] + 1, if Sn[t]Cn[t] = 0;

Hn[t] + 1, if Sn[t]Cn[t] = 1.
(1.10)

We call the system stable if the average queue lengths of all links are finite,

i.e., lim supT→∞
1
T

∑T−1
t=0 E[Qn[t]] <∞,∀n = 1, 2, . . . , N . The capacity region Λ

is defined as the maximal set of the achievable link rates in packets per slot that

can be supported by the network under stability for a given interference model.

For example, in the wireless network shown in Fig. 1.4, the capacity region is

Λ = {(λn)4n=1 : λ1 +λ2 ≤ 1, λ2 +λ3 ≤ 1, λ3 +λ4 ≤ 1}. We say that a scheduler is

throughput-optimal if it achieves the network stability for any arrival rate vector

λ , (λn)Nn=1 that lies strictly inside the capacity region Λ. We are interested

in developing throughput-optimal algorithms that achieve low AoI performance

(i.e., low average peak age and average age).

Algorithm Design: As we mentioned in the last section, the age-efficient

scheduling design should take both queueing congestion and arrival rate into

account. On the one hand, the smaller the arrival rate of a link, the larger the

AoI of this link, and thus the scheduling priority should be given to the link

with a low arrival rate. On the other hand, the queueing delay dominates the

AoI performance in the heavy-traffic regime, and thus the scheduling priority

should be given to the congested links (i.e., links with large HoL delays). These

two observations naturally motivate the following scheduling algorithm (see also

(Joo & Eryilmaz 2018)).

(Scaled HoL-Delay-based MaxWeight (SHD-MW) Algorithm). In each time

slot t, given the channel state (Cn[t])Nn=1, select a feasible schedule S∗[t] ∈ S
such that

S∗[t] ∈ arg max
S[t]∈S

N∑
n=1

1

λn
Hn[t]Cn[t]Sn[t]. (1.11)

In the SHD-MW Algorithm, we require the knowledge of the arrival rate of

each link, which is usually not available. However, we can use the estimate λ̃n[t] =

(1−1/t)λ̃[t−1]+An[t]/t to replace λn. According to the Law of Large Numbers,

λ̃[t]→ λn as t→∞.

It has been well-known that the HoL-Delay-based scheduling algorithm pos-

sesses not only the throughput optimality (i.e., achieving stability for any arrival

rate vector within the capacity region) and but also possess good delay per-

formance (see (McKeown, Mekkittikul, Anantharam & Walrand 1999)). There-

fore, the SHD-MW Algorithm is expected to be throughput-optimal and delay-

efficient. Due to the fact that the mean peak age of each link is the sum of its

average delay and average inter-arrival time when packets are served in FCFS,
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the SHD-MW Algorithm exhibits excellent AoI performance, which is demon-

strated via simulations.

Simulation Results: We evaluate the performance of the SHD-MW Algorithm

and compare it with the following existing policies:

(i) Queue-Length-based MaxWeight (Q-MW) Algorithm (Tassiulas & Ephremides

1990): Select a feasible schedule satisfying

S(Q-MW)[t] ∈ arg max
S[t]∈S

N∑
n=1

Qn[t]Cn[t]Sn[t].

(ii) HoL-Delay-based MaxWeight (HD-MW) Algorithm (McKeown et al. 1999):

Select a feasible schedule satisfying

S(HD-MW)[t] ∈ arg max
S[t]∈S

N∑
n=1

Hn[t]Cn[t]Sn[t].

(iii)Age-based MaxWeight (A-MW) Algorithm (Sun, Kadota, Talak & Modiano

2019): Select a feasible schedule satisfying

S(A-MW)[t] ∈ arg max
S[t]∈S

N∑
n=1

h(∆n[t])Cn[t]Sn[t],

where h(x) takes a linear form (i.e., h(x) = x) or quadratic form (i.e.,

h(x) = x2 + x).

(iv)Largest-Age-Drop-based MaxWeight (LAD-MW) algorithm (Sun et al. 2019):

Select a feasible schedule satisfying

S(LAD-MW)[t] ∈ arg max
S[t]∈S

N∑
n=1

(∆n[t]−Hn[t])Cn[t]Sn[t].

(v) Round-Robin (RR) Algorithm: in the case of fully-connected networks (i.e.,

at most one link can be scheduled in each time slot), it serves links in turn

by simply skipping transmission when a channel is OFF. However, it is

unclear how to define an appropriate version of the RR Algorithm in the

general wireless setup.

We consider a fully-connected ON-OFF fading network with N = 5 links and

a 3 × 3 switch. While algorithms were described for wireless networks, it also

applies to other communication networking applications where interference-type

constraints exist, such as a switch. Since switches are widely used in data centers

and the Internet, we demonstrate our algorithm in that context as well. Packets

arrive at link n in each time slot with probability λ′n. Whenever arrivals happen

at link n, the number of packets has the following distribution: it is equal to

Mn with probability (ηn − 1)/(Mn − 1) and 1 otherwise, where Mn ≥ 2 is some

parameter that measures the burstiness of the arrivals and ηn is the average

number of arriving packets at link n when arrivals happen. In the fully-connected

network, the probability vector of channel being ON is p = [0.1, 0.1, 0.8, 0.8, 0.8],
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η = [2, 5, 5, 10, 15], M = [5, 10, 10, 20, 20], and we consider the following specific

arrival rate vector: λ′ = θ×0.3821×[0.05, 0.02, 0.16, 0.08, 0.053], where θ ∈ (0, 1).

It can be verified that λ′⊗η is within the capacity region according to (Tassiulas

& Ephremides 1993, Lemma 1), where x⊗y denotes the component-wise product

of the vector x and y. In the case of the 3× 3 switch, η = [5, 2, 2; 3, 10, 5; 5, 4, 5],

and λ′ = θ × [0.14, 0.1, 0.05; 0.05, 0.06, 0.05; 0.03, 0.05, 0.13], where θ ∈ (0, 1).

Again, we can verified that λ′ ⊗ η is within the capacity region.

Delay Performance: Fig. 1.5 shows the average delay under our proposed SHD-

MW Algorithm and other existing algorithms in both fully-connected networks

and 3× 3 switch. It can be observed from Fig. 1.5 that HD-MW and our SHD-

MW have similar delay performance and uniformly perform better than other

algorithms. In addition, SHD-MW can stabilize the system for any θ ∈ (0, 1) in

the above network setups, which validate the throughput optimality of our pro-

posed algorithm. However, RR and LAD-MW suffer from relatively poor delay

performance, especially in the heavy-traffic regime, since they do not prioritize

congested links.
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Figure 1.5 Average delay performance.

AoI Performance: We can observe from Fig. 1.6 and Fig. 1.7 that the SHD-MW

performs uniformly better than all other algorithms except the HD-MW algo-

rithm in terms of both average peak age and average age performance. Indeed,

the HD-MW slightly outperforms the SHD-MW algorithm in terms of average

peak age, especially in 3× 3 switch in the heavy-traffic regime, as shown in Fig.

1.6b. This makes sense since the average peak age is the sum of the average HoL

delay and the average inter-arrival time, and HD-MW tries to minimize the HoL

delay. However, HD-MW Algorithm performs slightly worse than A-MW and

SHD-MW in terms of average age performance, since it does not incorporate the

inter-arrival time into the scheduling design.
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Figure 1.6 Average peak age performance.
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Figure 1.7 Average age performance.

1.2 Age-Efficient Scheduling for Inelastic Traffic

In this section, we consider the case with inelastic traffic, where packets will be

dropped if they are not delivered within a specific deadline. We first consider

a simple single-server queue with packet deadlines and understand the impact

of system parameters on the AoI performance. Then, we study the age-efficient

scheduling design for inelastic traffic.

1.2.1 AoI Analysis in the Single-Server Queue with Strict Deadlines

Different from the previous Geo/Geo/1 queueing model, here each arriving packet

has a strict deadline of T ∈ {1, 2, 3, . . .}, i.e., it will be dropped if it cannot be

delivered within T time slots. We divide time into frames with a size of T time

slots. We assume that packets arrive at the beginning of each time frame ac-

cording to Bernoulli distribution with the mean of λ ∈ (0, 1]. In each time slot

within a frame, a packet is served with the probability of µ ∈ (0, 1]. In such a
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queue, the age is equal to the number of time slots that have been passed since

the packet was last delivered, i.e.,

∆[(k + 1)T ] =

{
∆[kT ] + T if a packet cannot be delivered in frame k;

T otherwise.

(1.12)

Fig. 1.8 shows the age dynamics of the queue with deadlines. Hence, the age
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Figure 1.8 The evolution of the AoI of link n.

forms a Markov chain as illustrated in Fig. 1.9, where q , λ(1 − (1 − µ)T )

denotes the probability that a packet is successfully delivered within a frame.
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Figure 1.9 The Markov chain of a single-server queue with deadlines.

theorem 1.2 The average peak age and average age are equal and can be

expressed as follows.

∆
(p)

= ∆
(avg)

=
T

λ (1− (1− µ)T )
. (1.13)

Proof Let πn denote the probability of the AoI being equal to nT in the steady-

state in the Markov chain shown in Fig. 1.9. According to the global balance
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equations, we have

π1 = q

∞∑
n=1

πn = q (1.14)

πn−1(1− q) = πn, ∀n = 2, 3, 4, . . . , (1.15)

where we use the normalizing condition
∑∞
n=1 πn = 1 in the first equation. Hence,

we obtain πn as follows.

πn = q(1− q)n−1, ∀n = 1, 2, 3, . . . (1.16)

Therefore, the average age can be calculated as follows.

∆
(avg)

=

∞∑
n=1

πn · nT = T

∞∑
n=1

nq(1− q)n =
T

q
=

T

λ (1− (1− µ)T )
. (1.17)

Since the peak age happens whenever there is a successful delivery (i.e., age

drops), the average peak age again can be expressed as

∆
(p)

=

∞∑
n=1

πn · nT, (1.18)

which is equal to average age ∆
(avg)

.

Unlike the previous Geo/Geo/1 queue, there is no constraint on the arrival rate

λ. The larger the arrival rate λ (or the service rate µ), the higher the successful

packet delivery probability q and thus the better the AoI performance. On the

other hand, the larger the time frame size T , both average peak age and average

age increase despite the high successful packet delivery probability.

We validate our theoretical results via simulations with µ = 0.5 and T = 2.

We plot both theoretical average age and its simulated values with respect to the

arrival rate λ in Fig. 1.10a. We can observe from Fig. 1.10a that the simulation

result matches the theoretical result quite well, which confirms the correctness

of the theoretical average age. In addition, we can see from Fig. 1.10b and Fig.

1.10c that the average age indeed decreases with respect to the service rate µ

and increases with respect to the time frame size T .
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Figure 1.10 Average age in the single-server queue with deadlines.
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From the simple analysis of the single-server queue with deadlines, we know

that the successful delivery probability increases with the increase of the frame

size T , which, however, deteriorates AoI performance. In practice, the frame size

T is typically fixed. In the next section, we consider the age-efficient scheduling

design for wireless networks with inelastic traffic.

1.2.2 Age-Efficient Deadline-Constrained Scheduling

In this section, we focus on the age-efficient scheduling design for inelastic traffic.

We first present the network model and then propose an age-efficient schedul-

ing algorithm. Finally, we validate the efficiency of the proposed algorithm via

various simulations.

System Model: We consider a wireless network consisting of N links. Here, each

link models a pair of transmitter and receiver that are within the transmission

range of each other. Each packet has a strict deadline of T time slots, i.e., it

will be dropped if it cannot be delivered within T time slots. We divide time

into frames, each of which has consecutive T time slots. We assume that packets

arrive at each link at the beginning of each time frame. Let An[kT ] denote the

number of packets arriving at link n ∈ {1, 2, · · · , N} in frame k ∈ {0, 1, 2, · · · },
which are independently distributed over links and i.i.d. over time with mean

λn. All remaining packets are dropped at the end of a frame. Each link has a

maximum allowable drop rate ρnλn, where ρn ∈ (0, 1) is the maximum fraction

of packets that can be dropped at link n on average.

Each link n experiences an i.i.d. ON-OFF channel fading, where the channel

state is constant during a frame and can vary over frames. We use Cn[kT ] to

capture channel fading of link n in frame k, i.e., Cn[kT ] = 1 if the channel of

link n is ON within frame k and Cn[kT ] = 0 otherwise. Due to the wireless

interference, only a subset of links can be scheduled in each time slot, called

feasible schedule denoted by S[t] = (Sn[t])Nn=1, where Sn[t] = 1 if user n is

scheduled in slot t and Sn[t] = 0, otherwise. We use S to denote the set of all

feasible schedules.

Let ∆n[kT ] be the age associated with the receiver of link n in frame k, which

measures the number of frames elapsed up to frame k since the most recent

successful packet delivery for link n. In other words, ∆n[kT ] increases by one

until link n has at least one packet delivery in frame k and then it drops to one

at the beginning of the next frame.

∆n[(k + 1)T ] =

{
∆n[kT ] + T, if Cn[kT ]

∑(k+1)T−1
t=kT Sn[t] = 0;

T, if Cn[kT ]
∑(k+1)T−1
t=kT Sn[t] > 0.

(1.19)

Note that the age is similar to the concept of Time-Since-Last-Service (TSLS)

considered in (Li, Li & Eryilmaz 2014) under our system settings. Yet, the TSLS

drops to zero whenever there is a packet delivery.

We provide an example in Fig. 1.11 to show an impact of real-time scheduling
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design on the AoI performance. As shown in Fig. 1.11(a), the age of the user

updates at the beginning of each frame. The delivery of packet a, b, and e result

in the decrease of the age. If we only focus on the time window shown in the

figure, Fig. 1.11(a) shows a 60% delivery ratio (3 packet deliveries over 5 packet

arrivals) on average with an average age of 2.27 frames. While in Fig. 1.11(b),

with the same packet arrival pattern and delivery ratio, the schedule of delivery

of packet d instead of e leads to a drop of average age to 2 frames, indicating a

better performance on the AoI performance.

AoI

1

2

3

4

5

a b c d e

FramesPacket deliveryPacket arrival

AoI

1

2

3

4

5

a b c d e

(a)

(b)

FramesPacket arrival Packet delivery

Average delivery ratio 60%

Average AoI 2.27 frames

Average delivery ratio 60%

Average AoI 2 frames

Figure 1.11 The impact of scheduling design on the AoI performance.

In (Kadota, Uysal-Biyikoglu, Singh & Modiano 2016), the authors proposed

a greedy policy (AoI-Greedy) for scheduling deadline-constrained traffic in a

symmetric wireless network. However, they only focused on the AoI minimization

without providing any guarantees on timely throughput. In this subsection, we

are interested in developing a scheduling algorithm that ensures that the average

drop rate of each link should not be greater than its maximum allowable drop

rate while guaranteeing the average age performance.

Algorithm Design: We use the virtual queue technique to guarantee the desired

drop rate requirement. In particular, each link n maintains a virtual queue to

keep track of the number of dropped packets due to deadline expiry in each frame

k denoted by Qn[kT ]. In (Lu, Ji & Li 2018), we develop a parametric class of
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maximum-weight type scheduling algorithms, where the weight of each link n

consists of its own virtual queue-length Qn[kT ] and age ∆n[kT ].

(Age-based Real-Time (AoI-RT) Algorithm). In each time frame k, given the

channel state (Cn[kT ])Nn=1, select a schedule {S∗[t]}(k+1)T−1
t=kT such that

{S∗[t]}(k+1)T−1
t=kT ∈ arg max

S[t]∈S

N∑
n=1

(
Qn[kT ] + ζβn∆n[kT ]

)

×min

{ (k+1)T−1∑
t=kT

Cn[kT ]Sn[t], An[kT ]

}
.

where ζ ≥ 0 is some control parameter, and βn is a parameter related to the

user preference with the AoI performance.

It can be shown that the proposed algorithm is throughput-optimal in the

sense that it can support any throughput that can be supported by any other

algorithms. Moreover, we can derive an upper bound on a considered AoI metric,

demonstrating that the network-wide data freshness is guaranteed and can be

tuned under the proposed algorithm. However, the improvement of AoI perfor-

mance is at the cost of slowing down the convergence of the timely throughput.

Simulation Results: Fig. 1.12a shows the trade-off between the convergence

speed of timely throughput and the AoI performance. We can observe from the

first figure in Fig. 1.12a that as parameter ζ increases, the value of AoI metric

decreases (i.e., data freshness improves); while the total average virtual-queue

length increases (i.e., the convergence of timely throughput slows down) as shown

in the second figure in Fig. 1.12b. In fact, when ζ = 0, the timely throughput has

the fastest convergence speed. However, if the data freshness is more important

to applications (as is often the case), we could trade the convergence speed of

timely throughput for data freshness by increasing the parameter ζ.
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Figure 1.12 Performance of AoI-RT Algorithm.
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1.3 Age-Efficient Scheduling for Heterogeneous Traffic

In this section, we consider heterogeneous packet sizes, which can be used to

model heterogeneous traffic in real-world applications, such as environmental

sensing and monitoring, where the packet size depends on the actual measure-

ments. We conduct a systematic and comparative study based on simulations to

investigate the impact of scheduling policies on the AoI performance in a single-

server queue. Here, scheduling policies are adopted to decide which packet in the

queue will be served when the server becomes idle, so they are usually referred

to as queueing disciplines.

System Model: We consider a single-sever queue with infinite buffer space.

To begin with, we make the following simplifying assumptions. Packets arrive

at this queue according to an i.i.d. Bernoulli process with parameter λ. Packet

sizes follow a geometric distribution with mean 1/µ, and one unit of data can be

served in each time slot1. Such a single-server queue is called a Geo/Geo/1 queue

as both the inter-arrival and departure times follow a geometric distribution.

Prior studies reveal that the AoI depends on both the inter-arrival time and

delay of the packets (Kaul, Yates & Gruteser 2012b). Although it is well-known

that scheduling policies play an important role in reducing the packet delay

in a single-sever queue (Harchol-Balter 2013), it remains largely unknown how

exactly scheduling policies to impact the AoI performance. To that end, we

aim to holistically study the impact of various aspects of scheduling policies

on the AoI performance in a single-server queue and suggest guidelines that

are potentially useful for the design of AoI-efficient scheduling policies in more

general settings. While a similar study for the continuous-time queueing model

has been conducted in (Liu, Huang, Li & Ji 2020, Liu, Huang, Li & Ji 2021,

accepted), we will be focused on the discrete-time model.

While a lot of research effort has been made towards the analysis of the

AoI performance, most of these studies have been focused on scheduling poli-

cies based on the packet arrival times, such as First-Come-First-Served (FCFS)

and Last-Come-First-Served (LCFS), assuming that the packet-size informa-

tion is unavailable (see, e.g., (Bedewy, Sun & Shroff 2016, Costa, Codreanu

& Ephremides 2016, Kaul, Yates & Gruteser 2012a, Kam, Kompella, Nguyen

& Ephremides 2015)). In some applications, such as environmental sensing and

monitoring, however, the packet-size information can be obtained or fairly well

estimated. It has been shown that scheduling policies that leverage the packet-

size information can substantially reduce the delay, especially when the system

load is high or when the packet-size variability is large (Harchol-Balter 2013).

This motivates us to investigate the AoI performance of size-based policies.

Common Scheduling Policies: Following (Harchol-Balter 2013), we first give

1 Equivalently, we can make the following assumption: packets are of unit size; one packet is
served with probability µ and no packet is served otherwise. We adopt the current

assumption of heterogeneous packet sizes as we will consider scheduling policies that

potentially make decisions based on the packet sizes.
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the definitions of several common scheduling policies that can be divided into four

types: depending on whether they are size-based or not (i.e., whether a scheduling

policy uses the packet-size information for making scheduling decisions or not);

depending on whether they are preemptive2 or not (i.e., whether a policy allows

a packet to be stopped partway through its execution and then to be restarted

at a later time without losing intermediate work).

The first type consists of policies that are non-preemptive and blind to the

packet size:

• First-Come-First-Served (FCFS): When the server frees up, it chooses to serve

the packet that arrived first if any.

• Last-Come-First-Served (LCFS): When the server frees up, it chooses to serve

the packet that arrived last if any.

• Random-Order-Service (RANDOM): When the server frees up, it randomly

chooses one packet to serve if any.

The second type consists of policies that are non-preemptive and make schedul-

ing decisions based on the packet size:

• Shortest-Job-First (SJF): When the server frees up, it chooses to serve the

packet with the smallest size if any. When there are multiple packets of the

same smallest size, the tie-breaking rule randomly chooses one of them.

The third type consists of policies that are preemptive and blind to the packet

size:

• Time-Since-Last-Service (TSLS) (Li, Li & Eryilmaz 2014): When the server

frees up, it chooses to serve the packet with the largest Time-Since-Last-

Service (TSLS). The TSLS of a packet is set to zero when the packet

arrives, increases by one if the packet is not served, and drops to zero once

the packet is served. The TSLS policy is preemptive and mimics the Round

Robin policy in the discrete-time system.

• Preemptive Last-Come-First-Served (LCFS P): This is the preemptive version

of LCFS. Specifically, a preemption happens when a new packet arrives.

The fourth type consists of policies that are preemptive and make scheduling

decisions based on the packet size:

• Preemptive Shortest-Job-First (SJF P): This is the preemptive version of the

SJF policy. Specifically, a preemption happens when there is a new packet

that has the smallest size.

• (Preemptive) Shortest-Remaining-Processing-Time (SRPT): When the server

frees up, it chooses to serve the packet with the smallest remaining size.

When there are multiple packets of the same smallest remaining size, the

tie-breaking rule randomly chooses one of them. In addition, a preemption

2 Here, we do not consider the cost of preemption.
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happens only when a new packet arrives, and its size is smaller than the

remaining size of the packet in service.

The above common scheduling policies are summarized in Table 1.1.

Non-preemptive preemptive

Non-size-based FCFS, LCFS, RANDOM TSLS, LCFS P

Size-based SJF SJF P, SRPT

Table 1.1 Taxonomy of some common scheduling policies

Simulation Results: To begin with, we consider a Geo/Geo/1 queue with

λ = 0.4 and µ = 0.5 (i.e., the mean packet size is equal to 1/µ = 2). By default,

each data point in the plots is an average of 100 simulation runs. Each simulation

run consists of 105 packets. In Fig. 1.13, we present the simulation results of the

average AoI and average PAoI performance with varying arrival rate λ under the

scheduling policies we introduced above.
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Figure 1.13 Comparisons of the average AoI and average PAoI performance of several
common scheduling policies for a Geo/Geo/1 queue with varying arrival rate λ.

We observe that for the non-preemptive case, SJF, a size-based policy, has a

similar average AoI performance to LCFS but performs much better than FCFS

and RANDOM, especially when the arrival rate is large. An explanation for

LCFS and SJF having a similar AoI performance is the following. In the setting

we consider, there is a high chance that the newest packet has the smallest size

(i.e., one unit). In this case, SJF and LCFS would choose two packets of the same

smallest size. They choose packets of different size only when the newest packet

does not have the smallest size, which happens less often. This is why their AoI

performance is similar. We also observe that LCFS performs very slightly better

than SJF. The reason is that in the case that SJF and LCFS choose two packets
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Figure 1.14 Comparisons of the average AoI and average PAoI performance of several
common scheduling policies for a Geo/G/1 queue with varying squared coefficient of
variance C2.

of the same smallest size, the packet chosen by SJF is usually older due to its

random tie-breaking rule.

Similarly, for the preemptive case, SJF P and SRPT, two size-based policies,

have an average AoI performance similar to LCFS P but perform much better

than TSLS, especially when the arrival rate is large. SJF P and SRPT perform

slightly better than LCFS P because they make preemption decisions based on

packet size. Moreover, we observe that preemptive policies generally have a better

average AoI performance than non-preemptive ones, especially when the arrival

rate is large.

Note that TSLS is also a preemptive policy. However, it performs much worse

than the other preemptive policies. The reason is that TSLS mimics the Round

Robin policy in an FCFS fashion. When the arrival rate becomes larger, its

behavior is closer to that of FCFS, and thus, its performance becomes worse.

Similar observations can be made for the average PAoI performance.

Next, we consider a Geo/G/1 queue, where the packet size follows a Zipf

distribution3(Newman 2005). Let S be the packet size. We use E[S] and Var(S)

to denote the mean and the variance of the packet size S. Then, we define the

squared coefficient of variation of the packet size as C2 , Var (S) /E[S]
2
, i.e.,

the variance normalized by the square of the mean (Harchol-Balter 2013). A

larger C2 implies a larger variability of the packet size. While the mean packet

arrival rate is fixed at λ = 0.4 and the mean packet size is fixed at E[S] = 2, we

change the value of the variance and thus the value of C2 by choosing different

values of the parameters of Zipf distribution. We present the simulation results

in Fig. 1.14.

3 The Zipf distribution comes from Zipf’s law, which predicts that out of a population of N

elements, the normalized frequency of elements of rank k is: f(k; s,N) =
1/ks∑N

n=1(1/n
s)

,

where s is the value of the exponent characterizing the distribution.
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We observe that the average AoI performance of preemptive policies becomes

more superior as the packet-size variability (i.e., C2) increases. Moreover, the

average AoI performance of preemptive policies is only slightly impacted when

the packet-size variability changes, while that of non-preemptive policies varies

significantly. On the other hand, the PAoI exhibits a very different behavior

for non-preemptive policies (except for FCFS). Specifically, their PAoI perfor-

mance is insensitive to the packet-size variability: it either hardly changes (under

LCFS and SJF) or increases very slightly (under RANDOM) as the packet-size

variability increases. To the best of our knowledge, this is the first time such

a counter-intuitive observation about the PAoI is reported. An explanation for

this observation is the following.

First, we explain why the PAoI under FCFS is still sensitive to the packet-size

variability. Note that a key difference between FCFS and other non-preemptive

policies is that under FCFS, every packet will lead to an AoI drop and thus

corresponds to an AoI peak. When a large packet is in service, it will block all

the following packets waiting in the queue, which results in a large delay for

all such packets and thus a large AoI peak corresponding to these packets. In

contrast, under RANDOM, LCFS, and SJF the impact of such a blocking issue

is minimal for the packets that lead to an AoI drop. Next, we explain why the

PAoI has a different behavior than the AoI under RANDOM, LCFS, and SJF.

We first consider LCFS. In the setting we consider, there is a high chance that

the newest packet has the smallest size (i.e., one unit). Serving such unit-size

packets leads to a small AoI peak (i.e., one). When the newest packet has a large

size, the corresponding AoI peak would also be large. However, this happens

less often. Therefore, the AoI trajectory would consist of a smaller percentage

of large AoI peaks with many small AoI peaks in between. As the packet-size

variability increases, there will be fewer but larger AoI peaks. In such cases,

while the AoI is sensitive to the large AoI peaks (which comes from the large

packet-size variability), the PAoI is much less sensitive. To illustrate this, we

provide the following example. Consider a large AoI peak of 10, followed by

10 immediate small AoI peaks of 1. In this case, the average AoI is equal to
(1+2+···+10)+10×1

10+10×1 = 3.25, and the average PAoI is equal to 10+10×1
1+10 ≈ 1.82. Now,

consider a larger AoI peak of 100, followed by 100 immediate small AoI peaks

of 1. Then, the average AoI is equal to (1+2+···+100)+100×1
100+100×1 = 25.75, and the

average PAoI is equal to 100+100×1
1+100 ≈ 1.98. This example shows that a larger

packet-size variability results in a larger average AoI but only minimally affects

the average PAoI. A similar explanation also applies to SJF and RANDOM.

SJF has a slightly worse PAoI performance due to its random tie-breaking rule.

RANDOM has an even worse PAoI performance, as it randomly chooses a packet

among all the packets waiting in the queue, and thus, the impact of the packet-

size variability becomes more significant.

We have demonstrated that size-based policies achieve a better average AoI

and average PAoI performance than non-size-based policies. However, the gain

compared to the best non-size-based policies (e.g., LCFS P) appears to be marginal.
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On the other hand, it is quite intuitive that when the packet-size information is

unavailable, one should prioritize more recent updates. This is because while all

the packets have the same mean packet size, the most recent packet arrives the

last, leading to the smallest AoI once delivered.

Note that size-based policies do not utilize the arrival-time information, which

also plays an important role in reducing the AoI. The packet-size information is

“orthogonal” to the arrival-time information, both of which could significantly

impact the AoI performance. Therefore, it is quite natural to further consider

AoI-based policies that use both the size and arrival-time information of packets.

Age-based Policies: In the following, we propose three AoI-based scheduling

policies, which leverage both the packet-size and arrival-time information to re-

duce the AoI. We begin with the definitions of three AoI-based policies that

attempt to optimize the AoI in a specific time slot in the future from three dif-

ferent perspectives:

• AoI-Drop-Earliest (ADE): When the server frees up, it chooses to serve a

packet such that once it is delivered, the AoI drops as soon as possible.

• AoI-Drop-to-Smallest (ADS): When the server frees up, it chooses to serve a

packet such that once it is delivered, the AoI drops to a value as small as

possible.

• AoI-Drop-Most (ADM): When the server frees up, it chooses to serve a packet

such that once it is delivered, the AoI drops as much as possible.

If all packets waiting in the queue are obsolete (i.e., serving such packets does

not lead to an AoI drop), then the above policies choose to serve a packet with

the smallest size.
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Figure 1.15 Comparisons of the average AoI and PAoI performance of non-preemptive
policies for a Geo/Geo/1 queue with varying arrival rate λ: AoI-based policies vs.
non-AoI-based policies.

In Figs. 1.15 and 1.16, we present the simulation results of the average AoI and

average PAoI performance of the above three AoI-based policies in comparison
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Figure 1.16 Comparisons of the average AoI and PAoI performance of non-preemptive
policies for a Geo/G/1 queue with varying squared coefficient of variance C2:
AoI-based policies vs. non-AoI-based policies.

with two non-AoI-based policies (LCFS and SJF), with varying arrival rate λ

and with varying squared coefficient of variance C2, respectively. While ADE

performs slightly better than the other policies, all the considered policies have

fairly close AoI performance.

We also consider the preemptive versions of the AoI-based policies (denoted by

ADE P, ADS P, and ADM P) and compare them with non-AoI-based preemp-

tive policies (LCFS P, SJF P, and SRPT). In Figs. 1.17 and 1.18, we present the

simulation results of the average AoI and average PAoI performance of the con-

sidered policies, with varying arrival rate λ and with varying squared coefficient

of variance C2, respectively. The observations are similar to the non-preemptive

case.

Remarks: In addition to the well-known guideline that one should prioritize

new packets (as in LCFS), we suggest the following guidelines that will likely

be useful for designing age-efficient scheduling policies. (i) Service preemption

should be employed when it is allowed. (ii) When the packet-size information is

available, one should prioritize packets with a small size. (iii) The AoI can be

further reduced if both the packet-size and arrival-time information can be used

in the design of scheduling policies (such as age-based policies). (iv) Compared

to LCFS and LCFS P, the gain of the size-based and age-based policies is rather

marginal. Therefore, it is good enough to use LCFS and LCFS P when the

packet-size information is unavailable or it incurs a high computational cost to

make scheduling decisions based on such packet-size information.
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Figure 1.17 Comparisons of the average AoI and PAoI performance of preemptive
policies for a Geo/Geo/1 queue with varying arrival rate λ: AoI-based policies vs.
non-AoI-based policies.
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Figure 1.18 Comparisons of the average AoI and PAoI performance of preemptive
policies for a Geo/G/1 queue with varying squared coefficient of variance C2:
AoI-based policies vs. non-AoI-based policies.

1.4 Fresh Scheduling for Remote Estimation

In our discussion of the previous sections, we have predominantly focused on

the timely transfer of dynamically generated and enqueued content over various

circumstances and under various metrics, especially AoI, or freshness of updates

at the receiver. A common characteristic of these investigations has been that

the generation of content was not controllable by our designs, but was governed

by external phenomena beyond our control. Also, the significance of a packet or

file was directly measured by age metrics (e.g., mean delay, HOL-delay, mean

AoI, peak-AoI, etc.). Both of these characteristics fail to hold in an important
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class of scenarios that are exemplified by the remote estimation/tracking setting

that we will overview in this section.

Our discussion will reveal several interesting insights in maintaining freshness

of useful information for dynamically evolving sources. In particular, we will

discuss the design of both transmitter-driven and receiver-driven update mech-

anisms that aim to optimally balance the tradeoff between estimation accuracy

and the communication cost of updates in single-sensor (cf. Section 1.4.1) and

multi-sensor (cf. Section 1.4.2) environments.

1.4.1 Single-Source Remote Estimation

The basic remote estimation problem is concerned with closely tracking the

evolving state of a remote agent (such as a sensor or any other device with a

dynamically changing state) with updates. This scenario is depicted in Fig. 1.19

whereby X[t] is the state of the source in slot4 t and X̂[t] is its estimate at

the receiver at the same time. The source S and the receiver is separated by: a

transmitter (which, in turn may be further separated into a sampler that decides

when to sample the state, and a queue in to which the sampled states are en-

queued for transmission) and a communication channel between the transmitter

and the receiver.

S Tx
Communication 

Medium RxX[t] 𝑋" 𝑡

Acknowledgement (ACK) Signals

U[t]

c >0 units of cost per transmission

Figure 1.19 Basic remote estimation setting for a single source

The broad purpose of remote estimation is to develop sampling and trans-

mission strategies to keep the difference between X[t] and X̂[t] small (in terms

of an appropriate measure) while also accounting for the impact and costs of

the communication channel that must be utilized in the process. Therefore, this

problem naturally concerns the transfer of fresh updates of the source state that

is just enough to keep the estimation error low for the associated impact and

cost of communication. As such, it is necessary to discuss the possible impact of

the communication channel in this process.

• Impact of the Communication Channel: The communication channel between

the transmitter and the receiver can have diverse effects on the remote sensing

process. Transmissions may be erased, distorted, delayed, etc., based on the chan-

nel conditions and the choice of communication protocol. Each of these different

4 In the spirit of the rest of the chapter, we keep the discrete-time evolution of the system
dynamics here. However, the discussion can be extended to the evolution and update in

continuous time.
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effects may call for substantially different strategies to manage them. In our sub-

sequent discussion, we will focus on a cost-based channel model by assigning a

flexible cost value c > 0 to each transmission. Within this model, by choosing

this cost value appropriately, we can increase or decrease the relative cost of a

successful transmission under different channel impacts within a common setting.

This allows us to focus on the design and analysis of policies that can optimize

the tradeoff between the estimation accuracy and communication cost. Next, we

make a distinction between transmitter and receiver-driven update rules.

• Transmitter vs. Receiver-Driven Update Policies: One important question in

the remote estimation of a dynamic source is whether the update decision is made

by the transmitter or the receiver. These two entities have different information

on the state of the source, namely, the transmitter can be expected to know the

state X[t] while the receiver only has an estimate X̂[t]. Therefore, a transmitter-

driven policy can make its decisions based on the accurate knowledge of X[t]

while a receiver-driven policy must work with other information, such as the

time-since-last-update, for its update decision. In the multi-sensor setting in

Section 1.4.2, we discuss the tradeoff between these two paradigms in more detail.

In this basic setting, it is clear that the transmitter-driven update rule is

better than its receiver-driven counterpart since its information is more accurate

without any extra cost. The following example from (Yun, Joo & Eryilmaz 2018)

summarizes useful insights on the optimal transmitter and receiver-driven design

approaches for a randomly evolving source.

Example 1 (Optimal Remote Estimation of a Random Walk (Yun et al. 2018))

Suppose we aim to remotely track a state X[t] that evolves as a random walk

according to X[t + 1] = X[t] + W [t], where {W [t]}t are i.i.d. random variables

with

W [t] =


1 with probability θ,

0 with probability 1− 2θ,

−1 with probability θ,

for some θ ∈ (0, 12 ]. Thus, the θ parameter determines how dynamic the state of

X[t] is within this basic structure. In each slot t, the transmitter-driven policy

uses X[t] and X̂[t] information5 to decide whether to send an update at the time

by choosing U [t] ∈ {0, 1}. Every update causes a fixed cost of c units, as modeled

above. Supposing that X[0] = X̂[0] = 0, and defining the error in the estimation

as ε[t] = |X[t]− X̂[t]| at time t, the objective of the design is to

minimize lim
T→∞

1

T

T−1∑
t=0

E [f (ε[t]) + c · U [t]] , (1.20)

where f(·) is a nonnegative-valued function with f(0) = 0 that measures the cost

associated with the error. While this function can in general be an arbitrary non-

decreasing function of its input, a very common case is when f(ε) = ε2, which

5 The transmitter can know X̂[t] since it knows the estimation strategy of the receiver.
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corresponds to mean-squared-error (MSE) measure of the estimation. As such,

the objective (1.20) aims to optimize the tradeoff between the estimation accu-

racy and the communication cost of updates. Investigation in (Yun et al. 2018)

proves that the optimal transmitter-driven policy that solves this problem is

threshold-type whereby the update is made whenever ε[t] ≥ γ for some γ that

depends on the source dynamics θ, the estimation error measure f(·) and the

update cost c. In particular, when f(ε) = ε2, the optimal threshold is given by

≈ 4
√

12cθ. If the parameters θ and c are unknown to the controller, the paper

also develops sequential learning strategies to find the optimal threshold level

adaptively. Fig. 1.20 illustrates the average cost (1.20) with MSE measure of a
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Figure 1.20 Average cost comparison with θ = 1/2 of the three policies. Both the
optimal transmitter-driven γ∗-threshold policy and the suboptimal transmitter driven
one-step-ahead policy performs increasingly better than the optimal receiver-driven
T ∗-threshold policy as c increases.

simple random walk, i.e., θ = 1/2, for the optimal receiver-driven policy, which

performs updates periodically with the optimal choice of period T ∗, and the opti-

mal transmitter-driven policy with threshold-level γ∗ selected as described above.

This reveals that as the communication cost c increases, the improvement from

transmission-driven updates grows since it avoids unnecessary transmissions. The

figure also includes another heuristic transmitter-driven policy, called one-step-

ahead policy, which shows that even partial use of source state information can

substantially improve over the optimal receiver-driven strategy. �

This basic example, and many other works that we will partially overview

below, reveals several interesting new elements in maintaining fresh information

at the receiver. In particular, we see that the need for an update is determined

by the level of error in the estimation, and not the age or the delay of the last

update. The error level, in turn, depends on the dynamics of the source (i.e., how

predictable it is) as well as the cost of communication needed for the update.

In the next section, we will see that these effects raise further new consid-
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erations when we expand the setting to a multi-source environment, as needed

in future networks. We note that, in the single-source setting, there have been

numerous other works (e.g., (Chakravorty & Mahajan 2015, Gao, Akyol & Başar

2015, Sun, Polyanskiy & Uysal-Biyikoglu 2017, Yun et al. 2018, Ornee & Sun

2019, Chakravorty & Mahajan 2019, Arafa, Banawan, Seddik & Poor 2020) with:

a range of source dynamics (such as Ornstein-Uhlenbeck processes, Wiener pro-

cesses, Gauss-Markov processes, first-order auto-regressive models, etc.); vary-

ing communication channel models (such as random service time, noisy channels

subject to erasures or errors, cost-based models); and various objectives (such as

MSE minimization under update frequency bound, age-based nonlinear cost min-

imization under sampling frequency constraints, etc.). While the specific results

differ in these work due to differences in the dynamics, costs, and constraints,

the threshold-based design that is achieved in Example 1 remains a frequent

characteristic of optimal designs for remote estimation.

1.4.2 Multi-Source Remote Estimation

In this section, we move from the single-source to a distributed multi-source re-

mote estimation setting, where the dynamically evolving states X[t] = (Xi[t])
n
i=1

of n sources are accessible by k distributed transmitters that must share a wire-

less communication medium to update the common receiver, which estimates

the state with X̂[t] = (X̂i[t])
n
i=1 as depicted in Fig. 1.21.
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Figure 1.21 Multi-source remote estimation setting.

Similar to the single-source setting, each transmitter k must make its update

decision by selecting Uk[t] ∈ {0, 1}. Also, as before, the update policy can be

transmitter-driven (with access to the true states of the connected sources) or

receiver-driven (without access to the true source states). However, in this dis-

tributed setting, a new challenge emerges that concerns the cost characteristics

of the multi-user communication medium. In what follows, we discuss the diverse

nature that this communication cost can take under different circumstances.

• Emergence of Nonlinear Cost Structures of the Multi-User Communication:

Recall that in the single-source setting, we assumed that the cost of each update
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communication was fixed to be c > 0. However, the cost of communication in

the multi-user case can differ drastically depending on the medium access strat-

egy, the coding policy, the interference effects, and protocol overhead, just to

name a few. It is easy to see that, if k = n and the cost function becomes a

linear function of
∑k
i=1 Uk[t], then the multi-user problem can be decomposed

to k independent single-user problems. However, such a cost structure presumes

completely orthogonal channels between each transmitter and the receiver, which

requires increased coordination between transmitters. More often, the cost func-

tion will take a nonlinear structure, in which case interesting multi-user remote

estimation problems emerge. In the rest of this section, we discuss the cases of

distributed and co-located sources separately since they tend to exhibit super-

linear versus sub-linear cost functions, respective, which raise different research

questions and solutions.

Remote Estimation for Distributed Sources:
In this setting, we consider the case of physically distributed sources so that the

number of transmitters k in the generic setting is large. As the number k of

transmitters in the wireless network increase, the multi-user uplink communica-

tion gets increasingly congested and distributed. Therefore, as the total number∑k
i=1 Ui[t] of updates increase in a slot, the communication will be subject to

super-linear costs due to increased interference effects and coordination needs. A

particular instance of such super-linear growth is illustrated in Fig. 1.22 whereby

we plot the energy consumption of k distributed transmitters making simulta-

neous updates over a shared random access channel. We see that for varying

values of the attempt probabilities q of each transmitter, the cost function grows

at various super-linear growth rates. This super-linear cost structure raises an
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Figure 1.22 Average energy consumed for successful update with k simultaneous
transmitters, when each transmitter attempts with probability q.

interesting tradeoff between transmitter-driven (TD) and receiver-driven (RD)

update paradigms, which did not exist in the single-source setting, as discussed

in the next example.
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Example 2 (TD vs. RD Updates for Distributed Sources (Kang, Eryilmaz & Joo

2021)) Example 1 showed that the optimal transmitter-driven update policy

always outperforms the optimal receiver-driven policy for a single source. This is

no longer the case for distributed sources. In particular, the randomized timing

of the threshold-based transmitter-driven design, such as the γ∗-threshold policy

of Example 1, results in a random number of updates at a given slot. Since the

communication cost function takes a super-linear form in this distributed setting,

the mean communication cost (due to Jensen’s Inequality) will be boosted. In

contrast, a receiver-driven policy can schedule the update timings at the outset

so that a deterministic number of transmissions are made at a given slot, thereby

keeping the mean communication cost steady. This communication cost gain of

receiver-driven design can compensate for some of its disadvantages from its

knowledge of the source state information.
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Figure 1.23 Performance comparison between TD and RD policies.

In Fig. 1.23, we illustrate these tradeoffs by assuming that transmitter-driven

communication cost function take the form C(U[t]) = c(
∑
i Ui[t])

1+εs and the

receiver-driven communication cost function take the form C(U[t]) = c(
∑
i Ui[t])

εr ,

with εs ≥ εr ≥ 0. For c = 50 random walk parameter θ = 0.3, and εs = εr = 2,

Fig. 1.23a shows the average MSE and communication cost performances of both

the optimized TD and the RD policies as the number of transmitters k grow. We

can see that the TD policy outperforms RD for small enough number of transmit-

ters until a crossing point is reached. Beyond this crossing point number of users,

the RD policy starts outperforming since its advantage of centralized scheduling

dominates advantage from the individual state information that is available to

TD policy. Fig. 1.23b illustrates how this crossing point changes as a function of

εs and εr parameters of the TD and RD communication cost functions. �

Remote Estimation for Co-located Sources:
In this setting, we envision the remote estimation of many co-located sources that

share common transmitter(s) for their updates. In contrast to the super-linear
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cost structures when the number of transmitters k increases, the communica-

tion cost function typically takes a sub-linear form as the number of sources n

increases while k remains small. In this new regime, more and more sensors are

monitored by a common transmitter, which allows the transmitter to perform

more efficient strategies to encode and time the updates in its transmissions,

thereby reducing the cost per unit update. Theoretically, this is supported by

the information-theoretic foundations that encoding more information into the

transmission increases the coding rate (since the codeblock length increases).

Practically, this is supported by the fact that sending multiple updates at once

allow the use of less overhead in each transmission (for synchronization, prob-

ing, channel estimation, etc.). Accordingly, in this regime it is sensible to assume

C(U[t]) to be a sub-linear function of
∑k
i=1 Ui[t] such as C(U[t]) = c (

∑
i Ui[t])

α

for α ∈ [0, 1]. In this setting, interesting new dynamics emerge that call for the

design of new policies for performing updates.

In particular, these designs need to optimize the tradeoff between two forces:

on the one hand, sending updates without delay is desirable to keep the error low,

but this calls for sending a small number of updates at a time, hence operating

in the inefficient transmission regime; on the other hand, delaying updates is

desirable so that multiple updates can be made at a time, hence operating in the

efficient transmission regime, but this causes higher errors in the estimation of

the source state. Good update policies must balance these two forces in order to

maintain tolerable estimation error levels with low communication costs. More

work is needed in this direction.

We would like to end the section by noting that the remote estimation problem

for multiple sources has been attracting increasing attention in the literature,

and continues to be an active area of research. Numerous interesting works have

attacked the question of optimal update strategies for multi-source settings (e.g.,

(Nar & Başar 2014),(Li, Quevedo, Lau & Shi 2014),(Leong, Dey & Quevedo

2016),(Han, Wu, Zhang & Shi 2017),(Ding, Li, Dey & Shi 2017),(Vasconcelos,

Nayyar & Mitra 2017), (Gatsis, Ribeiro & Pappas 2018),(Wu, Ding, Cheng &

Shi 2020)) under various source models, objectives, and/or the dynamics.

1.5 Conclusions and Future Works

In this chapter, we focused on the age-efficient scheduling design that is essential

for information monitoring, tracking, and control in communication networks. In

particular, we first considered the age-efficient scheduling algorithm design in the

presence of elastic traffic, inelastic traffic, and heterogeneous traffic, respectively.

Then, we discussed the fresh scheduling design for remote estimation. All these

discussions cover some of the most recent advances in the age-efficient algorithm

design in communication networks, and motivate several interesting research

efforts. Some of the possible future research directions include the following:

• In the presence of elastic traffic, age-efficient algorithm design is as hard
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as its delay-efficient counterpart. While there are delay-optimal algorithms in

some special regimes (e.g., heavy-traffic regime or large-system regime), it is

interesting to study age-optimal algorithms in these special regimes.

•With regard to the inelastic traffic, the existing age-efficient algorithm achieves

a tradeoff between the AoI and the algorithm convergence speed, which may not

be an optimal tradeoff. An interesting question is whether there are any algo-

rithms that can achieve a provably better or even optimal tradeoff.

• For the heterogeneous traffic, we discussed the impacts of various scheduling

design on the AoI performance via simulations. Can we analytically quantify the

AoI performance in such a case? In addition, how do we develop an analytical

framework for age-efficient algorithm design for heterogeneous traffic?

• For distributed remote estimation, there are numerous interesting research

directions to pursue whereby the source dynamics, the communication channel

imperfections and limitations, and the objectives can differ to accommodate var-

ious network and user characteristics in future IoT and cyber-physical systems.
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