

Understanding the Role of Feedback in Online Learning with Switching Costs

Duo Cheng¹, Xingyu Zhou², Bo Ji¹
¹Virginia Tech & ²Wayne State University

Online Learning with Switching Costs

- T-round repeated game between a learner and an adversary
- For round t = 1,...,T:
 - 1. The learner chooses (or plays) one of the K actions, denoted by X_t
- 2. The learner suffers the loss of the chosen action, which is determined by the (oblivious) adversary; The learner additionally suffers one unit of loss (i.e., switching cost) if $X_t \neq X_{t-1}$
- 3. The learner receives some feedback associated with the losses at this round
- 4. The learner uses the feedback to update her policy
- The learner's goal is to minimize regret (with switching costs)

$$R_T \coloneqq \sum_{t=1}^T (\ell_t[X_t] + \mathbb{I}\{X_t \neq X_{t-1}\}) - \min_{k \in [K]} \sum_{t=1}^T \ell_t[k]$$

Two Typical Types of Feedback: Bandit and Full-information

- Full-information feedback: Observe the losses of all actions
- Bandit feedback: Observe the loss of the chosen action (i.e., $\mathcal{C}_t[X_t]$) only
- Without switching costs, the minimax regret scales as $\Theta(T^{1/2})$ under both types of feedback, in contrast to a strong separation with switching costs:

Feedback	Bandit		Full-information
Minimax Regret (w/ SC)	$\widetilde{\Theta}(T^{2/3})$?	$\Theta(T^{1/2})$

Bandit Learning with Switching Costs under Extra Observation

- Bandit feedback always available
- After receiving bandit feedback, the learner can also observe the loss of any other actions at her choice
- The total number of extra observations should not exceed the given budget $B_{\rm ex}$
- This incorporates standard bandit and full-information cases as two endpoints:

B_{ex}	$B_{\rm ex}=0$ (Bandit)		$B_{\text{ex}} = (K - 1)T$ (Full-information)
Minimax Regret (w/ SC)	$\widetilde{\Theta}(T^{2/3})$?	$\Theta(T^{1/2})$

- Key Question: How do extra observations help improve regret in general?
- We show a **phase transition** in terms of how minimax regret scales with $B_{\rm ex}$:

B_{ex}	0	$\mathcal{O}(T^{2/3}K^{1/3})$	$\Omega(T^{2/3}K^{1/3})$	(K-1)T
Minimax Regret (w/ SC)	$\widetilde{\Theta}(T^{2/3})$	$\widetilde{\Theta}(T^{2/3})$	$\widetilde{\Theta}(T/\sqrt{B_{\mathrm{ex}}})$	$\Theta(T^{1/2})$

Minimax Regret

Learning with Switching Costs under Total Observation Budget

- After playing an action, the learner can observe the loss of any actions at her choice (not necessarily including the played action)
- ullet The total number of observation should not exceed the given budget B
- We show that
- 1. Adding switching costs does not increase the minimax regret;
- 2. How to request feedback (feedback type) matters:

Total Observations	$B \in [K, KT]$		
Total Observations	w/o SC	w/ SC	
Lower Bound	$\Omega(T/\sqrt{B})$	$\Omega(T/\sqrt{B})$	
Upper Bound	$\tilde{\mathcal{O}}(T/\sqrt{B})$	$\tilde{\mathcal{O}}(T/\sqrt{B})$	
Minimax Regret	$\widetilde{\Theta}(T/\sqrt{B})$	$\widetilde{\Theta}(T/\sqrt{B})$	

Feedback Type	Minimax Regret $B \in [K, KT]$		
	w/o SC	w/ SC	
Full-information	$\widetilde{\Theta}(T/\sqrt{B})$		
Bandit $(B = \mathcal{O}(T^{2/3}K^{1/3}))$			
Bandit $(B = \Omega(T^{2/3}K^{1/3}))$		$\widetilde{\Theta}(T^{2/3})$	