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Abstract—This paper focuses on the design of provably efficient
online link scheduling algorithms for multi-hop wireless net-
works. We consider single-hop flows and the one-hop interference
model. The objective is twofold: 1) maximize the throughput when
the flow sources continuously inject packets into the network, and
2) minimize the evacuation time when there are no future packet
arrivals. The prior work mostly employs the link-based approach,
which leads to throughput-efficient algorithms but often does
not guarantee satisfactory evacuation time performance. In this
paper, we adopt a novel node-based approach and propose a
service-balanced online scheduling algorithm, called NSB, which
gives balanced scheduling opportunities to the nodes with heavy
workload. We rigorously prove that NSB guarantees to achieve
an efficiency ratio no worse (or no smaller) than 2/3 for the
throughput and an approximation ratio no worse (or no greater)
than 3/2 for the evacuation time. It is remarkable that NSB
is both throughput-optimal and evacuation-time-optimal if the
underlying network graph is bipartite. Further, we develop a
lower-complexity NSB algorithm, called LC-NSB, which provides
the same performance guarantees as NSB. Finally, we conduct
numerical experiments to elucidate our theoretical results.

I. INTRODUCTION

Resource allocation is a vital and challenging problem in
wireless networks. Various functionalities in different layers
(transport, network, MAC, and PHY) need to be carefully
designed so as to efficiently allocate network resources and
achieve optimal or near-optimal network performance. Among
these critical functionalities, link scheduling in the MAC layer,
which, at each time decides which subset of non-interfering
links can transmit data, is perhaps the most challenging
component and has attracted a great deal of research effort
in the past decades (see [1], [2] and references therein).

In this paper, we focus on the design of provably efficient
online link scheduling algorithms for multi-hop wireless net-
works with single-hop flows under the one-hop interference
model1. The objective is twofold: 1) maximize the throughput
(i.e., stabilize the network under any feasible traffic load)
when the flow sources continuously inject packets into the
network, and 2) minimize the evacuation time (i.e., minimize
the time interval needed for evacuating all the existing packets)
when there are no future packet arrivals. Both throughput and
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1The packets of a single-hop flow traverse only one link before leaving the
network. The one-hop interference model is also called the node-exclusive or
the primary interference model [1], [3], where two links sharing a common
node cannot be active at the same time.

evacuation time are important metrics of network performance.
While throughput is widely shared as the first-order perfor-
mance metric, which characterizes the long-term average traf-
fic load that can be supported by the network, evacuation time
is a critical metric in the settings without future arrivals. One
practical example of such settings is environmental monitoring
and data collection in wireless sensor networks, where all the
measurement data periodically generated by different nodes at
the same time need to be transferred to one or multiple sinks
within a minimum time for further processing. Evacuation time
metric is also related to the delay performance in scenarios
with arrivals [4], as well as meeting real-time scheduling
requirements (e.g., packet delivery with deadlines) [5], [6].

However, these different metrics may lead to conflicting
scheduling decisions – an algorithm designed for optimizing
one metric may be detrimental to the other metric (see [4]
for such examples). Therefore, it is challenging to design
an efficient scheduling algorithm that can provide provably
guaranteed performance for both metrics at the same time.

While throughput has been extensively studied since the
seminal work by Tassiulas and Ephremides [7] and is now well
understood, evacuation time is much less studied. In the no-
arrival setting, the minimum evacuation time problem can be
mapped to the multigraph edge coloring problem2, where each
multi-edge corresponds to a packet waiting to be transmitted
over the link between the nodes of the multi-edge, and each
color corresponds to a feasible schedule (or a matching).
This is a well-known NP-hard problem [8]. Hence, a rich
body of research on edge coloring has focused on developing
approximation algorithms (see [9] for a good survey). These
algorithms employ a popular recoloring approach that requires
computing the colors all at once, and yield a complexity
that depends on the number of multi-edges. This, however,
renders them unsuitable for application in a network with
arrivals. Because there could be a large number of packets (or
multi-edges) in the network, and the complexity could become
impractically high. Therefore, it is desirable to have an online
scheduling algorithm that at each time quickly computes one
schedule (or color) based on the current network state (e.g.,
the queue lengths) and yields a complexity that only depends
on the node count n and/or the link count m.

2In a multigraph, more than one edge, called multi-edge, is allowed between
two nodes. The multigraph edge coloring problem is to find the minimum
number of colors, such that each multi-edge is assigned a color, and two
multi-edges sharing a common node cannot have the same color.



Most existing online scheduling algorithms either make
scheduling decisions based on the link load (such as Maxi-
mum Weighted Matching (MWM) [7] and Greedy Maximal
Matching (GMM) [10], [11]) or are load agnostic (such as
Maximal Matching (MM) [10], [12]). While these algorithms
are throughput-efficient, none of them can guarantee an ap-
proximation ratio better (or smaller) than 2 for the evacuation
time [4]. In contrast, several prior work [4], [13]–[15] pro-
poses algorithms based on the node workload (i.e., packets
to transmit or receive), such as the Lazy Heaviest Port First
(LHPF) algorithms, which are both throughput-optimal and
evacuation-time-optimal in input-queued switches (which can
be described as bipartite graphs) [4]. The key intuition behind
the node-based approach is that the minimum evacuation time
is lower bounded by the largest workload at the nodes and the
odd-size cycles, and this lower bound is asymptotically tight
[16]. The link-based approach fails to respect this crucial fact
and thus leads to unsatisfactory evacuation time performance.

While the node-based approach seems quite promising, per-
formance of the node-based algorithms is less understood, and
the studies are mainly limited to bipartite graphs [4], [13], [14].
Very recent work in [15] considers general network graphs and
shows that the Maximum Vertex-weighted Matching (MVM)
algorithm can guarantee an approximation ratio no worse
(or no greater) than 3/2 for the evacuation time. However,
throughput performance of MVM remains unknown.

There is several other related work. In [17], the authors
study the connection between throughput and (expected) min-
imum evacuation time, but no algorithms with provable per-
formance guarantees are provided. Some work [5], [18], [19]
considers the minimum evacuation time problem for multi-hop
flows, but in some special scenarios only (e.g., special network
topologies or wireline networks without interference).

In this paper, the goal is to develop efficient online link
scheduling algorithms that can provide provably guaranteed
performance for both throughput and evacuation time. We
summarize our contributions as follows.

First, we propose a Node-based Service-Balanced (NSB)
scheduling algorithm that makes scheduling decisions based
on the node workload and whether the node was sched-
uled in the previous time-slot(s). NSB has a complexity of
O(m

√
n log n). We rigorously prove that NSB guarantees to

achieve an approximation ratio no worse (or no greater) than
3/2 for the evacuation time and an efficiency ratio no worse
(or no smaller) than 2/3 for the throughput. It is remarkable
that NSB is both throughput-optimal and evacuation-optimal
if the underlying network graph is bipartite. The key novelty of
NSB is that it takes a node-based approach and gives balanced
scheduling opportunities to the bottleneck nodes with heavy
workload. A novel application of graph-factor theory allowed
us to analyze how NSB schedules the heavy nodes (Lemma 6).

Second, from the proofs for NSB, we learn that in order to
achieve the same performance guarantees, what really matters
is the priority or the ranking of the nodes, rather than the exact
weight of the nodes. Using this insight, we develop the Lower-
Complexity NSB (LC-NSB) algorithm. We show that LC-NSB

Algorithm Complexity γ (Throughput) η (Evacuation time)
General Bipartite General Bipartite

MWM O(mn) 1 1 2 2
GMM O(m logm) ≥ 1/2 ≥ 1/2 2 2
MM O(m) ≥ 1/2 ≥ 1/2 2 2

MVM O(m
√
n logn) unknown 1 ≤ 3/2 1

NSB O(m
√
n logn) ≥ 2/3 1 ≤ 3/2 1

LC-NSB O(m
√
n) ≥ 2/3 1 ≤ 3/2 1

TABLE I: Performance comparison of NSB and LC-NSB with
several most relevant online algorithms in the literature. The
efficiency ratio γ and the approximation ratio η are used for
comparing the performance of throughput and evacuation time,
respectively. (See formal definitions of γ and η in Section II.)
For both γ and η, a value closer to 1 is better. The complexity
provided here is for making a scheduling decision at each time.

can provide the same performance guarantees as NSB, while
enjoying a lower complexity of O(m

√
n).

In Table I, we summarize the guaranteed performance of
NSB and LC-NSB as well as several most relevant online
algorithms in the literature. To the best of our knowledge, none
of the existing algorithms strike a more balanced performance
guarantees than NSB and LC-NSB in both dimensions of
throughput and evacuation time. Finally, we conduct numerical
experiments to validate our theoretical results and compare the
empirical performance of various algorithms.

The remainder of this paper is organized as follows. First,
we describe the system model and the performance metrics in
Section II. Then, we propose the NSB algorithm and analyze
its performance in Section III. A lower-complexity NSB
algorithm with the same performance guarantees is developed
in Section IV. Finally, we conduct numerical experiments in
Section V and make concluding remarks in Section VI.

II. SYSTEM MODEL

We consider a multi-hop wireless network described as an
undirected graph G = (V,E), where V denotes the set of
nodes and E denotes the set of links. We use n and m to
denote the node count and the link count, respectively. Nodes
are wireless transmitters/receivers and links are wireless chan-
nels between two nodes. The set of links touching node i ∈ V
is defined as L(i) , {l ∈ E | i is an end node of link l}.
We assume a time-slotted system with a single frequency
channel. We also assume unit link capacities, i.e., a link
can transmit at most one packet in each time-slot when
active. However, our analysis can be extended to the general
scenario with heterogeneous link capacities by considering
the workload defined as dnumber of packets/link capacitye.
We consider the one-hop interference model, under which a
feasible schedule corresponds to a matching (i.e., a subset L of
links satisfying that no two links in L share a common node).
A matching is called maximal, if no more links can be added
to the matching without violating the interference constraint.
We let M denote the set of all matchings over G.

In this paper, we focus on the link scheduling problem
and assume single-hop flows (that traverse only one link).
We let Al(k) denote the cumulative amount of workload



(or packet) arrivals at link l ∈ E up to time-slot k, (in-
cluding time-slot k). By slightly abusing the notations, we
let Ai(k) ,

∑
l∈L(i)Al(k) denote the cumulative amount

of workload arrivals at node i ∈ V up to time-slot k.
(Indices l and i correspond to links and nodes, respectively;
similar for other notations.) We assume that the arrival process
{Al(k), k ≥ 0} satisfies the strong law of large numbers
(SLLN): with probability one,

lim
k→∞

Al(k)

k
= λl (1)

for all links l ∈ E, where λl is the mean arrival rate of link
l. Let λ , [λl : l ∈ E] denote the arrival rate vector. We
assume that the arrival processes are independent across links.
Note that the process {Ai(k), k ≥ 0} also satisfies SLLN:
with probability one, limk→∞

Ai(k)
k = λi for all nodes i ∈ V ,

where λi ,
∑
l∈L(i) λl is the mean arrival rate for node i.

Let Ql(k) be the queue length of link l in time-slot k, and let
Dl(k) be the cumulative number of packet departures at link
l up to time-slot k. We assume that there are a finite number
of initial packets in the network at the beginning of time-slot
0. Let Qi(k) ,

∑
l∈L(i)Ql(k) be the amount of workload

at node i ∈ V (i.e., the number of packets waiting to be
transmitted to or from node i) in time-slot k, and let Di(k) ,∑
l∈L(i)Dl(k) be the amount of cumulative workload served

at node i ∈ V up to time-slot k. We also call Qi(k) and Di(k)
as the queue length and the cumulative departures at node i
in time-slot k, respectively.

Without loss of generality, we assume that only links with
a non-zero queue length can be activated. Let Ml = 1 if a
matching M ∈M contains link l, and Ml = 0 otherwise. Let
HM (k) be the number of time-slots in which matching M is
selected as a schedule up to time-slot k. We set by convention
that Ai(0) = 0, Di(0) = 0, and Di(−1) = 0 for all i ∈ V .
The queueing equations of the system are as follows:

Qi(k) = Qi(0) +Ai(k)−Di(k − 1), (2)

Di(k) =
∑
M∈M

k∑
τ=1

∑
l∈L(i)

Ml · (HM (τ)−HM (τ − 1)), (3)

∑
M∈M

HM (k) = k. (4)

Next, we define system stability as follows.

Definition 1. The network is rate stable if with probability one,

lim
k→∞

Dl(k)

k
= λl, (5)

for all l ∈ E and for any arrival processes satisfying Eq. (1).

Note that we consider rate stability for ease of presenting
our main ideas. Strong stability can similarly be derived if we
make stronger assumptions on the arrival processes [20].

We define the throughput region of a scheduling algorithm
as the set of arrival rate vectors for which the network
remains rate stable under this algorithm. Further, we define
the optimal throughput region, denoted by Λ∗, as the union of

the throughput regions of all possible scheduling algorithms.
A scheduling algorithm is said to have an efficiency ratio
γ if it can support any arrival rate vector λ strictly inside
γΛ∗. Clearly, we have γ ∈ [0, 1]. In particular, a scheduling
algorithm with an efficiency ratio γ = 1 is throughput-optimal,
i.e., it can stabilize the system under any feasible load. We also
give the definition of another important region Ψ as follows:

Ψ , {λ | λi ≤ 1 for all i ∈ V }. (6)

Clearly, we have Λ∗ ⊆ Ψ since at most one packet can be
transmitted from or to a node in each time-slot.

As we mentioned earlier, in the settings without future
packet arrivals, the performance metric of interest is the evac-
uation time, defined as the time interval needed for evacuating
all the initial packets. Let TP denote the evacuation time
of scheduling algorithm P , and let X ′ denote the minimum
evacuation time over all the possible algorithms, (which is
equivalent to the chromatic index in the graph coloring litera-
ture). A scheduling algorithm is said to have an approximation
ratio η if it has an evacuation time no greater than ηX ′ in
any network graph with any finite number of initial packets.
Clearly, we have η ≥ 1. In particular, a scheduling algorithm
with an approximation ratio η = 1 is evacuation-time-optimal.

III. NODE-BASED SERVICE-BALANCED ALGORITHM

In this section, we propose a novel Node-based Service-
Balanced (NSB) scheduling algorithm and analyze its perfor-
mance. Specifically, we prove that NSB guarantees an approx-
imation ratio no worse (or no greater) than 3/2 for the evacu-
ation time (Subsection III-B) and an efficiency ratio no worse
(or no smaller) than 2/3 for the throughput (Subsection III-C).
Further, we show that NSB is both throughput-optimal and
evacuation-time-optimal in bipartite graphs (Subsection III-D).
To the best of our knowledge, none of the existing algorithms
strike a more balanced performance guarantees than NSB in
both dimensions of throughput and evacuation time.

A. Algorithm

We start by introducing Maximum Vertex-weighted Match-
ing (MVM), which will be a key component of the NSB
algorithm. Let wi denote the weight of node i. We will
later describe how to assign the node weights. Also, let
w(M) ,

∑
i:M∩L(i)6=∅ wi denote the weight of matching M ,

i.e., the sum of the weight of the nodes matched by M . A
matching M∗ is called an MVM if it has the maximum weight
among all the matchings, i.e., M∗ ∈ argmaxM∈M w(M). A
very useful property of MVM is that if there exists a matching
that matches the s heaviest nodes (i.e., the s nodes with the
largest weights), then an MVM will match all of them too.
This property is a result of [21]. We restate it in Lemma 1,
which will be frequently used in the proofs of our main results.

Lemma 1 (Lemma 6 of [21]). For any given positive integer
s ≤ n, suppose there exists a matching that matches the s
heaviest nodes, then an MVM also matches all of them too.



Now, we describe the operations of the NSB algorithm.
We first give some additional definitions and notations. Recall
that Qi(k) denote the workload of node i in time-slot k. Let
∆(k) , maxi∈V Qi(k) denote the largest node queue length
in time-slot k. A node i is called critical in time-slot k if it
has the largest queue length, i.e., Qi(k) = ∆(k); a node i is
called heavy in time-slot k if its queue length is no smaller
than n−1

n ∆(k). (Our results also hold if we replace n−1
n with

any α ∈ [n−1
n , 1).) It will later become clearer why such a

threshold is chosen. We use C(k) and H(k) to denote the set
of critical nodes and the set of heavy nodes in time-slot k,
respectively. Let Ri(k) , Di(k)−Di(k − 1) denote whether
node i is matched in time-slot k or not, and define

Ui(k) ,

{
Ri(k − 1)Ri(k − 2) if k = 3k′ + 2;

Ri(k − 1) otherwise,
(7)

for some integer k′ ≥ 0. Note that Ui(k) is either 1 or 0,
depending on whether node i was matched in the previous
time-slot (or in both of the previous two time-slots) or not.

Then, in time-slot k, we assign a weight to node i as

wi ,

{
Qi(k)(2− Ui(k)) if i ∈ H(k);

Qi(k) otherwise,
(8)

and the NSB algorithm finds an MVM based on the assigned
node weight wi’s in every time-slot. Note that links with a zero
queue length will not be considered when MVM is computed.
According to Eq. (8), all the nodes are divided into two groups:
the heavy nodes that were not scheduled in the previous time-
slot(s) have a weight that is twice their workload, and all the
other nodes have a weight equal to their workload. Within the
same group, a node with a larger workload has a larger weight.

Remark: The key intuition that the NSB algorithm can
provide provable guarantees for both evacuation time and
throughput is the following: in the no-arrival settings, it
ensures that all the critical nodes will be scheduled at least
twice within every three consecutive time-slots, and in the
settings with arrivals, it ensures that all the critical nodes in the
fluid limit (which are among the heavy nodes in the original
stochastic system) will be scheduled at least twice within every
three consecutive time-slots. This comes from the following
properties of NSB: 1) it results in the desired priority or
ranking of the nodes by assigning the node weights according
to Eq. (8); 2) it finds an MVM based on the assigned node
weights in every time-slot, and MVM guarantees to match all
the heaviest nodes whenever possible (Lemma 1).

B. Evacuation Time Performance

In this subsection, we analyze the evacuation time perfor-
mance of NSB in the settings without arrivals. The main result
is presented in Theorem 1.

Theorem 1. The NSB algorithm has an approximation ratio
no greater than 3/2 for the evacuation time performance.

Proof. Recall that for a given network with initial packets
waiting to be transmitted, X ′ denotes the minimum evacuation

time, and TNSB denotes the evacuation time of NSB. We want
to show TNSB ≤ 3

2X
′. Recall that ∆(0) denotes the maximum

node queue length in time-slot 0. If ∆(0) = 1, this is trivial
as TNSB = X ′. Now, suppose ∆(0) ≥ 2. Then, the result
follows immediately from 1) Proposition 1: under NSB, the
maximum node queue length decreases by at least two within
three consecutive time-slots, i.e., TNSB ≤ 3

2∆(0), and 2) an
obvious fact: it takes at least ∆(0) time-slots to drain all the
packets over the links incident to a node with maximum queue
length, i.e., ∆(0) ≤ X ′.

Therefore, it remains to prove Proposition 1.

Proposition 1. Suppose the maximum node queue length in
a given time-slot is no smaller than two. Under the NSB
algorithm, the maximum node queue length decreases by at
least two within three consecutive time-slots.

We first restate a useful result of [22] in Lemma 2, which
will be used in the proof of Proposition 1.

Lemma 2 (Theorem 1 of [22]). Let G be a loopless multigraph
(i.e., no edge connects a node to itself) with maximum degree
∆. Let G∆ denote the subgraph of G induced by all the nodes
having maximum degree. If G∆ is bipartite, then there exists
a matching in G that matches every node of maximum degree.

Now, we are ready to prove Proposition 1. The proof follows
a similar argument as in the proof for MVM in [15]. Hence,
we give a sketch of the proof below and provide the detailed
proof in our online technical report [23] for completeness.

Note that in any given time-slot, the network together with
the present packets can be mapped to a loopless multigraph,
where each multi-edge corresponds to a packet waiting to be
transmitted over the link connecting the end nodes of the
multi-edge. By slightly abusing the notation, we use G(k)
to denote the multigraph at the beginning of time-slot k.
Hence, the degree of node i in G(k) is equivalent to the node
queue length Qi(k), and the maximum node degree of G(k)
is equivalent to ∆(k). We also let M(k) denote the matching
found by NSB in time-slot k. Now, consider three consecutive
time-slots {p, p + 1, p + 2}, where p = 3k′ for some integer
k′ ≥ 0. Suppose ∆(p) ≥ 2 at the beginning of time-slot
p. Then, we want to show that under NSB, the maximum
degree will be at most ∆(p)− 2 at the end of time-slot p+ 2.
We proceed the proof in two steps: 1) we first show that the
maximum degree will decrease by at least one in the first two
time-slots p and p + 1 (i.e., the maximum degree will be at
most ∆(p) − 1 at the end of time-slot p + 1), and then, 2)
show that if the maximum degree decreases by exactly one in
the first two time-slots (i.e., the maximum degree is ∆(p)− 1
at the end of time-slot p+ 1), the maximum degree must also
decrease by one in time-slot p+ 2 and becomes ∆(p)− 2 at
the end of time-slot p+ 2. Lemmas 1 and 2 will be used in
the proof of Proposition 1.

C. Throughput Performance
Next, we analyze the throughput performance of the NSB

algorithm in the settings with arrivals. The main result is



presented in Theorem 2.

Theorem 2. The NSB algorithm has an efficiency ratio no
smaller than 2/3 for the throughput performance.

We start our analysis by constructing the fluid limit model
as in [20], [24]. To begin with, we extend the processes Y =
Q,D,H to continuous time t ≥ 0 as Y (t) = Y (btc). Hence,
Q(t), D(t) and H(t) are right continuous with left limits.
Then, we construct the Markov process X = {X(t) : t ≥ 0}
that describes system dynamics as

X(t) = {Q(τ), D(τ), H(τ), τ ∈ [max{t− 2, 0}, t]}. (9)

Then, using the techniques of Theorem 4.1 of [24], we can
show that for almost all sample paths and for all positive
sequences xr → ∞, there exists a subsequence xrj with
xrj → ∞ as j → ∞ such that the following convergence
holds uniformly over compact (u.o.c.) intervals of time t:

Ai(xrj t)

xrj
→ λit,∀i ∈ V, (10)

Qi(xrj t)

xrj
→ qi(t),∀i ∈ V, (11)

Di(xrj t)

xrj
→ di(t),∀i ∈ V, (12)

HM (xrj t)

xrj
→ hM (t),∀M ∈M. (13)

We present the fluid model equations as follows:

qi(t) = qi(0) + λit− di(t),∀i ∈ V, (14)
d
dtdi(t) =

∑
M∈M

∑
l∈L(i)

Ml · ddthM (t),∀i ∈ V, (15)

∑
M∈M

hM (t) = t. (16)

Any such limit (q, d, h) is called a fluid limit. Note that
qi(·), di(·) and hi(·) are absolutely continuous functions and
are differentiable at almost all times t ≥ 0 (called regular
times). Taking the derivative of both sides of (14) and substi-
tuting (15) into it, we obtain

d
dtqi(t) = λi − d

dtdi(t)

= λi −
∑
M∈M

∑
l∈L(i)

Ml · ddthM (t). (17)

Next, borrowing the results of [25], we give the definition
of weak stability and state Lemma 3, which establishes the
connection between rate stability of the original system and
weak stability of the fluid model.

Definition 2. The fluid model of a network is weakly stable if
for every fluid model solution (q, d, h) with q(0) = 0, one has
q(t) = 0 for all regular times t ≥ 0.

Lemma 3. A network is rate stable if the associated fluid model
is weakly stable.

We now prove Theorem 2 using fluid limit techniques.

Proof. We want to show that given any arrival rate vector λ
strictly inside 2

3Λ∗, the system is rate stable under the NSB
algorithm. Note that λ is also strictly inside 2

3Ψ (i.e., λi < 2
3

for all i ∈ V ) since Λ∗ ⊆ Ψ. We define ε , mini∈V ( 2
3 − λi).

Clearly, we must have ε > 0.
To show rate stability of the original system, it suffices to

show weak stability of the fluid model due to Lemma 3. We
start by defining the following Lyapunov function:

V (q(t)) = max
i∈V

qi(t). (18)

Since V (q(t)) is a non-negative function, given q(0) = 0, in
order to show V (q(t)) = 0 and thus q(t) = 0 for all regular
times t ≥ 0, it suffices to show that if V (q(t)) > 0 for t > 0,
then V (q(t)) has a negative drift and decreases at least at a
given rate. Then, the stability of the fluid model follows from
Definition 2. Therefore, we want to show that for all regular
times t > 0, if V (q(t)) > 0, we have d

dtV (q(t)) ≤ −ε.
We first fix time t and let qmax = V (q(t)) = maxi∈V qi(t).

Define the set of critical nodes in the fluid limits at time t as

C , {i ∈ V | qi(t) = qmax}. (19)

Also, let q̂max be the largest queue length in the fluid limits
among the remaining nodes, i.e., q̂max = maxi∈V \C qi(t).
Since the number of nodes is finite, we have q̂max < qmax.
Choose β small enough such that q̂max < qmax − 3β and
β < 1

2n−1qmax. This implies

qmax − β >
n− 1

n
(qmax + β). (20)

Recall that q(t) is absolutely continuous. Hence, there exists
a small δ such that the queue lengths in the fluid limits satisfy
the following conditions for all times τ ∈ (t, t+ δ):

(C1) qi(τ) ∈ (qmax − β
2 , qmax + β

2 ) for all i ∈ C;
(C2) qi(τ) < qmax − 5β

2 for all i /∈ C.
Let xrj be a positive subsequence for which the convergence

to the fluid limit holds. Consider j large enough such that
|Qi(xrj

τ)

xrj
− qi(τ)| < β

2 for all τ ∈ (t, t+ δ). Considering the
neighborhood around time t, we define a set of consecutive
time-slots in the original system as T , {dxrj te, dxrj te +
1, . . . , bxrj (t + δ)c}, which corresponds to the scaled time
interval (t, t+ δ) in the fluid limits.

Lemma 4 states that NSB, all the critical nodes at scaled
time t in the fluid limits will be scheduled at least twice within
every three consecutive time-slots of T .

Lemma 4. Under the NSB algorithm, all the nodes in C will be
scheduled at least twice within every three consecutive time-
slots of T .

We will prove Lemma 4 immediately after the current proof.
For now, assume Lemma 4 holds. Then, for all i ∈ C, we have∑

M∈M

∑
l∈L(i)

Ml · (HM (xrj (t+ δ))−HM (xrj t))

≥ 2

3
(bxrj (t+ δ)c − dxrj te − 3),

(21)



and therefore, we have∑
M∈M

∑
l∈L(i)

Ml · ddthM (t)

= lim
δ→0

∑
M∈M

∑
l∈L(i)

Ml ·
hM (t+ δ)− hM (t)

δ

(a)
= lim

δ→0
lim
j→∞

∑
M∈M

∑
l∈L(i)

Ml · (HM (xrj (t+ δ))−HM (xrj t))

xrjδ

(b)

≥ lim
δ→0

lim
j→∞

2
3 (bxrj (t+ δ)c − dxrj te − 3)

xrjδ
=

2

3
,

(22)

where (a) and (b) are from Eqs. (13) and (21), respectively.
Then, it follows from Eq. (17) that for all i ∈ C, we have
d
dtqi(t) ≤ λi −

2
3 ≤ −ε.

Also, from conditions (C1) and (C2), every node i /∈ C
has a queue length strictly smaller than that of a critical node
in C for the entire duration (t, t + δ). Thus, it follows that
d
dtV (q(t)) ≤ −ε, which implies that the fluid model is weakly
stable. This completes the proof by applying Lemma 3.

Now, it remains to prove Lemma 4. The proof will rely
on a novel application of graph-factor theory – Lemma 6.
Hence, before proving Lemma 4, we introduce some additional
notations and prove Lemma 6 first.

By slightly abusing the notations, we also use G = (V,E)
to denote a multigraph. Let g = [gv : v ∈ V ] and f = [fv :
v ∈ V ] be vectors of positive integers satisfying

0 ≤ gv ≤ fv ≤ dG(v), for all v ∈ V, (23)

where dG(v) is the degree of node v in G counting multiplic-
ities, and a loop associated with node v counts 2 towards the
degree of v. A (g, f)-factor is a subgraph F of G with

gv ≤ dF (v) ≤ fv, for all v ∈ V. (24)

Note that if vectors g, f satisfy gv, fv ∈ {0, 1} for all v ∈ V ,
then the edges of a (g, f)-factor form a matching over G.

Let Gg=f denote the subgraph of G induced by nodes v for
which gv = fv . Let [x]+ , {x, 0}. We restate a result of [26]
in Lemma 5, which will be used in the proof of Lemma 6.

Lemma 5 (Theorem 1.3 of [26], Property I). Let multigraph G
and vectors g, f be given. Suppose Gg=f is bipartite. Then,
G has a (g, f)-factor if and only if for all S ⊆ V ,∑

v∈S
fv ≥

∑
v/∈S

[gv − dG−S(v)]+. (25)

Next, we state Lemma 6 below and provide its proof.

Lemma 6. Let G be a multigraph with maximum degree ∆.
Let Z ⊆ V be a subset of nodes, and let GZ denote the
subgraph of G induced by Z. Suppose the following conditions
are satisfied: (i) all the nodes of Z are heavy nodes, i.e., Z ⊆
{v ∈ V | dG(v) ≥ n−1

n ∆}, and (ii) GZ is bipartite. Then,
there exists a matching over G that matches every node of Z.

S S̄

Fig. 1: An illustration for the relationship of the sets in the
proof of Lemma 6.

Proof. We will use Lemma 5 to prove Lemma 6. Assume
n > 1. First, construct vectors g, f in the following way:
set gv = fv = 1 for node v ∈ Z, and set gv = 0, fv = 1
otherwise. Clearly, we have Gg=f = GZ , and the edges of
a (g, f)-factor form a matching over graph G that matches
every node of Z.

Suppose (i) all the nodes of Z are heavy nodes, and (ii)
GZ is bipartite. Now, consider any subset of nodes S ⊆ V ,
we want to show that Eq. (25) is satisfied. Let S̄ = V \S
be the complementary set of S. Let ZS̄ = Z ∩ S̄, and let
Z ′
S̄

= {v ∈ ZS̄ | all the neighboring nodes of v are in
S}. The relationship of these sets is illustrated in Fig. 1. It
is easy to see that

∑
v∈S fv = |S| as fv = 1 for all v ∈ V .

Also, a little thought gives
∑
v/∈S [gv − dG−S(v)]+ = |Z ′

S̄
|.

This is because any node v /∈ S must belong to one of the
following three cases: 1) If v /∈ Z, we have gv = 0, and
thus, [gv − dG−S(v)]+ = 0; 2) If v ∈ Z ′

S̄
, we have gv = 1

and dG−S(v) = 0, and thus, [gv − dG−S(v)]+ = 1; 3) If
v ∈ ZS̄\Z ′S̄ , we have gv = 1 and dG−S(v) ≥ 1, and thus,
[gv − dG−S(v)]+ = 0.

Hence, in order to show Eq. (25), it remains to show |S| ≥
|Z ′
S̄
|. We prove it by contradiction. Suppose |S| < |Z ′

S̄
|. Since

S and Z ′
S̄

are disjoint, we have |S| + |Z ′
S̄
| ≤ n, and thus,

|S| < n. We let dG(Z) =
∑
i∈Z dG(i) denote the total degree

of a subset of nodes Z ⊆ V in G and state three obvious facts:
(F1) dG(Z ′

S̄
) ≥ n−1

n ∆|Z ′
S̄
|;

(F2) dG(S) ≤ ∆|S|;
(F3) dG(Z ′

S̄
) ≤ dG(S).

Note that (F1) is from the fact that every node of Z has a
degree no smaller than n−1

n ∆, (F2) is trivial, and (F3) is from
the fact that all the neighboring nodes of nodes in Z ′

S̄
belong

to S. Then, by combining the above facts, we obtain

n− 1

n
≤ |S|
|Z ′
S̄
|
. (26)

This further implies |Z ′
S̄
|−|S| ≤ |S|

n−1 ≤ 1, as |S| < n. Hence,
we must have |Z ′

S̄
| = |S|+1, because |Z ′

S̄
| > |S|. Substituting

this back into Eq. (26), we derive n−1
n ≤ |S|

|S|+1 . This implies
|S| ≥ n− 1, and thus |S|+ |Z ′

S̄
| ≥ 2n− 1, which contradicts

the fact that |S|+ |Z ′
S̄
| ≤ n.

Therefore, we have |S| ≥ |Z ′
S̄
| and Eq. (25) is satisfied.

From Lemma 5, there exists a (g, f)-factor, and from the way
we construct vectors g and f , there exists a matching over
graph G that matches every node of Z.

Remark: Lemma 6 generalizes Lemma 2 and is of critical
importance in proving the guaranteed throughput performance



of NSB in general graphs. Moreover, it will play a key role in
establishing both throughput optimality and evacuation time
optimality for NSB in bipartite graphs (see Section III-D).

Now, we are ready to prove Lemma 4.

Proof of Lemma 4. Recall that C is the set of critical nodes
in the fluid limits at time t (Eq. (19)). We want to show that
under the NSB algorithm, all the nodes in C will be scheduled
at least twice within every three consecutive time-slots of T .

First, recall that j is large enough such that |Qi(xrj
τ)

xrj
−

qi(τ)| < β
2 for all times τ ∈ (t, t+ δ). Hence, from condition

(C1) and (C2), the queue lengths in the original system satisfy
the following conditions for all time-slots k ∈ T :

(C1*) Qi(k) ∈ xrj (qmax − β, qmax + β) for all i ∈ C;
(C2*) Qi(k) < xrj (qmax − 2β) for all i /∈ C.

On account of condition (C1*) and Eq. (20), all the nodes in
C are heavy nodes in all the time-slots of T , i.e., Qi(k) ≥
n−1
n ∆(k) for all i ∈ C and for all k ∈ T .
Note that in any time-slot, the network together with the

present packets can be modeled as a multigraph, where each
multi-edge corresponds to a packet. Recall that we use G(k)
to denote the multigraph at the beginning of time-slot k. Note
that if there are no packets waiting to be transmitted over a
link, no multi-edge connecting the end nodes of this link will
appear in G(k). Also, recall that M(k) denotes the matching
found by the NSB algorithm in time-slot k. Now, consider
three consecutive time-slots {p, p+ 1, p+ 2} of T , where p =
3k′ for some integer k′ ≥ 0. We want to show that under the
NSB algorithm, every node in C will get scheduled in at least
two time-slots of {p, p + 1, p + 2}. We proceed the proof in
two steps: 1) we first show that all the nodes in C will be
scheduled at least once in the first two time-slots p and p+ 1,
and 2) then show that all the nodes in C that were scheduled
exactly once in the first two time-slots, will get scheduled in
time-slot p+ 2.

We start with step 1). Let C′ denote the set of nodes in C
that were not scheduled in time-slot p. It is a trivial case if
C′ = ∅. Therefore, suppose C′ 6= ∅, i.e., there exists at least
one node in C that was not scheduled in time-slot p. Then, it
suffices to show that all the nodes in C′ must be scheduled in
time-slot p+ 1 under the NSB algorithm. Note that matching
M(k) must be a maximal matching over G(k) for every time-
slot k. Since M(p) is a maximal matching, the nodes in C′
must form an independent set at the beginning of time-slot
p + 1, excluding the multi-edges corresponding to the new
packet arrivals at the beginning of time-slot p+ 1.

Note that it is a trivial case if |C′| = 1. So we consider
the case of |C′| ≥ 2 and prove it by contradiction. Suppose
there exist two adjacent nodes i, j ∈ C′. Then, none of the
edges incident to either i or j was in matching M(p). This
implies that the multi-edge between i and j could be added to
matching M(p) in time-slot p, which, however, contradicts the
fact that M(p) is a maximal matching. Therefore, the nodes
in C′ must form an independent set at the beginning of time-
slot p + 1. Clearly, the subgraph induced by all the nodes
in C′ (which form an independent set) is bipartite. Note that

conditions (C1*) and (C2*) still hold even without accounting
for the new packet arrivals. Then, by Lemma 6, there exists
a matching that matches all the nodes in C′ at the beginning
of time-slot p+ 1 before new packet arrivals. Clearly, such a
matching still exists even if the multi-edges corresponding to
the newly arrived packets in time-slot p+ 1 are added to the
grpah. Note that M(p+1) is an MVM over G(p+1) with the
assigned weights (as in Eq. (8)). Now, if all the nodes in C′ are
among the ones with the heaviest weights, then it implies from
Lemma 1 that matching M(p+ 1) also matches all the nodes
in C′. This is indeed true due to conditions (C1*) and (C2*),
as well as the weight assignments in Eq. (8): every node in C′
was not scheduled in time-slot p, and thus has a weight larger
than 2xrj (qmax − β), while any node in V \C′ cannot have a
weight larger than max{2xrj (qmax − 2β), xrj (qmax + β)}.

Now, we prove step 2). Let C′′ denote the set of nodes
in C that were scheduled exactly once in time-slots p and
p + 1. We want to show that all the nodes in C′′ will get
scheduled in time-slot p+ 2. Note that all the nodes in C′′ are
among the ones with the heaviest weights. This is true due to
conditions (C1*) and (C2*), as well as the weight assignments
in Eq. (8): every node in C′′ was scheduled exactly once in
time-slots p and p + 1, and thus has a weight larger than
2xrj (qmax−β), while any node in V \C′′ cannot have a weight
larger than max{2xrj (qmax − 2β), xrj (qmax + β)}. Further,
let GC′′ denote the subgraph induced by all the nodes in C′′ at
the beginning of time-slot p+2, excluding all the multi-edges
corresponding to the packets that arrived in time-slot p + 1
and p + 2. If GC′′ is bipartite, then again by Lemmas 6 and
1, following the same argument as in step 1), we can show
that all the nodes in C′′ are matched by M(p+ 2) in time-slot
p+ 2. Therefore, it remains to show that GC′′ is bipartite.

Next, we prove that GC′′ is bipartite by contradiction.
Suppose GC′′ contains an odd cycle, say C. Then, no two
adjacent nodes of C were matched by M(p+ 1) in time-slot
p + 1. This is true due to the following. Suppose there exist
two adjacent nodes of C, say i and j, matched by M(p+ 1).
Since i and j are in C′′, both of them were matched exactly
once in time-slots p and p+ 1 from the definition of C′′. This
implies that both i and j were not matched in time-slot p, i.e.,
we have i, j ∈ C′. However, given that i and j are adjacent,
this contradicts what we have shown earlier – the nodes in C′
form an independent set. Therefore, no two adjacent nodes of
C were matched by M(p+ 1) in time-slot p+ 1. This, along
with the fact that cycle C is of odd size, implies that cycle
C must contain two adjacent nodes that were not matched by
M(p + 1) in time-slot p + 1. This further implies that the
multi-edge between these two adjacent nodes can be added
to M(p + 1), which contradicts the fact that M(p + 1) is
a maximal matching over G(p + 1). Therefore, the induced
subgraph GC′′ must be bipartite. This completes the proof of
step 2) and that of Lemma 4.

D. Optimality in Bipartite Graphs

So far, we have focused on analyzing the performance of
NSB in general graphs and have shown that NSB guarantees an



approximation ratio no greater than 3/2 for the evacuation time
and an efficiency ratio no smaller than 2/3 for the through-
put. Considering the fact that NSB makes decisions based
on the node workload and does not handle odd-size cycles
(which could also be bottlenecks), the theoretical performance
guarantees achieved by NSB are quite remarkable. We believe
that NSB will perform better if odd-size cycles do not form
bottlenecks. This is also observed in our simulation results in
Section V. In this subsection, we will show that NSB is both
throughput-optimal and evacuation-time-optimal in bipartite
graphs. This result is stated in Theorem 3, which will be
proved using Lemmas 1 and 6.

Theorem 3. The NSB algorithm is both throughput-optimal
and evacuation-time-optimal in bipartite graphs.

Proof. We first consider evacuation time optimality. Recall
that for a given network with initial packets waiting to be
transmitted, ∆(0) denotes the maximum node degree at the
very beginning, and X ′ denotes the minimum evacuation time.
If the underlying network is bipartite, there are no odd-size
cycles, and we have X ′ = ∆(0). Hence, as long as the
maximum degree decreases by one in every time-slot, the
minimum evacuation time can be achieved. By Lemma 6 and
the fact that the underlying network graph is bipartite, we
know that in every time-slot, there exists a matching that
matches all the heavy nodes, including all the critical nodes,
and by Lemma 1, NSB also matches all the critical nodes in
every time-slot. Therefore, NSB is evacuation-time-optimal.

Then, we consider throughput optimality. The analysis fol-
lows a similar line of argument as in the proof of Theorem 2
for general graphs. The difference is that we now consider any
given arrival rate vector λ strictly inside Λ∗ (and thus strictly
inside Ψ, i.e., λi < 1 for all i ∈ V ) and need to show that
all the nodes in C will be scheduled in every time-slot of T
(rather than in two of three consecutive time-slots of T as in
Lemma 4 for general graphs). This is true from Lemmas 6
and 1. We omit the detailed proof here.

The NSB algorithm has a complexity of O(m
√
n log n), as

the complexity of finding an MVM is O(m
√
n log n) [21].

One important question is whether we can develop lower-
complexity algorithms that provide the same performance
guarantees. We answer this question in the next section.

IV. A LOWER-COMPLEXITY NSB ALGORITHM

Through the analysis for the NSB algorithm, we obtain the
following insights: In order to achieve the same performance
guarantees as NSB, what really matters is the priority or the
ranking of the nodes, rather than the exact weight of the
nodes. If we assign the node weights in a way that they are
bounded integers, and the nodes still have the desired priority
or ranking as in the NSB algorithm, we can develop a new
algorithm with a lower complexity. Thanks to the results of
[27], [28], an O(m

√
n)-complexity implementation of MVM3

3This can be done by setting the weight of an edge to the sum of the weight
of its two end nodes and finding an MWM based on the new edge weights
using the techniques developed in [27], [28].

can be derived if the maximum node weight is a bounded
integer independent of n and m.

Next, we propose such an algorithm, called the Lower-
Complexity NSB (LC-NSB). Recall that Ui(k) indicates
whether node i was matched in the previous time-slot (or in
both of the previous two time-slots, as defined in Eq. (7)).
Also, recall that C(k) and H(k) denote the set of critical nodes
and the set of heavy nodes in time-slot k, respectively. In time-
slot k, we assign a weight to node i as

wi ,


5− 2Ui(k) if i ∈ C(k);

4− 2Ui(k) if i ∈ H(k)\C(k);

1 otherwise.
(27)

Then, the LC-NSB algorithm finds an MVM based on the
assigned node weight wi’s in every time-slot. Note that LC-
NSB has a very similar way of assigning the node weights as
NSB. However, the key difference is that we now divide all the
nodes into five priority groups by assigning the node weights
only based on whether it is a heavy (or critical) node and
whether it was scheduled in the previous time-slot(s), while in
the NSB algorithm, the actual workload is used in the weight
assignments. This slight yet crucial change leads to a lower-
complexity algorithm with the same performance guarantees.
Note that in Eq. (27), we give a higher priority to the critical
nodes in order to guarantee the evacuation time performance.

Theorem 4. The LC-NSB algorithm has an approximation
ratio no greater than 3/2 for the evacuation time and has
an efficiency ratio no smaller than 2/3 for the throughput.

Moreover, the LC-NSB algorithm is both throughput-optimal
and evacuation-time-optimal in bipartite graphs.

Proof. The proof follows similarly as in the proofs for the
NSB algorithm and is thus omitted.

Remark: Although LC-NSB can provide the same perfor-
mance guarantees as NSB, we would expect that LC-NSB
may have (slightly) worse empirical performance compared to
NSB, since NSB has a more fine-grained priority differentia-
tion among all the nodes. We indeed make such observations
in our simulation results in Section V. In order to improve the
empirical performance, we can introduce more priority groups
for the non-heavy nodes under LC-NSB rather than all being
in the same priority group (of weight 1 as in Eq. (27)). As
long as the number of priority groups is a bounded integer
independent of n and m, the complexity remains O(m

√
n).

V. NUMERICAL RESULTS

In this section, we conduct numerical experiments to elu-
cidate our theoretical results. We also compare the empirical
performance of our proposed NSB and LC-NSB algorithms
with several most relevant algorithms as listed in Table I.

We first focus on a randomly generated triangular mesh
topology with 30 nodes and 79 links as shown in Fig. 2a.
The simulation codes are written in C++. We assume that the
arrivals are i.i.d. over all the links with unit capacity. The
mean arrival rate of each link is λ, and the instantaneous
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Fig. 2: Simulations for a triangular mesh topology.

arrivals to each link follow a Poisson distribution in each
time-slot. In Fig. 2b, we plot the average total queue length
in the system against the arrival rate λ. We consider several
values of λ as indicated in Fig. 2b. For each value of λ, the
average total queue length is an average of 10 independent
simulations. Each individual simulation runs for a period of
105 time-slots. We compute the average total queue length
by excluding the first 5 × 104 time-slots in order to remove
the impact of the initial transient state. Note that this network
topology contains odd-size cycles. Hence, our proposed NSB
and LC-NSB only guarantee to achieve 2/3 of the optimal
throughput. However, the simulation results in Fig. 2b show
that NSB and LC-NSB algorithms both empirically achieve
the optimal throughput performance. This is because the odd-
size cycles do not form the bottlenecks in this setting. We also
observe that NSB and MVM perform very closely and exhibit
the best delay performance.

We have obtained more simulation results by considering
different network topologies. The results show that NSB and
LC-NSB both have very good empirical performance in all the
scenarios we consider. Due to space limitations, we provide
more simulation results in our online technical report [23].

VI. CONCLUSION

In this paper, we studied the link scheduling problem for
multi-hop wireless networks with single-hop flows and focused
on designing efficient online algorithms with provably guaran-
teed throughput and evacuation time performance. We devel-
oped two node-based service-balanced algorithms and showed
that none of the existing algorithms strike a more balanced
performance guarantees than our proposed algorithms in both
dimensions of throughput and evacuation time. An interesting
future direction is to consider more general scenarios with
multi-hop flows, where it becomes much more challenging to
provide provably good evacuation time performance.
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