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Abstract—In this paper, we investigate the optimal spectrum
leasing and sharing for dynamic spectrum access (DSA) network
which actively shares its spectrum resource with a group of
secondary users (SUs) for reaping revenue. The DSA aims at
maximizing its total charge to the SUs based on their achieved
throughput, while taking into account the additional power
consumption of the primary user (PU) to overcome the SUs’
interference such that quality of service (QoS) of the PU is
guaranteed. The interference between the PU and the SUs as
well as the interference within the SUs themselves make the
spectrum leasing problem strictly nonconvex and thus difficult
to solve in general. To tackle with this difficulty, we exploit
the decomposition structure of the concerned spectrum leasing
problem and propose a layered monotonic optimization approach
to solve it efficiently. Numerical results are presented to validate
our proposed approach and its computational efficiency.

I. INTRODUCTION

With a rapid growth in mobile data service and the growing
crowded spectrum space, dynamic spectrum access (DSA)
has been considered a promising paradigm to improve the
spectrum efficiency and provide better wireless local service as
a supplementary to cellular networks [1]. The merit of DSA
lies in its intelligent reuse of underutilized spectrum of the
primary user (PU) such that the secondary users (SUs) could
obtain an opportunistic usage of the PU’s licensed spectrum for
data transmission. An important approach for implementing
the DSA is spectrum leasing, through which the DSA leases
the PU’s spectrum to the SUs for reaping additional benefits,
e.g., the economic revenue and the improved transmission
performance. Despite gaining these additional benefits, the
spectrum leasing incurs interference between the PU and the
SUs, which thus necessitates a careful design of the resource
management such that the benefits of the spectrum leasing can
be truly achieved without sacrificing the PU’s performance.

There have been several related works about the spectrum
leasing in DSA networks. [2] and [3] considered that the PU
actively leased its spectrum to the SUs and charged the SUs’
interference accordingly. Their objective was to maximize the
PU’s total charge to the SUs’ interference while limiting the
total interference from all the SUs below a given threshold.
[5] and [6] adopted the auction models to investigate the
spectrum leasing and sharing in DSA networks with the given
interference thresholds for the PUs. [4] further considered the
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interference limit tunable and aimed at choosing an optimal
interference limit to trade off between the PU’s interference-
based charge and its QoS degradation. Taking into account
the difficulty in charging the interference in practice, our work
[7] proposed charging the achieved throughput of the SUs and
modeled the joint price and power optimization problem as a
two-stage Stackelberg game between the PU and the SUs.

In this paper, we aim at optimizing the economic reward of
the spectrum leasing from charging the SUs’ throughput while
taking into account the PU’s additional power consumption
to overcome the SUs’ interference. Due to the interference
between the PU and the SUs as well as the interference within
the SUs themselves, the optimal spectrum leasing problem is
strictly nonconvex and thus is difficult to solve. To tackle
with this technical difficulty, we exploit the decomposition
structure of the optimal leasing problem and propose a layered
monotonic optimization approach to solve it efficiently.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model and the Throughput Model

We consider that a group of SUs, denoted by Ω =
{1, 2, ..., S}, coexist with one representative PU in a DSA
network. The PU performs the uplink transmission to the base
station (BS) of the network on its licensed spectrum. To gain
the additional reward, the PU leases its spectrum to the SUs.
We consider that each SU s is comprised of a transmitter
(Tx) and a receiver (Rx). The spectrum leasing results in two
types of interference, i.e., the interference between the PU and
each SU s and the interference within the SUs themselves.
Let p0 and qs denote the transmit-powers of the PU and SU
s, respectively. The throughput of each SU s can be given by

Rs(qs, p0, {qj}j �=s,j∈Ω) =

log2

(
1 +

qsgss
n+ p0g0s +

∑
j �=s,j∈Ω qjgjs

)
, ∀s ∈ Ω.(1)

Specifically, gss, g0s, and gjs denote the channel power gains
from the Tx of SU s to its Rx, from the PU to the Rx
of SU s, and from the Tx of SU j to the Rx of SU s,
respectively. Besides, n denotes the power of the background
noise. Meanwhile, the throughput of the PU can be given by

R0(p0, {qs}s∈Ω) = log2

(
1 +

p0g0B
n+

∑
s∈Ω qsgsB

)
, (2)

where g0B and gsB denote the channel power gains from the
PU to the BS and from the Tx of SU s to the BS, respectively.
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B. Revenue Optimization of the PU and Its Feasibility

The PU has a throughput requirement denoted by Rreq
0 , i.e.,

requiring R0(p0, {qs}s∈Ω) ≥ Rreq
0 . Thus, the PU’s transmit-

power, as a response to the SUs’ interference, should meet

p0 ≥ θ0
n+

∑
s∈Ω qsgsB

g0B
, (3)

where parameter θ0 = 2R
req
0 − 1. Let us consider a bench-

mark case in which no spectrum leasing is incurred. In this
benchmark case, the minimum transmit-power of the PU is
given by pmin

0 = θ0
n

g0B
. Thus, taking into account the SUs’

interference, the PU consumes the additional power equal to(
p0 − pmin

0

)
, when leasing its spectrum to the SUs. Despite

this additional cost, the PU charges the SUs according to their
achieved throughput. Therefore, the PU’s optimal spectrum
leasing problem can be formulated as follows:

(P1):max
∑
s∈Ω

αsRs(qs, p0, {qj}j �=s,j∈Ω)− β
(
p0 − pmin

0

)

subject to: p0 ≥ θ0
n+

∑
s∈Ω qsgsB

g0B
, (4)

Rs(qs, p0, {qj}j �=s,j∈Ω) ≥ Rreq
s , ∀s ∈ Ω, (5)

0 ≤ p0 ≤ Pmax
0 , (6)

0 ≤ qs ≤ Qmax
s , ∀s ∈ Ω, (7)

decision variable: p0 and {qs}s∈Ω.

Here, αs denotes the PU’s marginal charge to the throughput
of each SU s, and β denotes the PU’s marginal power
consumption cost1. Constraints (4) and (5) ensure that the PU
and each SU s achieve their throughput requirements Rreq

0 and
Rreq

s , respectively. Constraints (6) and (7) limit the transmit-
powers of the PU and each SU s by their respective maximum
levels denoted by Pmax

0 and Qmax
s . In particular, it is noticed

that constraint (5) is equivalent to
qsgss

n+ p0g0s +
∑

j �=s,j∈Ω qjgjs
≥ θs, ∀s ∈ Ω, (8)

with θs = 2R
req
s − 1. We will use (8) in the rest of this paper.

To analyze the feasibility of Problem (P1), we define an
S-by-S matrix M with its each element Mss = 0, ∀s ∈ Ω,

and Msj =
θsθ0g0sgjB + θsgjsg0B
gssg0B − θsθ0gsBg0s

, ∀s, j ∈ Ω, and s �= j.

Recall that S is the total number of the SUs. We also
define an S-by-1 vector u with its each element us =
θsng0B+θsθ0ng0s
gssg0B−θsθ0gsBg0s

, ∀s ∈ Ω. Let p̂0 and q̂s denote the respective
minimum transmit-powers required by the PU and each SU s
such that constraints (4) and (8) (i.e., (5)) are satisfied exactly.
We then obtain the result regarding p̂0 and {q̂s}s∈Ω as follows.

Lemma 1: Suppose that Conditions (C1) and (C2) are met:
(C1): gssg0B − θsθ0gsBg0s > 0 holds for each SU s ∈ Ω.

1In this work, we consider the PU’s charge (or the pricing mechanism) as
fixed and focus on optimizing the transmit-powers of the PU and the SUs
by assuming that the SUs follow the decisions of the PU for achieving their
respective throughput requirements (i.e., the PU and SUs are cooperative).

(C2): the spectrum radius ρ(M) of M, defined as ρ(M) =
max{|λ||λ is an eigenvalue of M}, satisfies that ρ(M) < 1.
Then, p̂0 and {q̂s}s∈Ω can be compactly given by

p̂0 = θ0
n+

∑
s∈Ω q̂sgsB

g0B
, and q̂s =

(
(I−M)−1u

)
s
,

where I is an S-by-S identity matrix. (x)s denotes the s-th
element of vector x.
Proof : An important property of Problem (P1) is that con-
straint (4) should be strictly binding for achieving the optimum
(otherwise, the PU can always reduce its transmit-power for
increasing the objective function but without violating any
constraint). By further setting (8) to be strictly binding and
substituting p0 with {qs}s∈Ω (i.e., via (4)), we obtain a set of
linear equations, i.e., (I−M)q = u, with vector q representing
the vector form of {qs}s∈Ω. Applying the Perron-Frobenius
theorem [8] to these equations such that they have nonnegative
solutions (i.e., q̂ ≥ 0), we obtain the results in Lemma 1. �

Remark 1: Condition (C1) takes into account the PU and
each SU s, and it requires the interference channel gain
between them to be weak enough. Condition (C2) takes into
account the PU and all the SUs, and it essentially requires that
the aggregate effect of the interference channel gain (including
both those between the PU and each SU s, and those between
different SUs s and j) is weak enough. Specifically, based
on the property of spectrum radius ρ(M) [8], a sufficient
condition to guarantee ρ(M) < 1 can be given as follows:

θsθ0gsBg0s + g0Bθs
∑

j �=s,j∈Ω

gjs + θsθ0g0s
∑

j �=s,j∈Ω

gjB

≤ gssg0B , ∀s ∈ Ω. (9)

In (9), the 2nd part accounts for the interference between
different SUs s and j, and the 3rd part accounts for the
interference between SU j and the PU. Notice that (9) becomes
Condition (C1) if there is only one SU in Ω.

Using p̂0 and {q̂s}s∈Ω in Lemma 1, we can characterize the
feasibility of Problem (P1) as follows. Problem (P1) is feasi-
ble, if Condition (C3) that p̂0 ≤ Pmax

0 and q̂s ≤ Qmax
s , ∀s ∈ S

holds. In this work, to focus on quantifying the PU’s maximum
benefit and designing an efficient algorithm to achieve this
maximum benefit, we assume that Problem (P1) is feasible.
Notice that Lemma 1 and Condition (C3) above can be used
for admission control when a large number of SUs exist.
C. Layered Structure of Problem (P1)

Due to the interference between the PU and the SUs as well
as the interference within the SUs, the objective function of
Problem (P1) is strictly nonconvex. Thus, (P1) is a nonconvex
optimization problem and is difficult to solve in general. To
tackle with this difficulty, we exploit that (4) is binding at the
optimum (as stated in the proof of Lemma 1) and vertically
decompose (P1) into a two-layered structure. Specifically,
in the bottom-layer, given the PU’s transmit-power p0, we
optimize the transmit-powers of the SUs by solving

(P1-Bottom): F (p0) = max
{qs}s∈Ω

∑
s∈Ω

αsRs(qs, p0, {qj}j �=s,j∈Ω)

subject to: Constraints (4), (7), and (8).
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Different from Problem (P1), in (P1-Bottom), p0 is given
in advance in constraints (4), (7), and (8) (which represents
constraint (5)). Notice that the maximum of the objective
function of Problem (P1-Bottom) depends on the given p0,
and that is why we use function F (p0) to denote it.

By using F (p0) from the bottom-layer, we then solve the
top-layer problem that optimizes the PU’s transmit-power as:

(P1-Top): max
pmin
0 ≤p0≤Pmax

0

F (p0)− β(p0 − pmin
0 ).

Recall that pmin
0 = θ0

n
g0B

is given before. In the next
two sections, we focus on solving Problem (P1-Bottom) and
Problem (P1-Top) in a way of backward induction.

III. OPTIMAL SOLUTION OF PROBLEM (P1-BOTTOM)

A. Hidden Monotonicity of Problem (P1-Bottom)

We solve Problem (P1-Bottom) in this section. It is observed
that (P1-Bottom) is a nonconvex optimization problem and
thus is difficult to solve. We first introduce the set of auxiliary
variables {ys}s∈Ω based on the following continuous mapping:

ys =
qsgss

n+ p0g0s +
∑

j �=s,j∈Ω qjgjs
, ∀s ∈ Ω. (10)

Using {ys}s∈Ω, we present the following Problem (P2):

(P2): max
{ys}s∈Ω

∑
s∈Ω

αs log2(1 + ys), subject to: {ys} ∈ G ∩ H.

where G is given by

G =
{{ys}s∈Ω|0 ≤ ys ≤ qsgss

n+ p0g0s +
∑

j �=s,j∈Ω qjgjs
, ∀s ∈ Ω,

and 0 ≤ qs ≤ Qmax
s , ∀s ∈ Ω, and

∑
s∈Ω

qsgsB ≤ p0g0B
θ0

− n
}
,

and H = {{ys}s∈Ω|ys ≥ θs, ∀s ∈ Ω}. Particularly, according
to Section 2.3 of [9], set G can be considered as the normal
hull of the following set D as follows:

D ={
{qs}s∈Ω|0 ≤ qs ≤ Qmax

s , ∀s ∈ Ω,
∑
s∈Ω

qsgsB ≤ p0g0B
θ0

− n

}
,

which is induced by the mapping given in (10). Thus, G is
a normal set. Meanwhile, H is a reversed normal set. Notice
that due to space limitation, the detailed definitions for the
normal set and reverse normal set are skipped here. Interested
readers please refer to [9] for the details.

In particular, we have the following property regarding (P2):
Proposition 1: Given the PU’s transmit-power p0, Problem

(P2) is a monotonic optimization with respect to {ys}s∈Ω.
Proof: The objective function of Problem (P2) is monotoni-
cally increasing, and the feasible set is the intersection of the
normal set G and the reversed normal set H. Thus, according
to the canonical form of the monotonic optimization given in
[9], Problem (P2) is a standard monotonic optimization. �

Proposition 2: Given p0 that ensures that Problem (P1-
Bottom) is feasible, solving Problem (P2) is equivalent to
solving Problem (P1-Bottom). Specifically, let {y∗s}s∈Ω denote

the set of the optimal solutions for Problem (P2). Then, the set
of optimal solutions {q∗s}s∈Ω for Problem (P1-Bottom) can be
directly obtained by solving the mapping given in (10).
Proof: The proof follows Proposition 2.3 in [9] directly, and
we thus skip the details here due to space limitation. �

The monotonicity of Problem (P2) (i.e., Proposition 1)
enables us to solve it by using the so-called polyblock approx-
imation (PA) algorithm. The key idea of the PA algorithm is
to construct a series of polyblocks to approximate the feasible
set of (P2), and then to find the best vertex of the polyblocks
that maximizes the objective function and meanwhile falls into
the feasible set. However, due to space limitation, we skip the
details about the PA, whose details can be referred to [9].

To solve (P1-Bottom), we propose Algorithm (A1) below
that incorporates the PA algorithm in Step 1. The output of the
PA, i.e., y∗s , in fact is the optimal signal to interference plus
noise ratio which each SU s can achieve. Using {y∗s}s∈Ω, we
then calculate the set of optimal transmit-powers {q∗s}s∈Ω for
the SUs in Step 3, in which the S-by-S matrix N is defined
as Nss = 0, ∀s ∈ Ω and Nsj =

gjsθs
gss

, ∀s, j ∈ Ω, j �= s.

Algorithm (A1): to solve Problem (P1-Bottom)

1: Given p0, solve Problem (P2) by using the PA algorithm.
Denote the set of optimal solutions of (P2) by {y∗s}s∈Ω.

2: Set the S-by-1 vector r according to rs =
y∗s

n+p0g0s
gss

, ∀s ∈ Ω.
3: Calculate q∗ = (I − N)−1r, and output {q∗s}s∈Ω based

on q∗.

Notice that Algorithm (A1) presumes that Problem (P1-
Bottom) is feasible. We will discuss about the choice of p0
such that (P1-Bottom) is feasible in the next subsection.

B. Feasibility of Problem (P1-Bottom)

We investigate how the given p0 influences the feasibility
of Problem (P1-Bottom). Specifically, given p0, the SUs’
transmit-powers to meet their respective requirements {θs}s∈Ω

(according to (8)) exactly can be obtained by solving

qs −
∑

j �=s,j∈Ω

gjsθs
gss

qj = θs
n+ p0g0s

gss
, ∀s ∈ Ω. (11)

Further define an S-by-1 vector v with its each element vs =
θsn
gss

, s ∈ Ω and an S-by-1 vector w with its each element
ws = θsg0s

gss
, s ∈ Ω. Then, the solution of eq. (11), i.e., the

SUs’ transmit-powers to meet {θs}s∈Ω exactly are given by

q̂(p0) = (I−N)−1(v +wp0). (12)

Lemma 2: q̂(p0) is nonnegative if p0 > 0.
Proof: According to the definitions of matrices M and N
provided before, there always exits Nsj ≤ Msj , ∀s, j. Recall
that ρ(M) < 1 is assumed in Condition (C2) (in Lemma
1). Thus, based on Theorem 8.4.5 [10], there always exists
ρ(N) ≤ ρ(M) < 1. By further using the Perron-Frobenius
theorem [8], we obtain the result stated in Lemma 3. �

Based on q̂(p0), we further obtain the following result.
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Lemma 3: Problem (P1-Bottom) is feasible, if the condi-
tion that P ≤ p0 ≤ P is satisfied, where

P =
n+

∑
s∈Ω gsB

(
(I−N)−1v

)
s

g0B
θ0

−∑
s∈Ω gsB ((I−N)−1w)s

, (13)

P = min
s∈Ω

(
(I−N)Qmax − v

)
s

ws
, (14)

and the S-by-1 vector Qmax = {Qmax
1 , Qmax

2 , ..., Qmax
S }

(recall that (x)s denotes the s-th element of vector x).
Proof: Recall that (4) and q̂s(p0) ≤ Qmax

s , ∀s ∈ Ω are required
to ensure that Problem (P1-Bottom) is feasible. By substituting
(12) into (4) and performing some manipulations, we obtain
the lower bound P for p0 in (13). Meanwhile, by comparing
(12) with Qmax, we obtain the upper bound P in (14). �

C. Critical Threshold to make Constraint (4) Binding

Notice that constraint (4) should be binding at the optimum
of Problem (P1-Bottom), which enables us to decompose
Problem (P1) into (P1-Top) and (P1-Bottom). To this end, we
quantify a critical threshold (denoted by Pth) within [P , P ],
such that (4) is binding at the optimum of Problem (P1-
Bottom) when P ≤ p0 ≤ Pth. In particular, the smaller the
p0, the more likely that (4) will be binding at the optimum of
(P1-Bottom). Therefore, we propose Algorithm (A2), which
is based on the bisection search, to determine Pth efficiently.

Algorithm (A2): to determine the value of Pth

1: Set δ and ε. Set plower = P and pupper = P .
2: while |plower − pupper| > ε do
3: Set p0 =

plower+pupper

2 .
4: Use Algorithm (A1) to solve Problem (P1-Bottom).

Denote the set of optimal solutions by {qos}s∈Ω.
5: Evaluate η = |p0 − θ0

n+
∑

s∈Ω qosgsB
g0B

|.
6: If η < δ, set plower = p0. Otherwise, set pupper = p0.
7: end while
8: Output Pth = p0.
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Fig. 1. Illustration of P , P , and Pth. The left two subfigures are with
R

req
0 = 6 b/s/Hz, θs = 3,∀s, and αs = 1,∀s. The right two subfigures are

with R
req
0 = 5 b/s/Hz, θs = 4, ∀s, and αs = 2, ∀s.

Figure 1 illustrates P , P , and Pth discussed above by
enumerating p0. In each subfigure, we mark out P and P ,
which are derived according to (13) and (14), respectively.
Besides, we also mark out Pth, which is obtained by using
Algorithm (A2). To validate (A2), in the two subfigures at the
bottom, we plot the value of J(p0) = θ0

n+
∑

s∈Ω qsgsB
g0B

− p0.
The results show that when p0 ≤ Pth, J(p0) keeps at zero,
meaning that constraint (4) is binding. In comparison, when
p0 > Pth, J(p0) becomes negative, meaning that (4) becomes
inactive. We emphasize that finding Pth is important, since it
helps reduce the search space of p0 (based on the rationale of
our proposed decomposition structure). As shown in Figure
1, the threshold Pth is usually much smaller than the upper
bound P , especially when {Qmax

s } are large.

IV. OPTIMAL SOLUTION OF PROBLEM (P1-TOP)
A. Property of Problem (P1-Top)

After solving (P1-Bottom), we next solve Problem (P1-Top)
in this section. Specifically, based on P and Pth obtained be-
fore, the top-problem (P1-Top) can be reexpressed as follows

(P1-Top): maxF (p0)− β
(
p0 − pmin

0

)
subject to: max

{
pmin
0 , P

} ≤ p0 ≤ min{Pth, P}.
The key difficulty in solving Problem (P1-Top) lies in that we
cannot obtain F (p0) in closed form. In other words, Problem
(P1-Top) is an optimization problem, in which the objective
function cannot be given analytically. Hence, Problem (P1-
Top) is difficult to solve in general.

Fortunately, an important observation from Fig. 1 is that
F (p0) is always unimodal, i.e., there exists a special threshold
Γ such that F (p0) is increasing when max{P , pmin

0 } ≤ p0 ≤
Γ, and is decreasing when Γ ≤ p0 ≤ min{P , Pth}. Despite
that we cannot analytically prove this unimodal property, our
extensive numerical examples (e.g., as shown in Fig. 1 and
Fig. 2 below) always show that this property holds for F (p0).
Based on the unimodal property, we propose Algorithm (A3)
to find Γ efficiently. Notice that Algorithm (A3) relies on
approximating the gradient of F (p0), denoted by v, in Steps
5 and 6. Based on v, Algorithm (A3) updates p0 by using the
bisection method in Steps 3 and 7.

Figure 2 illustrates Γ discussed above by enumerating p0.
For each tested case, we mark out Γ (denoted by the red star),
which is obtained by using Algorithm (A3). The results verify
that Γ achieves the maximum of F (p0) for P ≤ p0 ≤ Pth.

B. Monotonicity of Problem (P1-Top) and Its Optimal Solution
Since β

(
p0 − pmin

0

)
(i.e., the second part of the objective

function) is increasing in p0, the optimal solution of Problem
(P1-Top) can only happen when max

{
pmin
0 , P

} ≤ p0 ≤ Γ. In
other words, Problem (P1-Top) becomes equivalent to

(P1-Top-E): maxF (p0)− β
(
p0 − pmin

0

)
subject to: max

{
pmin
0 , P

} ≤ p0 ≤ Γ. (15)

An important property of Problem (P1-Top-E) is that its
objective function is structured by the difference of two in-
creasing functions. Using the property, we have the following
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Fig. 2. Illustration of Γ. Left subfigures: θs = 4,∀s, and αs = 2,∀s. Right
subfigures: θs = 3,∀s, and αs = 1,∀s.

Algorithm (A3): to determine Γ

1: Set δ and ε. Set plower = max{pmin
0 , P} and pupper = Pth.

Set v = ε+ 1.
2: while |v| > ε do
3: Set p0 =

plower+pupper

2 .
4: Set f1 = F (p0) by using Algorithm (A1).
5: Set δ as a very small number. Set f2 = F (p0 + δ) and

f3 = F (p0 − δ) by using Algorithm (A1).
6: Set v = 1

2

(
f2−f1

δ + f1−f3
δ

)
.

7: If v < −ε, set pupper = p0. If v > ε, set plower = p0.
8: end while
9: Output Γ = p0.

result regarding the optimal solution (which is denoted by p∗0)
of Problem (P1-Top-E).

Proposition 3: The optimal solution p∗0 of Problem (P1-
Top-E) can be given by p∗0 = z∗ +max

{
pmin
0 , P

}
, where z∗

is the optimal solution of the following Problem (P3):

(P3): {z∗, t∗} =

max
z,t

F
(
z +max{pmin

0 , P})+ t− β(Γ− pmin
0 )

subject to : 0 ≤ z ≤ Γ−max{pmin
0 , P}, (16)

0 ≤ t ≤ β
(
Γ−max{pmin

0 , P}) , (17)

βz + t ≤ β
(
Γ−max{pmin

0 , P}) . (18)

Proof: The increasing property of β(p0−pmin
0 ) means that we

can introduce the auxiliary variable t that meets

β(p0 − pmin
0 ) + t = β(Γ− pmin

0 ), (19)

with 0 ≤ t ≤ β
(
Γ−max{pmin

0 , P}) because of (15). By
using (19) and putting t into the objective function of Problem
(P1-Top-E), we obtain its equivalent form as follows:

max
p0,t

F (p0) + t− β
(
Γ− pmin

0

)
subject to: βp0 + t ≤ βΓ,

0 ≤ t ≤ β
(
Γ−max{pmin

0 , P}) ,
and constraint (15).

By further using p0 = z+max{pmin
0 , P}, we obtain the form

of (P3), in which constraint (16) is from constraint (15). �

Problem (P3) has an important property as follows.
Proposition 4: Problem (P3) is a monotonic optimization

with respect to the decision variables (z, t).
Proof: It is easy to see that the objective function
of Problem (P3) is increasing in (z, t). Moreover,
the feasible set given by (16), (17), and (18) can
be considered as the intersection of the normal set{
(z, t)|z ≥ 0, t ≥ 0, and βz + t ≤ β

(
Γ−max{pmin

0 , P})}
and the reversed normal set {(z, t)|0 ≤ z ≤
Γ − max{pmin

0 , P}, and 0 ≤ t ≤ β
(
Γ−max{pmin

0 , P})}.
As a result, Problem (P3) is a monotonic optimization with
respect to the decision variables (z, t), according to [9]. �

Based on Proposition 4, we can again use the PA al-
gorithm to solve Problem (P3) efficiently, and thus obtain
the corresponding optimal solutions (z∗, t∗). Consequently,
the PU’s optimal transmit-power is obtained as p∗0 = z∗ +
max

{
pmin
0 , P

}
according to Proposition 3. We thus finish

solving Problem (P1-Top) completely.

V. NUMERICAL RESULT

We present the numerical results validate our analysis and
the proposed algorithms. We consider a geographic area of
20-meters long and 20-meters wide. The BS is located at the
center of this area, and there are one PU and four different
SUs independently and uniformly distributed in this area. The
channel power gain is set according to the path loss model.
For instance, the channel power gain from the PU to the Rx
of SU s is set as g0s = ξ0s

lκ0s
, where l0s denotes the distance

between the PU and the Rx of SU s, and κ is the power-
scaling factor for path loss (we use κ = 2). We also consider
the effect small-scale channel fading, and this is captured by
the parameter ξ0s which is uniformly distributed within [0, 1].

Figure 3 shows the performance of Algorithm (A1) to
solve Problem (P1-Bottom) in comparison with the exhaustive
search method. In Fig. 3, we use one set of channel power
gains which are randomly generated as described before and
vary p0 within [P ,Γ]. The top subfigure shows that Algorithm
(A1) achieves the results very close to the global optimum
achieved by the exhaustive search method, thus validating
the effectiveness of Algorithm (A1). Meanwhile, the bottom
subfigure shows that Algorithm (A1) requires a computational
time which is significantly less than that required by the
exhaustive search method. Furthermore, Figure 4 shows the
performance of Algorithm (A1) under 30 different sets of
channel power gains which are randomly generated, while
fixing p0 = 0.3. Again, the top subfigure shows that Al-
gorithm (A1) achieves the results very close to the global
optimum achieved by the exhaustive search method, and the
bottom subfigure shows that (A1) consumes a significantly less
computational time than the exhaustive search. This advantage
stems from exploiting the hidden monotonicity of (P1-Bottom)
and solves it through the polyblock approximation.

Figure 5 shows the performance of our proposed layered
monotonic optimization (denoted by “Layered MO”) approach
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Fig. 3. Performance of Algorithm (A1) with different p0 within [P ,Γ]. We
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Fig. 4. Performance of Algorithm (A1) with different channel power gains.

to solve Problem (P1) completely (i.e., including solving
both Problems (P1-Bottom) and (P1-Top)). In Fig. 5, we
use one set of randomly generated channel power gains and
enumerate different β/αs. We compare the results obtained by
our layered monotonic approach and those by the exhaustive
search method and by the simulated annealing (SA) algorithm
(which is a meta-heuristic optimization algorithm based on
randomized search). The top subfigure shows that our layered
monotonic approach can achieve the maximum revenue that
is very close to the revenue obtained by the exhaustive search
method despite acceptable relative errors. The results also
show that our layered monotonic approach performs better
than the SA algorithm. Besides, the bottom subfigure shows
that our layered monotonic optimization approach can save the
computational time significantly, thus validating its efficiency.

VI. CONCLUSION

We study the optimal spectrum leasing and sharing of DSA
network which aims to maximize its total charge to the SUs
based on their achieved throughput, while taking into account
the additional power consumption of the PU to overcome the
SUs’ interference as well as the throughput requirements of
the PU and the SUs. Despite of the non-convexity of the
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Fig. 5. Performance of the layered monotonic optimization to solve (P1).

formulated spectrum leasing problem, we exploit its intrinsic
decomposition structure and propose a layered monotonic
optimization approach to obtain the optimal transmit-powers of
the PU and the SUs. Numerical results are provided to validate
the proposed approach and its computational efficiency.

In this paper, we assume that the PU and the SUs are
cooperative and formulate a centralized model in which the
PU, performing as a controller, aims at maximizing its revenue
by determining its transmit-power as well as the SUs’, and the
SUs follow the PU’s decisions yet achieve their throughput
requirements. The result represents the most positive case
which the PU can expect and thus can be considered a perfor-
mance benchmark for evaluating other models (e.g., the game-
theoretic formulations that capture the strategic interactions
between the PU and the SUs). The future works are to take
into account the willingness of the SUs to follow the PU’s
decisions and to optimize the PU’s charge scheme accordingly.

REFERENCES

[1] Y.C. Liang, K.C. Chen, G.Y. Li, and P. Mahonen, “Cognitive Radio
Networking and Communications: An Overview,” IEEE Trans. Veh.
Technol., vol. 60, no. 7, pp. 3386-3407, Sept. 2011

[2] H. Yu, L. Gao, X. Wang, and E. Hossain, “Pricing for Uplink Power
Control in Cognitive Raido Networks,” IEEE Trans. Veh. Technol., vol.
59, no. 4, pp. 1769-1778, May 2010

[3] Z.Q. Wang, L.G. Jiang, and C. He, “A Novel Price-Based Power Control
Algorithm in Cognitive Radio Networks,” IEEE Commun. Lett., vol. 17,
no. 1, pp. 43-46, 2013

[4] S.K. Jayaweera, T. Li, “Dynamic Spectrum Leasing in Cognitive Radio
Networks via Primary-Secondary User Power Control Games,” IEEE
Trans. Wireless Commun., vol. 8, no. 6, pp. 3300-3310, June 2009

[5] J.W. Huang, R.A. Berry, M.L. Honig, “Auction-Based Spectrum Sharing,”
Mobile Networks and Applications, vol. 11, no. 3, pp. 405-408, June 2006

[6] L. Gao, Y.Y. Xu, and X.B Wang, “MAP: Multiauctioneer Progressive
Auction for Dynamic Spectrum Access,” IEEE Trans. Mobile Computing,
vol.10, no 8, Aug. 2011.

[7] Y. Wu, T.Y. Zhang, and D.H.K. Tsang, “Joint Pricing and Power Allo-
cation for Dynamic Spectrum Access Networks with Stackelberg Game
Model,” IEEE Trans. Wireless Commun., vol. 10, no. 1, pp. 12-19, 2011.

[8] S.U. Pillai, T. Suel, and S. Cha, “The Perron-Frobenius Theorem, Some
of Its Applications,” IEEE Signal Processing Magazine, vol. 22, no. 2,
pp. 62-75, March 2005.

[9] Y.J. Zhang, L.P. Qian, and J. Huang, “Monotonic Optimization in
Communication and Networking Systems,” Foundation and Trends in
Networking, Now Publisher, October 2013.

[10] R. Horn, C. Johnson, Matrix Analysis, Cambride University Press, 1992,
vol. 1 and vol. 2.


