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ABSTRACT
Maximum Vertex-weighted Matching (MVM) is an impor-
tant link scheduling algorithm for multihop wireless net-
works. Under certain assumptions, it has been shown that
if the underlying network graph is bipartite, MVM not only
maximizes the throughput in settings with continuous packet
arrivals, but also minimizes the evacuation time (i.e., time
to drain all the initial packets) in settings without future
packet arrivals. Further, even if the network graph is arbi-
trary, MVM achieves the best known performance guarantee
for the evacuation time among existing online link schedul-
ing algorithms. Also, it empirically exhibits close-to-optimal
throughput performance and good delay performance. How-
ever, in an arbitrary network graph the throughput perfor-
mance of MVM has not been well understood. To that end,
in this paper we aim to carry out a systematic study of the
throughput performance of MVM, assuming single-hop flows
and the node-exclusive interference model. Inspired by the
celebrated Gallai-Edmonds structure theorem, we introduce
a novel topological notion, called the Gallai-Edmonds de-
composition factor, and rigorously prove that the efficiency
ratio of MVM is no smaller than the Gallai-Edmonds de-
composition factor of the network graph. Further, we show
that if the smallest size of an odd cycle in a graph is 2m+ 1
for a positive integer m, then the Gallai-Edmonds decom-
position factor is equal to 2m/(2m + 1). This implies that
the Gallai-Edmonds decomposition factor is at least 2/3 for
an arbitrary graph and is equal to 1 for bipartite graphs.
Having these results, the throughput performance of MVM
can be well characterized.
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1. INTRODUCTION
Link scheduling is one of the most critical functionalities

in multihop wireless networks. The design of efficient wire-
less scheduling algorithms is very challenging and has been
extensively studied in the literature (e.g., see [7,18] and ref-
erences therein). Among several metrics that are commonly
used for evaluating the scheduling performance, the through-
put and the evacuation time are two of the most important
ones [8,9,11,12]. In settings with continuous packet arrivals,
the throughput is measured by the set of traffic loads un-
der which the network can be stabilized, while in settings
without future arrivals, the evacuation time is defined as the
time for draining all the initial data packets in the network.

Ideally, we wish to have a scheduling algorithm that both
maximizes the throughput and minimizes the evacuation
time in respective settings. However, these two objectives
stated in different settings could lead to conflicting schedul-
ing decisions [8,9]. Therefore, it is generally very challenging
to design scheduling algorithms that can achieve provably
good performance in both dimensions at the same time.

Maximum Vertex-weighted Matching (MVM) is an impor-
tant scheduling algorithm, which in each scheduling cycle
selects a schedule that maximizes the sum of the loads of
the scheduled nodes (see Section 5.1 for the detailed de-
scription). MVM has recently aroused increasing interests
due to its good performance. First, under the assump-
tion of single-hop flows and the node-exclusive interference
model [10, 18, 22], it has been shown in [8, 9] that MVM
is both throughput-optimal and evacuation-time-optimal if
the underlying network graph is bipartite. Second, even
if the network graph is arbitrary, MVM achieves the best
known guarantee for the evacuation time among existing on-
line scheduling algorithms. Specifically, it has been shown
in [12] that MVM has an approximation ratio1 no greater
than 3/2 for the evacuation time. Finally, extensive numer-
ical studies show that in various scenarios (with different
network graphs, arrival processes, and etc.) [8, 9, 11], MVM

1Under the node-exclusive interference model, the evacua-
tion time problem can be mapped to the well-known edge
coloring problem that is generally NP-hard (e.g., see [12]).
The approximation ratio is the worst-case ratio of the evacu-
ation time of an algorithm to the minimum evacuation time.



not only empirically achieves close-to-optimal throughput
performance, but also exhibits good delay performance.

However, the throughput performance of MVM has not
been well understood. To that end, in this paper we aim to
carry out a systematic study of the throughput performance
of MVM. Throughout the paper, we assume single-hop traf-
fic flows (that traverse only one link) and the node-exclusive
interference model [10, 18, 22], under which links sharing
a common node cannot make simultaneous data transmis-
sions. We summarize our key contributions as follows.

First, we introduce a novel topological notion, called the
Gallai-Edmonds decomposition factor (Definition 5), which
is inspired by the celebrated Gallai-Edmonds structure theo-
rem in graph theory and the associated decomposition struc-
ture. To the best of our knowledge, this paper, for the first
time, develops such a notion that establishes an interesting
connection between the Gallai-Edmonds structure theorem
and the throughput performance of a scheduling algorithm
in multihop wireless networks.

Second, we show that the Gallai-Edmonds decomposition
factor is fully determined by the smallest size of an odd cycle
in a graph. Specifically, we prove that if the smallest size
of an odd cycle in a graph is 2m+ 1, where m is a positive
integer, then the Gallai-Edmonds decomposition factor is
equal to 2m/(2m + 1) (Theorem 3). This further implies
that the Gallai-Edmonds decomposition factor is no smaller
than 2/3 for an arbitrary graph and is equal to 1 for bipartite
graphs (Corollary 1).

Third, we prove several interesting and important prop-
erties of MVM (Propositions 1 and 2). Using these key
properties, we rigorously prove that the efficiency ratio of
MVM (i.e., the worst-case ratio of the throughput of MVM
to that of a throughput-optimal algorithm; see Definition 4)
is no smaller than the Gallai-Edmonds decomposition factor
of the underlying network graph (Theorem 4).

Having these results, the throughput performance of MVM
can be well characterized. Together with the result on the
evacuation time performance of MVM [12], our findings show
that among existing online scheduling algorithms, MVM
achieves the most balanced performance guarantees in both
dimensions of throughput and evacuation time. Not only do
these results substantially improve our understanding of the
performance of MVM, but also are instrumental in provid-
ing important guidelines for the design of wireless networks
when MVM-type of algorithms are employed.

The remainder of this paper is organized as follows. We
first discuss related work and present our system model in
Sections 2 and 3, respectively. In Section 4, we review
the Gallai-Edmonds structure theorem and introduce the
Gallai-Edmonds decomposition factor. Then, in Section 5
we describe the MVM algorithm and prove some key prop-
erties of MVM, and in Section 6 we show that the efficiency
ratio of MVM is no smaller than the Gallai-Edmonds decom-
position factor of the underlying network graph. Finally, we
make concluding remarks in Section 7.

2. RELATED WORK
As mentioned in the introduction, the problem of design-

ing efficient scheduling algorithms for multihop wireless net-
works has been extensively studied. There has been a sig-
nificant body of related work on this topic since the seminal
work by Tassiulas and Ephremides [25]. In the following dis-
cussion, we will focus on prior work that is most relevant to

this paper. For more general discussions on this topic, the
interested reader is referred to [7,18] and references therein.

Since the seminal work of [25], it has been shown that
the MaxWeight algorithm and its variants are throughput-
optimal in very general settings. However, MaxWeight-type
of algorithms generally have a high complexity and require a
centralized controller. To that end, several lower-complexity
and/or distributed approximation algorithms have been de-
veloped, including the greedy algorithms (e.g., [14, 17, 26]),
random access algorithms (e.g., [15, 16]), and those based
on the CSMA (Carrier Sensing Multiple Access) techniques
(e.g., [13,20,21]), which have been shown to be throughput-
efficient. However, under the node-exclusive interference
model none of them can achieve an approximation ratio
smaller than 2 for the evacuation time [8,9].

In stark contrast to the aforementioned algorithms that
make scheduling decisions based on the link loads or are
load-agnostic, another class of algorithms take a node-based
approach and make decisions based on the node loads [8, 9,
11, 12, 19, 24]. The node-based approach respects the fact
that nodes and odd cycles with maximum load are the bot-
tlenecks for achieving small evacuation time, and typically
leads to better evacuation time performance [11]. Specifi-
cally, it has been shown in [8,9] that a class of node-based al-
gorithms, including MVM, are both throughput-optimal and
evacuation-time-optimal in input-queued switches2. Fur-
ther, the authors of [12] focus on the evacuation time per-
formance of MVM in arbitrary network graphs and show
that MVM achieves an approximation ratio no greater than
3/2. However, the throughput performance of MVM in
an arbitrary network graph has not been well understood,
which is the focus of this paper. In [11], two node-based
service-balanced scheduling algorithms are proposed, which
have been shown to achieve an efficiency ratio no smaller
than 2/3 for the throughput and an approximation ratio no
greater than 3/2 for the evacuation time. However, the way
these algorithms are designed renders it difficult to pursue
a fine-grained performance characterization when the net-
work graph belongs to different classes that possess struc-
tural properties, while in this paper, the throughput perfor-
mance of MVM can be well characterized through a novel
application of the Gallai-Edmonds structure theorem and
the associated decomposition structure.

Finally, it is worth noting that in [14] another topological
notion called the local-pooling factor is proposed to char-
acterize the efficiency ratio of the Greedy Maximal Match-
ing (GMM) algorithm. However, there are key differences
between [14] and this paper. First, the efficiency ratio of
GMM in an arbitrary network graph is lower bounded by
1/2, which is smaller than 2/3 for MVM as we show in this
paper. Second, the local-pooling factor is generally harder
to estimate, while the Gallai-Edmonds decomposition factor
introduced in this paper is fully determined by the smallest
size of an odd cycle in a graph. Moreover, MVM achieves
a better approximation ratio for the evacuation time than
GMM (3/2 vs. 2).

3. SYSTEM MODEL
We consider a multihop wireless network and describe it as

an undirected, simple graph G = (V,E), where V is the set

2The results also apply to multihop wireless networks of
which the underlying network graph is bipartite.



of vertices and E is the set of edges. A vertex corresponds to
a wireless node that can transmit and receive data packets;
an edge corresponds to a wireless link between two nodes3.
We assume a time-slotted system with one single frequency
channel. A time-slot is denoted by n ∈ {0, 1, 2, . . . }. For
ease of presentation, we assume unit link capacities, i.e., each
link can transmit at most one packet per time-slot. How-
ever, it is easy to extend the analysis and results to more
general models with heterogeneous link capacities. We as-
sume the node-exclusive interference model [10,18,22], under
which links sharing a common node cannot be activated at
the same time. Hence, a feasible schedule corresponds to a
matching, denoted by M , in the underlying network graph.

In this paper, we focus on the link scheduling problem and
assume that all the flows are single-hop (i.e., their packets

traverse only one link before leaving the network). Let Âl(n)
denote the cumulative number of packet arrivals at link l ∈
E up to (and including) time-slot n. We assume that the

arrival processes {Âl(n), n = 0, 1, 2, . . . } satisfy the strong
law of large numbers. That is, with probability one, the

following is satisfied for all l ∈ E: limn→∞
Âl(n)
n

= λ̂l, where

λ̂l is the mean arrival rate of link l. Let λ̂ , [λ̂l : l ∈ E]

be the arrival rate vector. Let D̂l(n) denote the cumulative
number of packet departures at link l up to time-slot n,
and let Q̂l(n) denote the number of packets waiting to be
transmitted over link l (or the queue length of link l) at the
beginning of time-slot n. We assume that there are a finite
number of packets in the system at the beginning of time-
slot 0. Also, we assume that packets arrive (respectively,
depart) at the beginning (respectively, end) of each time-

slot. By convention, we set Âl(0) = D̂l(−1) = 0. Then, the
queueing dynamics of link l is given by

Q̂l(n) = Q̂l(0) + Âl(n)− D̂l(n− 1). (1)

Since the scheduling algorithm of interest (i.e., MVM)
takes a node-based approach, we introduce some additional
notations associated with the nodes. First, let L(i) de-
note the set of links that are incident to node i ∈ V , i.e.,
L(i) = {l ∈ E | node i is an end node of link l}. Then,
let Qi(n) denote the workload (i.e., number of packets to
transmit or receive) at node i ∈ V at the beginning of time-

slot n, i.e., Qi(n) ,
∑
l∈L(i) Q̂l(n). Similarly, let Ai(n) and

Di(n) denote the cumulative workload arrivals and depar-
tures at node i up to time-slot n, respectively, i.e., Ai(n) =∑
l∈L(i) Âl(n) andDi(n) =

∑
l∈L(i) D̂l(n). Hence, the queue-

ing dynamics of node i is given by

Qi(n) = Qi(0) +Ai(n)−Di(n− 1). (2)

Let λ , [λi : i ∈ V ] denote the node arrival rate vector,

where λi =
∑
l∈L(i) λ̂l is the mean arrival rate of node i.

Let M denote the set of matchings in G. By slightly
abusing the notations, for matching M ∈ M, let Ml = 1 if
link l is included in M , and Ml = 0 otherwise. In each time-
slot, a scheduling algorithm will select a matching inM as a
feasible schedule. Let HM (n) be the number of time-slots in
which matching M is selected as a schedule up to time-slot

3Throughout the paper, we interchangeably use the terms
“vertex” and “node”; similar for “edge” and “link”. However,
we tend to use the terms“vertex”and“edge”in the context of
a graph, and use the terms “node” and “link” in the context
of a multihop wireless network.

n. Hence, we have the following equations:

Di(n) =
∑
M∈M

n∑
τ=1

∑
l∈L(i)

Ml(HM (τ)−HM (τ − 1)), (3)

∑
M∈M

HM (n) = n. (4)

Next, we give the definition of network stability.

Definition 1. The network is rate stable under arrival
rate vector λ̂ = {λ̂l : l ∈ E} if with probability one, the
following is satisfied for all l ∈ E:

lim
n→∞

D̂l(n)

n
= λ̂l. (5)

Note that (5) is equivalent to limn→∞
Di(n)
n

= λi for all
i ∈ V . Rate stability is a weak version of stability and only
implies that the departure rate is equal to the arrival rate [3].
We focus on rate stability for ease of presenting our main
ideas only. Our analysis follows similarly for stronger ver-
sions of stability (e.g., positive recurrence type of stability)
if stronger assumptions on the arrival processes are made [2].

We present more definitions as follows.

Definition 2. The throughput region (or stability re-
gion) of a scheduling algorithm, denoted by Λ, is defined as
the set of arrival rate vectors λ for which the network is rate
stable under this scheduling algorithm.

Definition 3. The optimal throughput region, denoted
by Λ∗, is defined as the union of the throughput regions of
all possible scheduling algorithms.

Definition 4. The efficiency ratio of a scheduling al-
gorithm, denoted by γ∗, is defined as the largest fraction of
the optimal throughput region Λ∗ that is contained in the
throughput region Λ of this scheduling algorithm, i.e.,

γ∗ , sup{γ | γΛ∗ ⊆ Λ}. (6)

Throughout the paper, we will use the efficiency ratio to
measure the throughput performance of MVM. Clearly, we
have γ∗ ∈ [0, 1] for any scheduling algorithm. Particularly,
a scheduling algorithm is said to be throughput-optimal or
achieve throughput optimality if its efficiency ratio is equal
to 1. To assist our analysis, we define the following region:

Ψ , {λ | λi ≤ 1 for all i ∈ V }. (7)

Note that Ψ is an outer bound of the optimal throughput
region (i.e., Λ∗ ⊆ Ψ), since under any scheduling algorithm,
at most one packet can be transmitted to or from a node.

4. GALLAI-EDMONDS STRUCTURE THE-
OREM AND GALLAI-EDMONDS DECOM-
POSITION FACTOR

In this section, we will introduce a new topological no-
tion of a graph, called the Gallai-Edmonds decomposition
factor, which is inspired by the well-known Gallai-Edmonds
structure theorem and the associated decomposition struc-
ture. This notion is novel in the sense that it can be used to
characterize the throughput performance of MVM. Specif-
ically, we will later show that the efficiency ratio of MVM
is no smaller than the Gallai-Edmonds decomposition factor



of the underlying network graph (Section 6). Moreover, the
Gallai-Edmonds decomposition factor is fully determined by
the smallest size of an odd cycle in a graph. Specifically, we
show that if the smallest size of an odd cycle contained in a
graph is 2m+1 for m ∈ {1, 2, . . . }, then the Gallai-Edmonds
decomposition factor of this graph is equal to 2m/(2m+ 1).
This further implies that the Gallai-Edmonds decomposition
factor is no smaller than 2/3 for an arbitrary graph and is
equal to 1 for bipartite graphs.

4.1 Gallai-Edmonds Structure Theorem
We begin with a review of two important results in graph

theory: the Tutte-Berge formula and the Gallai-Edmonds
structure theorem. We first give the following basic defini-
tions. Recall that a matching is a subset of edges without
common vertices. A matching M is said to miss a vertex v if
v is not matched by M . A maximal matching is a matching
M with the following property: if an edge l not inM is added
to M , then M ∪ {l} is no longer a matching. A maximum
matching (also known as maximum-cardinality matching) is
a matching that contains the largest number of edges. A per-
fect matching (also known as 1-factor) is a matching that
matches all the vertices of a graph. A near-perfect matching
is a matching that misses exactly one vertex. A graph is
called factor-critical if for every vertex of this graph, there
exists a near-perfect matching that misses only that vertex.
Any factor-critical graph must be connected, non-bipartite,
and of odd size [27].

Next, we give some additional notations. Let |·| denote
the cardinality of a set. For a graph G = (V,E), we let GU
denote the subgraph induced by a vertex-subset U ⊆ V , let
θ(G) denote the size of a maximum matching in graph G,
and let o(GU ) denote the number of odd components (i.e.,
connected components with an odd number of vertices) in
GU . Note that an odd component could consist of exactly
one vertex, which is then called an isolated vertex.

We now state the Tutte-Berge formula [27] in Theorem 1.

Theorem 1 (Tutte-Berge Formula). The size of a
maximum matching in a graph G = (V,E) satisfies:

θ(G) = min
U⊆V

1

2
(|V |+ |U | − o(GV \U )). (8)

The Tutte-Berge formula is a generalization of Tutte’s
theorem4. While the Tutte-Berge formula provides a char-
acterization of the size of a maximum matching in an ar-
bitrary graph, it does not reveal any structural informa-
tion of the graph from the matching point of view. The
Gallai-Edmonds structure theorem bridges this gap and un-
covers interesting and important properties of maximum
matchings in an arbitrary graph. In order to state this the-
orem, we introduce a canonical decomposition, which lies in
the heart of the Gallai-Edmonds structure theorem. Un-
der this canonical decomposition, the vertex set V can be
partitioned into three disjoint vertex-subsets:

R , {v ∈ V | there exists a maximum matching missing v},

S , {v ∈ V | v is not in R, but has a neighbor in R},

T , V \(R ∪ S).

(9)
4Tutte’s (1-factor) theorem gives a necessary and sufficient
condition for the existence of a perfect matching in an arbi-
trary graph. It is a generalization of Hall’s marriage theorem
from bipartite to arbitrary graphs.

T S R

(a) Decomposition Structure

T S R

(b) A Maximum Matching

Figure 1: An illustration of the Gallai-Edmonds decompo-
sition [1]. (a) presents the decomposition structure, and (b)
shows a maximum matching, denoted by thick blue edges.

The above vertex-partition (R,S, T ) is also known as the
Gallai-Edmonds decomposition. The decomposition is well
defined even if the graph is not connected. An illustration
of the Gallai-Edmonds decomposition is provided in Fig. 1a.

Having defined the above decomposition, we are now ready
to restate the Gallai-Edmonds structure theorem [27].

Theorem 2 (Gallai-Edmonds Structure Theorem).
Given a graph G = (V,E), let (R,S, T ) be the decomposition
defined in (9). Then, there exist the following properties:

i) all the components in GR are factor-critical and thus
are of odd size;

ii) all the components in GT have a perfect matching and
thus are of even size;

iii) every maximum matching in G contains a perfect match-
ing in each component of GT and a near-perfect match-
ing in each component of GR, and matches all the ver-
tices in S with vertices in distinct components of GR
(see Fig. 1b for an example of a maximum matching);

iv) choosing U = S achieves the minimum on the right
side of the Tutte-Berge formula (Eq. (8)), i.e., the
size of a maximum matching is θ(G) = 1

2
(|V | + |S| −

o(GV \S)) = 1
2
(|V |+ |S| − o(GR)).

It is remarkable that the Gallai-Edmonds structure theo-
rem is the foundation of the first polynomial-time algorithm
(i.e., the famous blossom algorithm developed by Edmonds
[6]) for computing a maximum matching in an arbitrary
graph. This theorem reveals an interesting graph structure
that leads to many important consequences in graph theory.
Nevertheless, as pointed out in [27], this powerful result does
not seem to have reached its full potential yet. To the best
of our knowledge, this paper, for the first time, applies this
theorem in characterizing the throughput performance of a
link scheduling algorithm in multihop wireless networks. We
hope that the results of this paper will serve as an invita-
tion of more efforts towards fully utilizing the power of this
beautiful theorem in networking research.

4.2 Gallai-Edmonds Decomposition Factor
We are now ready to introduce the Gallai-Edmonds De-

composition factor. We first give some additional notations.
For any vertex-subset U ⊆ V , let (R(U), S(U), T (U)) denote
the Gallai-Edmonds decomposition of its induced subgraph
GU . Recall that GR(U) denotes the subgraph induced by



R(U) and that all the components of GR(U) are odd. Let
µ(GR(U)) denote the number of components of size larger
than one (i.e., components that are not isolated vertices) in
GR(U). Then, the Gallai-Edmonds decomposition factor of
a graph is defined below.

Definition 5. For a given graph G = (V,E), consider
any vertex-subset U ⊆ V and the Gallai-Edmonds decompo-
sition (R(U), S(U), T (U)) of the induced subgraph GU . The
Gallai-Edmonds decomposition factor of graph G, de-
noted by σ∗, is the supremum of all σ ≥ 0 such that for any
U ⊆ V , the number of odd components of size larger than
one in GR(U) is no greater than (1− σ) |U |, i.e.,

σ∗ , sup{σ ≥ 0 | For any U ⊆ V, the following is satisfied:

µ(GR(U)) ≤ (1− σ) |U |)}.
(10)

Remark: We highlight that although the Gallai-Edmonds
structure theorem is a well-known result in graph theory, to
the best of our knowledge, the Gallai-Edmonds decomposi-
tion factor is a new topological notion developed in this paper
for the first time, which depends on the Gallai-Edmonds de-
composition of the subgraphs induced by the vertex-subsets.
Interestingly, it turns out that the Gallai-Edmonds decom-
position factor is closely related to the throughput perfor-
mance of MVM. Specifically, we will show that the efficiency
ratio of MVM is no smaller than the Gallai-Edmonds decom-
position factor of the network graph (Theorem 4).

In the sequel, we show that if the smallest size of an
odd cycle in a graph is 2m + 1 for m ∈ {1, 2, . . . }, then
the Gallai-Edmonds decomposition factor of this graph is
equal to 2m/(2m+ 1) (Theorem 3). As a consequence, the
Gallai-Edmonds decomposition factor is no smaller than 2/3
for an arbitrary graph and is equal to 1 for bipartite graphs
(Corollary 1). We present examples of graphs with different
Gallai-Edmonds decomposition factors in Fig. 2.

Theorem 3. Consider an arbitrary graph G = (V,E).
Suppose the smallest size of an odd cycle in G is 2m+ 1 for
m ∈ {1, 2, . . . }. Then, the Gallai-Edmonds decomposition
factor of G is equal to 2m/(2m+1), i.e., σ∗ = 2m/(2m+1).

Proof. The proof is straightforward. Suppose the small-
est size of an odd cycle in graph G is 2m+ 1. We first show
that the Gallai-Edmonds decomposition factor is no smaller
than 2m/(2m + 1). Consider any vertex-subset U ⊆ V
and the Gallai-Edmonds decomposition (R(U), S(U), T (U))
of GU . Recall that µ(GR(U)) denotes the number of odd
components of size larger than one in GR(U). From Prop-
erty i) of the Gallai-Edmonds structure theorem, we know
that all the components in GR(U) are factor-critical and thus
must be a non-bipartite graph of odd size [27]. Since any
odd cycle contained in graph G has a size no smaller than
2m + 1, then every odd component in GR(U) must contain
at least 2m + 1 vertices. Hence, we must have µ(GR(U)) ≤
|U | /(2m+ 1), which implies that µ(GR(U)) ≤ (1−σ) |U | for
any σ ≤ 2m/(2m+ 1). Therefore, it is implied from Defini-
tion 5 that the Gallai-Edmonds decomposition factor must
be no smaller than 2m/(2m+ 1), i.e., σ∗ ≥ 2m/(2m+ 1).

To show that the Gallai-Edmonds decomposition factor is
no greater than 2m/(2m + 1), we only need to consider U
as the vertex-subset that consists of all the vertices in an
odd cycle of size 2m + 1. In this case, we have R(U) = U
and thus µ(GR(U)) = |U | /(2m + 1). Then, we must have

(a) σ∗ = 2/3 (b) σ∗ = 4/5 (c) σ∗ = 1

Figure 2: Examples of graphs with different Gallai-Edmonds
decomposition factor σ∗. This factor σ∗ is fully determined
by the smallest size of an odd cycle in the graph.

σ∗ ≤ 2m/(2m+1), because for any σ greater than 2m/(2m+
1), the condition in (10) will not be satisfied for U under
consideration. This completes the proof.

Corollary 1. The Gallai-Edmonds decomposition fac-
tor is no smaller than 2/3 for an arbitrary graph and is
equal to 1 for bipartite graphs.

Proof. The proof follows immediately from Theorem 3,
since any odd cycle contained in an arbitrary graph has a
size no smaller than 3 (i.e., m = 1), and a bipartite graph
does not contain any odd cycles (i.e., m =∞).

5. THE MVM ALGORITHM
In this section, we first describe the operations of the Max-

imum Vertex-weighted Matching (MVM) algorithm (Sub-
section 5.1), and then prove several interesting properties of
MVM (Subsection 5.2), which will play a key role in analyz-
ing the throughput performance of the MVM algorithm.

5.1 Algorithm Description
For a graph G = (V,E), we assume that each vertex

i ∈ V is assigned a positive weight, denoted by wi > 0.
We will later describe how to assign the vertex weights.
Let V (M) denote the set of vertices matched by matching
M . Then, the weight of a matching M is defined as the
sum of the weights of all the vertices matched by M , i.e.,
w(M) =

∑
i∈V (M) wi. A matching M∗ is called a Maximum

Vertex-weighted Matching (MVM) if M∗ achieves the largest
weight over all the matchings in G, i.e., w(M∗) ≥ w(M) for
any matching M in G. It has been shown in [23] that an

MVM can be found in O(|E| |V |1/2 log |V |)-time, lower than
O(|E| |V |)-complexity of computing its edge-weighted coun-
terpart – Maximum Weighted Matching (MWM).

Now, consider the multihop wireless network we described
in Section 3. Recall that Qi(n) is the queue length of node
i at the beginning of time-slot n. In each time-slot n, we
assign the weight of a node i as its queue length, i.e., wi =
Qi(n) for all i ∈ V . Based on the assigned node weights,
we compute an MVM. The links of this matching will be
activated to transmit packets. We assume that if a link has
a zero queue length, then the corresponding edge will not be
considered when computing an MVM in that time-slot.

5.2 Properties of MVM
The MVM algorithm and its variants have been studied

in several prior work in the literature (e.g., [8, 9, 11, 12, 19,
23]), which shows that MVM exhibits interesting and useful
properties. In this section, we present and prove some new
properties of MVM, which will be the key to characterizing
the efficiency ratio of the MVM algorithm.



Consider a graph G = (V,E) with vertex weights wi’s.
Let Hk denote the set of the k strictly heaviest vertices for
k ∈ {1, 2, . . . , |V |}, i.e., wi > wj for any i ∈ Hk and any j ∈
V \Hk. We show in Proposition 1 that an MVM maximizes
the number of matched vertices in set Hk.

Proposition 1. For any k ∈ {1, 2, . . . , |V |} such that set
Hk exists, an MVM, denoted by M∗, maximizes the num-
ber of matched vertices in Hk over all the matchings, i.e.,
|V (M∗) ∩Hk| ≥ |V (M) ∩Hk| for any matching M in G.

Proof. We first provide some definitions and notations
that will be used in the proof. Define a path in a graph
as a sequence of connected edges. The length of a path is
the number of edges on the path. For any two edge-subsets
E1 ⊆ E and E2 ⊆ E, let E1 ⊕ E2 , (E1\E2) ∪ (E2\E1)
denote their symmetric difference, i.e., the set of edges that
are in one of the edge-subsets, but not in both of them.
As in [8, 9], we define augmenting path and absorbing path.
Consider a matching M and a vertex i that is missed by
M . A path P is called an M-augmenting path if it has
the following properties: i) it has an odd length; ii) its every
alternate edge is in M ; iii) it starts from vertex i and ends at
another vertex j missed by M . Similarly, a path P ′ is called
an M-absorbing path if it has the following properties: i) it
has an even length; ii) its every alternate edge is in M ; iii) it
starts from vertex i and ends at a vertex r, which is matched
by M and has a smaller weight than vertex i, i.e., wr < wi.
It is easy to verify that both M ⊕ P and M ⊕ P ′ are also a
matching and have a weight strictly larger than that of the
original matching M because w(M⊕P ) = w(M)+wi+wj >
w(M) and w(M ⊕ P ′) = w(M) + wi − wr > w(M).

We proceed the proof by contradiction. Suppose matching
M∗ is an MVM and there exists a matching M such that
|V (M) ∩Hk| > |V (M∗) ∩Hk| for some k ∈ {1, 2, . . . , |V |}.
This implies that there exists a vertex in Hk, say i, which is
matched only by M but not by M∗. A little thought gives
that in the symmetric difference M∗ ⊕M , vertex i must be
one end of a path P whose edges alternate between M and
M∗. Note that path P cannot have an odd length due to the
following reason. Suppose path P has an odd length, then
the other end of P must be another vertex that is missed
by M∗, which makes P an M∗-augmenting path. Then,
matching M∗⊕P will have a weight larger than that of M∗,
which contradicts the fact that M∗ is an MVM. Therefore,
path P must have an even length and must end at another
vertex, say j, that is only matched by M∗ but not by M .
Note that vertex j must have a weight no smaller than that
of vertex i, i.e., wj ≥ wi, otherwise P would be an M∗-
absorbing path, and matching M∗ ⊕ P will have a weight
larger than that of M∗, which again leads to a contradiction.
Therefore, vertex j is also in Hk.

Based on the argument above, we know that path P must
have an even length; both of its ends – vertices i and j –
are in Hk; vertex i is only matched by M , and vertex j is
only matched by M∗. Now, we construct a new matching
M1 = M ⊕ P . By comparing M1 with M , we make the
following two observations:

i) |V (M1) ∩Hk| = |V (M) ∩Hk|;
ii) |V (M1)\V (M∗) ∩Hk| = |V (M)\V (M∗) ∩Hk| − 1.
The first observation means that M1 and M match the

same number of vertices in Hk. This is true because M1

and M match exactly the same set of vertices except for i
and j, and both vertices i and j are in Hk. The second ob-

servation means that compared to M , matching M1 has one
more common vertex matched by M∗ in Hk. This is true
due to the following reason. First, matching M1 and M
have the same number of common vertices matched by M∗

in Hk\{i, j}, because M1 and M match exactly the same set
of vertices except for i and j. Second, vertex j is matched
by both M1 and M∗, but is missed by M , and vertex i is
matched by M , but is missed by both M1 and M∗. Hence,
matching M1 has one more common vertex in Hk (i.e., ver-
tex j) matched by M∗ than matching M .

Thanks to these observations, we can repeat the argument
above by constructing new matchings M2,M3, . . . in a sim-
ilar way as M1 is constructed, until we have a matching M ′

such that |V (M ′)\V (M∗) ∩Hk| = 0. This must happen
within |Hk| rounds due to the second observation. This im-
plies that all the vertices in Hk matched by M ′ must also be
matched by M∗, and thus |V (M ′) ∩Hk| ≤ |V (M∗) ∩Hk|.
Also, we have |V (M ′) ∩Hk| = |V (M) ∩Hk| from the first
observation. Hence, we have |V (M) ∩Hk| ≤ |V (M∗) ∩Hk|.
This leads to a contradiction and completes the proof.

Remark: Proposition 1 generalizes Lemma 6 of [23], which
states that if there exists a matching that matches all the k
heaviest vertices, then an MVM also matches all of them.

Next, in Proposition 2 we present a key property of MVM
in multigraphs, where more than one edge, called multi-edge,
is allowed between two vertices. Although the discussions in
Section 4 are focused on simple graphs, the results there also
apply to multigraphs. In particular, the Gallai-Edmonds de-
composition factor of a multigraph is equal to that of the
corresponding simple graph. Similarly, Proposition 1 also
applies to multigraphs. We use G = (V, E) to denote a multi-
graph, with V and E being the set of vertices and the set of
multi-edges, respectively. Let dG(i) denote the degree of ver-
tex i in G. For a vertex-subset U ⊆ V, let GU denote the sub-
graph of G induced by U , and let (R(U), S(U), T (U)) denote
the Gallai-Edmonds decomposition of GU . We use GR(U) to
denote the subgraph induced by R(U), use I(GR(U)) to de-
note the set of isolated vertices in GR(U), and use µ(GR(U)) to
denote the number of odd components of size larger than one
in GR(U). Note that in any time-slot, the network together
with the present packets can be represented by a multigraph,
where each multi-edge corresponds to a packet. Then, under
the MVM algorithm we specified, the weight of a vertex is
equal to the vertex degree, i.e., wi = dG(i) for i ∈ V. Let

ν(G) = |V|−1
|V| . We now state Proposition 2 below.

Proposition 2. Consider a multigraph G = (V, E) with
maximum vertex degree ∆ and a vertex-subset U ⊆ V. Sup-
pose the following conditions are satisfied:

i) every isolated vertex in GR(U) has a degree no smaller
than a ν(G)-fraction of the maximum vertex degree,
i.e., dG(i) ≥ ν(G)∆ for any i ∈ I(GR(U));

ii) every vertex in U has a larger degree than a vertex not
in U , i.e., dG(i) > dG(j) for any i ∈ U and any j /∈ U .

Then, an MVM matches at least a σ∗-fraction of the vertices
in U , where σ∗ is the Gallai-Edmonds decomposition factor.

The proof of Proposition 2 follows immediately from a
property of MVM (Proposition 1) and an important re-
sult related to the Gallai-Edmonds decomposition (Proposi-
tion 3). We present and prove Proposition 3 below.



Proposition 3. Consider a multigraph G = (V, E) with
maximum vertex degree ∆ and a vertex-subset U ⊆ V. Sup-
pose every isolated vertex in GR(U) has a degree no smaller
than a ν(G)-fraction of the maximum vertex degree, i.e.,
dG(i) ≥ ν(G)∆ for any i ∈ I(GR(U)). Then, there exists
a matching in G that matches every vertex in U , except for
at most one vertex from each odd component of size larger
than one in GR(U).

We restate two lemmas (Lemma 6 of [11] and Lemma 3.2.2
of [8]) that will be used in the proof of Proposition 3.

Lemma 1. Consider a multigraph G = (V, E) with maxi-
mum vertex degree ∆ and a vertex-subset W ⊆ V. Suppose
the following conditions are satisfied:

i) every vertex in W has a degree no smaller than a ν(G)-
fraction of the maximum vertex degree, i.e., dG(i) ≥
ν(G)∆ for any i ∈W ;

ii) GW is bipartite.

Then, there exists a matching M in G such that every vertex
of U is matched by M .

Lemma 2. Consider a bipartite graph G = (V1 ∪ V2, E),
where (V1, V2) is the vertex partition, and E is the set of
edges. Let V ′1 ⊆ V1 and V ′2 ⊆ V2 be a vertex-subset of V1

and V2, respectively. Suppose there exist two matchings M1

and M2 such that M1 matches all the vertices in V ′1 , and M2

matches all the vertices in V ′2 . Then, there exists a matching
M that matches all the vertices in V ′1 ∪ V ′2 .

We provide the proof of Proposition 3 below and present
an illustration of the key components of the proof in Fig. 3.

Proof of Proposition 3. Consider a vertex-subset U ⊆
V. Note that GU denotes the subgraph induced by U . Re-
call that (R(U), S(U), T (U)) denotes the Gallai-Edmonds
decomposition of GU , and I(GR(U)) denotes the set of iso-
lated vertices in GR(U). Suppose the condition of Proposi-
tion 3 is satisfied: every vertex in I(GR(U)) has a degree
no smaller than a ν(G)-fraction of the maximum vertex de-
gree, i.e., dG(i) ≥ ν(G)∆ for any i ∈ I(GR(U)). We want to
show that there exists a matching in G that matches every
vertex in U , except for at most one vertex from each odd
component of size larger than one in GR(U).

First, we want to show that there exists a matching in G
that matches all the vertices in I(GR(U)) ∪ S(U). To prove
this, there are three steps: 1) we use Lemma 1 to show that
there exists a matching M1 in G that matches all the vertices
in I(GR(U)); 2) we use Property iii) of Theorem 2 to show
that there exists another matching M2 in G that matches
all the vertices in S(U); 3) we construct a bipartite graph
from matchings M1 and M2, and then use Lemma 2 to show
that there exists a matching M3 in G that matches all the
vertices in I(GR(U)) ∪ S(U).

Step 1). First, note that the first condition of Lemma 1
is satisfied for I(GR(U)), i.e., dG(i) ≥ ν(G)∆ for any i ∈
I(GR(U)). The second condition of Lemma 1 is also satisfied
for I(GR(U)) due to the fact that all the vertices in I(GR(U))
are the isolated vertices in GR(U) and thus the subgraph
induced by I(GR(U)) is bipartite. Hence, it is implied from
Lemma 1 that there exists a matching M1 in G that matches
all the vertices in I(GR(U)).

a b
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e f

g h

T (U) S(U) R(U)
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M2

M4
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Figure 3: An illustration of the key components in the proof
of Proposition 3. Suppose the induced subgraph GU is as
in Fig. 1a. Then, the set of isolated vertices in GR(U) is
I(GR(U)) = {b, d}. Matchings M1, M2, and M4 are as shown
in the above figure. Vertex a is not in U . The constructed
bipartite graph G = (V1 ∪ V2, E) has V1 = {b, d, f, h},
V2 = {a, c, e, g}, and E = M1 ∪M2. One option of match-
ing M3 that matches all the vertices in I(GR(U)) ∪ S(U) =
{b, c, d, e, g} is M3 = {(a, b), (c, d), (e, f), (g, h)}, where (a, b)
denotes the edge between vertices a and b. Then, matching
M = M3∪M4 matches every vertex in U , except for at most
one vertex from each odd component of size larger than one
in GR(U). In this case, only vertex v is missed by M . (An al-
ternative matching M3 could be M3 = {(c, b), (e, d), (g, h)}.
Then, two vertices f and v are missed by the resultant M .)

Step 2). From Property iii) of Theorem 2, we know that
every maximum matching in GU contains a perfect matching
in each component of GT (U) and a near-perfect matching in
each component of GR(U), and matches all the vertices in
S(U) with vertices in distinct components of GR(U). Let M ′

be a maximum matching in GU . Then, the above property
is satisfied for M ′. Let M2 ⊆ M ′ be the set of edges of M ′

that are incident to vertices in S(U). Clearly, set M2 is also
a matching in G and matches all the vertices in S(U).

Step 3). Let V1 be the union of I(GR(U)) and the ver-
tices in R(U) that are matched by M2, i.e., V1 = I(GR(U))∪
(V (M2) ∩R(U)). Let V2 be the union of S(U) and the ver-
tices not in U that are matched by M1, i.e., V2 = S(U) ∪
(V (M1) ∩ (V\U)). Let E be the union of matchings M1

and M2, i.e., E = M1 ∪M2. We construct a graph G =
(V1 ∪ V2, E), which is a bipartite graph with (V1, V2) be-
ing the vertex partition. Then, the conditions in Lemma 2
are satisfied. Specifically, let V ′1 = I(GR(U)) ⊆ V1 and
V ′2 = S(U) ⊆ V2. Clearly, M1 and M2 are also match-
ings in G. Moreover, M1 matches all the vertices in V ′1 , and
M2 matches all the vertices in V ′2 . Therefore, it is implied
from Lemma 2 that there exists a matching M3 in G that
matches all the vertices in V ′1 ∪ V ′2 = I(GR(U)) ∪ S(U).

Next, we want to show that there exists a matching M in
G that matches all the vertices in U , except for at most one
vertex from each odd component of size larger than one in
GR(U). This is a straightforward consequence of the above
discussion. To see this, let M4 = M ′\M2 be the set of
edges of M ′ that are not incident to vertices in S(U). It
is easy to see that M4 is also a matching in GU (and in
G). From Properties iii) of of Theorem 2, we know that
M4 contains a perfect matching in each component of GT (U)

and a near-perfect matching in each component of GR(U).
In other words, matching M4 matches all the vertices in the



union of T (U) and R(U), except for at most one vertex from
each of the odd components (including the set of isolated
vertices I(GR(U))) in GR(U). Let M = M3 ∪M4. It is easy
to see that M is also a matching in G, and that M matches
all the vertices in U , except for at most one vertex from
each odd component of size larger than one in GR(U). This
completes the proof.

Remark: Property iv) of the Gallai-Edmonds structure
theorem tells us that a maximum matching in GU misses
o(GR(U))−S(U) vertices, each of which is from distinct odd
components in GR(U) and can potentially be an isolated ver-
tex. However, Proposition 3 presents a stronger result under
the condition that every isolated vertex in GR(U) has a de-
gree close to the maximum vertex degree.

We now use Propositions 1 and 3 to prove Proposition 2.

Proof of Proposition 2. Consider any U ⊆ V such
that the conditions in Proposition 2 are satisfied. From
Proposition 3 and the first condition of Proposition 2, we
know that there exists a matching M in G that matches all
the vertices in U , except for at most one vertex from each
odd component of size larger than one in GR(U). From the
second condition of Proposition 2, we know that U is the set
of the |U | heaviest vertices, i.e., U = H|U|. Then, it follows
from Proposition 1 that an MVM matches at least the same
number of vertices in U as M does, i.e., an MVM matches
at least |U | − µ(GR(U)) vertices in U . From the definition
of Gallai-Edmonds decomposition factor (Definition 5), we
have |U | − µ(GR(U)) ≥ σ∗ |U |.

Remark: Proposition 1 only shows that MVM maximizes
the number of matched vertices among the k heaviest ver-
tices (i.e., Hk), whereas Proposition 2 allows us to quantify
the fraction of the matched vertices in such set if certain
conditions are satisfied. This nice property of MVM is the
key to proving our main result in the next section.

6. THROUGHPUT PERFORMANCE
In this section, we focus on analyzing the throughput per-

formance of the MVM algorithm. A main result of this paper
is presented in Theorem 4.

Theorem 4. The efficiency ratio of the MVM algorithm
is no smaller than the Gallai-Edmonds decomposition factor
of the underlying network graph, i.e., γ∗ ≥ σ∗.

Our analysis will employ the fluid limit techniques [2, 4],
which not only help simply the analysis through eliminat-
ing the unnecessary randomness in the original stochastic
network, but also reveal additional properties of the system
dynamics that will be useful in the analysis.

We begin by constructing the fluid model as in [2,4]. Re-
call that Ai(n) and Di(n) denote the cumulative workload
arrivals and departures of node i up to time-slot n, respec-
tively, Qi(n) denotes the queue length of node i at the be-
ginning of time-slot n, and HM (n) denotes the cumulative
number of time-slots in which matching M ∈M is chosen as
a schedule up to time-slot n. For processes Y = Q,D,H, we
extend their domain from discrete time to continuous time
by setting Y (t) = Y (btc). Then, we construct the Markov
process X = {X(t) : t ≥ 0} as X(t) = (Q(t), D(t), H(t)),
which represents the system dynamics. Following the same
argument as in the proof of Theorem 4.1 of [4], we can

show that for almost all sample paths and for all positive
sequences xr → ∞, there exists a subsequence xrj with
xrj → ∞ as j → ∞ such that the following convergence
holds uniformly over compact intervals of time t:

Ai(xrj t)

xrj
→ λit for all i ∈ V, (11)

Qi(xrj t)

xrj
→ qi(t) for all i ∈ V, (12)

Di(xrj t)

xrj
→ di(t) for all i ∈ V, (13)

HM (xrj t)

xrj
→ hM (t) for all M ∈M. (14)

Then, the fluid model equations of the system are:

qi(t) = qi(0) + λit− di(t) for all i ∈ V, (15)

d
dt
di(t) =

∑
M∈M

∑
l∈L(i)

Ml
d
dt
hM (t) for all i ∈ V, (16)

∑
M∈M

hM (t) = t. (17)

Any limit (q, d, h) satisfying the above fluid model equations
is called a fluid limit. Note that functions qi(t), di(t), and
hi(t) are absolutely continuous and are differentiable at al-
most all times t ≥ 0, which are called regular times. Taking
the derivative of both sides of (15) and substituting (16) into
it, we obtain that the following is satisfied for all i ∈ V :

d
dt
qi(t) = λi −

∑
M∈M

∑
l∈L(i)

Ml
d
dt
hM (t). (18)

Next, we borrow some definitions and results from [5],
which establish an important relationship between the orig-
inal stochastic network and the fluid model.

Definition 6. The fluid model is weakly stable if for
every fluid model solution (q, d, h) with q(0) = 0, the follow-
ing is satisfied: q(t) = 0 for all regular times t ≥ 0.

Lemma 3. A network is rate stable if the associated fluid
model is weakly stable.

Now, we present the proof of Theorem 4.

Proof of Theorem 4. We want to show that under any
arrival rate vector λ strictly inside σ∗Λ∗, the MVM algo-
rithm stabilizes the network. Note that λ is also strictly
inside σ∗Ψ (i.e., λi < σ∗ for all i ∈ V ) due to Λ∗ ⊆ Ψ. We

define ε , mini∈V (σ∗ − λi). Then, we must have ε > 0.
Due to Lemma 3, it suffices to show that the fluid model is

weakly stable. We will use the standard Lyapunov analysis
by choosing the following Lyapunov function:

V (q(t)) = max
i∈V

qi(t). (19)

Note that V (q(t)) is a non-negative function with V (0) = 0.
Since we assume that there are a finite number of initial
packets in the network, we have q(0) = 0 in the fluid limits.
In order to show q(t) = 0 for all regular times t ≥ 0, it
suffices to show the following: if V (q(t)) > 0 for t > 0, then
V (q(t)) has a negative drift and decreases to 0 at least at a
given rate. Then, the fluid model is weakly stable according
to Definition 6. Therefore, we want to show that for all



regular times t > 0, the Lyapunov function V (q(t)) has a
negative drift, i.e., d

dt
V (q(t)) ≤ −ε, whenever V (q(t)) > 0.

We first define some useful notions in the fluid limits. For
any fixed time t, a node i ∈ V is called a critical node in
the fluid limits if it has the largest queue length in the fluid
limits, i.e., qi(t) = qmax , maxj∈V qj(t). We use C to denote
the set of critical nodes in the fluid limits at time t, i.e.,

C , {i ∈ V | qi(t) = qmax}. (20)

Further, let L denote the set of critical nodes that have the
largest queue-length derivative at time t, i.e.,

L , {i ∈ C | d
dt
qi(t) = max

j∈C
d
dt
qj(t)}. (21)

Next, we will use Proposition 2 to show that in every time-
slot corresponding to a small time interval around scaled
time t, at least a σ∗-fraction of the nodes in L will be sched-
uled by the MVM algorithm.

We show that the conditions of Proposition 2 are satis-
fied for L. Following a similar argument to that in [14] for
GMM, we show that Condition ii) of Proposition 2 is sat-
isfied. Since the nodes in L have the largest queue-length
derivative among the nodes in C at time t, and qi(t)’s are
absolutely continuous, there exists a small δ1 > 0 such that
the nodes in L will have a queue length strictly larger than
any other nodes during interval (t, t+ δ1), i.e., the following
is satisfied for any time τ ∈ (t, t+ δ1):

min
i∈L

qi(τ) > max
j∈V \L

qj(τ).

This also implies that all the nodes in L will have a queue
length strictly larger than any other nodes in the original
stochastic network within all the time-slots corresponding
to the scaled time interval (t, t+ δ1) in the fluid limits.

Following a similar argument to that in [8,9,11], we show
that Condition i) of Proposition 2 is satisfied. Let q̂max
be the largest queue length of the nodes not in C in the
fluid limits at time t, i.e., q̂max = maxi/∈C qi(t). Then, we
have q̂max < qmax. Choosing β small enough such that
q̂max < qmax − 3β and β < 1

2|V |−1
qmax, we have

qmax − β >
|V | − 1

|V | (qmax + β). (22)

Recall that qi(t)’s are absolutely continuous. Hence, there
exists a small δ ∈ (0, δ1] such that for all i ∈ C and for all
times τ ∈ (t, t + δ), the queue lengths in the fluid limits
satisfy qi(τ) ∈ (qmax − β/2, qmax + β/2). Let xrj be a posi-
tive subsequence for which the convergence to the fluid limits
holds. For large enough j, we have

∣∣Qi(xrj τ)/xrj − qi(τ)
∣∣ <

β/2 for all τ ∈ (t, t+δ). Define a set of consecutive time-slots

in the original stochastic system as N , {dxrj te, dxrj te +
1, . . . , bxrj (t + δ)c}, which corresponds to the scaled time
interval (t, t+ δ) in the fluid limits. Hence, for all i ∈ C and
for all time-slots n ∈ N , the queue lengths in the original
stochastic network satisfyQi(n) ∈ (xrj (qmax−β), xrj (qmax+
β)). Then, it is implied from (22) that all the nodes in C
have a queue length no smaller than a |V |−1

|V | -fraction of the

largest queue length in all time-slots n ∈ N . Condition i) of
Proposition 2 is also satisfied for L due to L ⊆ C.

Then, it is implied from Proposition 2 that in every time-
slot of N in the original stochastic system, at least a σ∗-
fraction of the nodes in L will be scheduled by MVM. Ac-
cording to the pigeonhole principle, there must exist a node

i∗ ∈ L such that i∗ has been scheduled by MVM for at least
a σ∗-fraction of the time-slots in N , i.e.,∑

M∈M

∑
l∈L(i∗)

Ml(HM (xrj (t+ δ))−HM (xrj t))

≥ σ∗(bxrj (t+ δ)c − dxrj te+ 1).

(23)

Therefore, the following is satisfied:∑
M∈M

∑
l∈L(i∗)

Ml
d
dt
hM (t)

= lim
δ→0

∑
M∈M

∑
l∈L(i∗)

Ml
hM (t+ δ)− hM (t)

δ

(a)
= lim

δ→0
lim
j→∞

∑
M∈M

∑
l∈L(i∗)

Ml(HM (xrj (t+ δ))−HM (xrj t))

xrj δ

(b)

≥ lim
δ→0

lim
j→∞

σ∗(bxrj (t+ δ)c − dxrj te+ 1)

xrj δ

=σ∗,

(24)

where (a) and (b) are from (14) and (23), respectively.
Then, we have d

dt
qi∗(t) ≤ λi∗ − σ∗ ≤ −ε from (18). Since

node i∗ has the largest queue-length derivative among nodes
in C, we have d

dt
qi(t) ≤ d

dt
qi∗(t) ≤ −ε for all i ∈ C. There-

fore, the fluid model is weakly stable according to Defini-
tion 6. This completes the proof by applying Lemma 3.

Theorem 5. Suppose the smallest size of an odd cycle
in the underlying network graph is 2m + 1, where m is a
positive integer. Then, the efficiency ratio of MVM is no
smaller than 2m/(2m+ 1), i.e., γ∗ ≥ 2m/(2m+ 1). More-
over, the efficiency ratio of MVM is no smaller than 2/3 in
general, i.e., γ∗ ≥ 2/3, and MVM is throughput-optimal if
the underlying network graph is bipartite.

Proof. The proof follows immediately from Theorems 3
and 4 and Corollary 1.

Remark: Together with the result on the evacuation time
performance of MVM [12], Theorem 5 shows that MVM
achieves the most balanced performance guarantees in both
dimensions of throughput and evacuation time among exist-
ing online scheduling algorithms. Also, our new approach of-
fers an alternative means to that of [8,9] for proving through-
put optimality of MVM in bipartite graphs.

7. CONCLUSION
In this paper, we carried out a systematic study of the

throughput performance of MVM through a novel applica-
tion of the Gallai-Edmonds structure theorem. We showed
that the efficiency ratio of MVM can be well characterized by
the Gallai-Edmonds decomposition factor introduced in this
paper. Not only do the results of this paper substantially
improve our understanding of the throughput performance
of MVM, but also provide useful insights for guiding the de-
sign of wireless networks when MVM-type of algorithms are
employed. We also hope that our findings will shed light on
the full utilization of the beautiful Gallai-Edmonds structure
theorem in networking research.

Despite the importance of the results we obtained in this
paper, in some cases the derived lower bounds of the ef-
ficiency ratio could be loose due to the following reasons.



On the one hand, the Gallai-Edmonds decomposition fac-
tor based characterization may underestimate the schedul-
ing capability of MVM. For example, suppose the network
graph is as in Fig. 2a, which has a Gallai-Edmonds decom-
position factor of 2/3. If the vertex-subset L of interest in
the throughput analysis (Theorem 4) is the triangle in the
middle, then our analysis gives that at least two vertices of
the triangle will be scheduled by MVM in every time-slot of
N . However, in some time-slots (when an outer link has a
non-zero queue length), all the vertices of the triangle can be
scheduled by MVM. Therefore, the efficiency ratio of MVM
could be strictly greater than 2/3. On the other hand, the
outer bound Ψ used in the throughput analysis (Theorem 4)
may be loose when the odd cycles rather than the nodes are
the dominating bottlenecks. For example, suppose the net-
work graph is a triangle, which has a Gallai-Edmonds de-
composition factor of 2/3. Then, the efficiency ratio of MVM
has a lower bound of 2/3. However, it is easy to see that if
the link loads are uniform, then Λ∗ = 2/3Ψ, and MVM is
actually throughput-optimal. Therefore, the bounds of the
efficiency ratio of MVM can potentially be further improved.
We leave it to our future work.
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