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Delay-Based Back-Pressure Scheduling in Multihop
Wireless Networks
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Abstract—Scheduling is a critical and challenging resource
allocation mechanism for multihop wireless networks. It is well
known that scheduling schemes that favor links with larger
queue length can achieve high throughput performance. However,
these queue-length-based schemes could potentially suffer from
large (even infinite) packet delays due to the well-known last
packet problem, whereby packets belonging to some flows may
be excessively delayed due to lack of subsequent packet arrivals.
Delay-based schemes have the potential to resolve this last packet
problem by scheduling the link based on the delay the packet has
encountered. However, characterizing throughput optimality of
these delay-based schemes has largely been an open problem in
multihop wireless networks (except in limited cases where the
traffic is single-hop.) In this paper, we investigate delay-based
scheduling schemes for multihop traffic scenarios with fixed
routes. We develop a scheduling scheme based on a new delay
metric and show that the proposed scheme achieves optimal
throughput performance. Furthermore, we conduct simulations
to support our analytical results and show that the delay-based
scheduler successfully removes excessive packet delays, while it
achieves the same throughput region as the queue-length-based
scheme.

Index Terms—Back-pressure, delay-based, fluid limit, Lyapunov
approach, scheduling, throughput-optimal.

I. INTRODUCTION

L INK scheduling is a critical resource allocation compo-
nent in multihop wireless networks, and also perhaps

the most challenging. The seminal work of [1] introduces
a joint adaptive routing and scheduling algorithm, called
Queue-length-based Back-Pressure (Q-BP), that has been
shown to be throughput-optimal, i.e., it can stabilize the net-
work under any feasible load. This paper focuses on the settings
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with fixed routes, where the Q-BP algorithm becomes a sched-
uling algorithm. Since the development of Q-BP, there have
been numerous extensions that have integrated it in an overall
optimal cross-layer framework. Furthermore, easier-to-im-
plement queue-length-based scheduling schemes have been
developed and shown to be throughput-efficient (see [2] and
references therein). Some recent attempts [3]–[5] focus on
designing real-world wireless protocols using the ideas behind
these algorithms.
While these queue-length-based schedulers have been

shown to achieve excellent throughput performance, they are
usually evaluated under the assumption that flows have an
infinite amount of data and keep injecting packets into the
network. However, in practice, when accounting for multiple
timescales [6]–[8], there also exist other types of flows that
have a finite number of packets to transmit, which can result
in the well-known last packet problem: Consider a queue
that holds the last packet of a flow, then the packet does
not see any subsequent packet arrivals, and thus the queue
length remains very small, and the link may be starved for
a long time, since the queue-length-based schemes give a
higher priority to links with a larger queue length. In such
a scenario with flow-level dynamics, it has also been shown
in [6] that the queue-length-based schemes may not even be
throughput-optimal.
Recent works in [9]–[14] have studied the performance of

delay-based scheduling algorithms that use head-of-line (HOL)
delays instead of queue lengths as link weights. One desirable
property of the delay-based approach is that they provide an
intuitive way around the last packet problem. The schedulers
give a higher priority to the links with a larger weight as before,
but now the weight (i.e., the HOL delay) of a link increases
with time until the link is scheduled. Hence, if the link with the
last packet is not scheduled at this moment, it is more likely to
be scheduled in the next time. However, the throughput of the
delay-based scheduling schemes is not fully understood and has
only been established for limited cases with single-hop traffic.
The delay-based approach was introduced in [9] for sched-

uling in input-queued switches. The results have been ex-
tended to wireless networks for single-hop traffic, providing
throughput-optimal delay-based MaxWeight scheduling algo-
rithms [11], [12], [15]. It has also been shown that delay-based
schemes with appropriately chosen weight parameters provide
good quality of service (QoS) [10] and can be used as an
important component in a cross-layer protocol design [14]. The
performance of the delay-based MaxWeight scheduler has been
further investigated in a single-hop network with flow-level
dynamics [13]. The results show that when flows arrive at the
base station carrying a finite amount of data, the delay-based
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MaxWeight scheduler achieves optimal throughput perfor-
mance, while its queue-length-based counterpart does not.
It should be noted that even for the multihop wireless net-

works with fixed routes, the scheduling problem is both impor-
tant and challenging. There aremany existingworks focusing on
such scenarios with fixed routes (see [16]–[18] for examples).
However, in multihop wireless networks, the throughput perfor-
mance of these delay-based schemes has largely been an open
problem. To the best of our knowledge, even with the assump-
tion of fixed routes, there are no prior works that employ delay-
based algorithms to address the important issue of throughput-
optimal scheduling in multihop wireless networks. Indeed, the
problem becomes much more challenging in the multihop sce-
nario. In [12], the key idea in showing throughput optimality of
the delay-basedMaxWeight scheduler is to exploit the following
property: After a finite time, there exists a linear relation be-
tween queue lengths and HOL delays in the fluid limits (which
we formally define in Section III-A), where the ratio is the mean
arrival rate. Hence, the delay-based MaxWeight scheme is basi-
cally equivalent to its queue-length-based counterpart and thus
achieves the optimal throughput. This property holds for the
single-hop traffic. Since given that the exogenous arrival pro-
cesses follow the Strong Law of Large Numbers (SLLN) and
the fluid limits exist, the arrival processes are deterministic with
constant rates in the fluid limits. However, such a linear rela-
tion does not necessarily hold for the multihop traffic since at a
nonsource (or relay) node, the arrival process may not satisfy
SLLN and the packet arrival rate may not even be a constant,
depending on the underlying schedulers dynamics. To this end,
we investigate delay-based scheduling schemes that achieve op-
timal throughput performance in multihop wireless networks.
Unlike previous delay-based schemes, we view the packet

delay as a sojourn time in the network and redesign the delay
metric of the queue as the sojourn-time difference between the
queue’s HOL packet and the HOL packet of its previous hop
[see (36) for the formal definition]. Using this new metric, we
can establish a linear relation between queue lengths and delays
in the fluid limits. The linear relation then plays the key role in
showing that the proposed Delay-based Back-Pressure (D-BP)
scheduling scheme is throughput-optimal in multihop networks.
In summary, the main contributions of our paper are as

follows.
• We devise a new delay metric for multihop wireless net-
works and develop the D-BP algorithm, under which a
linear relation between queue lengths and delays in the
fluid limits can be established. From this linear relation,
we can show that D-BP achieves optimal throughput per-
formance. To do this, we first revisit throughput optimality
of Q-BP using fluid limit techniques. Furthermore, we de-
velop a simpler greedy approximation of D-BP for prac-
tical implementation.

• We provide extensive simulation results to evaluate the
performance of the delay-based schedulers, including
D-BP. Through simulations: 1) we observe that the last
packet problem can cause excessive delays for certain
flows under Q-BP, while the problem is eliminated under
D-BP; 2) we show that D-BP also achieves better fairness
and prevents the flows that lack subsequent packet arrivals
from starving; 3) finally, we simulate the simpler greedy

approximation algorithms of Q-BP and D-BP and show
that the delay-based approximation empirically achieves
a throughput region that is no smaller than that of its
queue-based counterpart.

The paper is organized as follows. In Section II, we present
a detailed description of our system model. In Section III,
we show throughput optimality of Q-BP using fluid limit
techniques and extend the analysis to D-BP in Section IV.
The discussions are further extended to the greedy algorithms
in Section V. We evaluate the performance of delay-based
schedulers through simulations in Section VI and conclude our
paper in Section VII.

II. SYSTEM MODEL

We consider a multihop wireless network described by a di-
rected graph , where denotes the set of nodes
and denotes the set of links. Nodes are wireless transmitters/
receivers, and links are wireless channels between two nodes
if they can directly communicate with each other. During a
single time-slot, multiple links that do not interfere with each
other can be active at the same time, and each active link trans-
mits one packet during the time-slot if its queue is not empty.
Let denote the set of flows in the network. We assume that
each flow has a single, fixed, and loop-free route. The route of
flow has an -hop length from the source to the destina-
tion, where each th hop link is denoted by . Let

denote the length of the longest route over
all flows. Note that the assumption of single route and unit link
capacity is only for ease of exposition, and one can readily ex-
tend the results to more general scenarios with multiple fixed
routes and heterogeneous link rates, applying the techniques
used in this paper. To specify wireless interference, we consider
the th hop of each flow or link-flow-pair . Let denote
the set of all link-flow-pairs, i.e.,

The set of link-flow-pairs that interfere with can be de-
scribed as

interferes with

or (1)

Note that the interference model we adopt is very general and in-
cludes the class of the -hop interference model.1 A schedule
is a set of (active or inactive) link-flow-pairs and can be rep-
resented by a vector , where denotes the
cardinality of a set. Each element is set to 1 if link-flow-
pair is active, and 0 if link-flow-pair is inactive.
Slightly abusing the notation, we also use to denote the set of
active link-flow-pairs of , i.e., .
A schedule is said to be feasible if no two link-flow-pairs of
interfere with each other, i.e., for all
with and . Let denote the set of

1Under the -hop interference model, two links within a -hop “distance”
interfere with each other and cannot be activated at the same time [19]. When

, it is also called the primary or node-exclusive interference model. The
1-hop interferencemodel has been known as a good representation for Bluetooth
or FH-CDMA networks [20]–[23]. When , it is often used to model
the ubiquitous IEEE 802.11 Distributed Coordination Function (DCF) wireless
networks [22], [24]–[26].
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all feasible schedules in , and let denote its convex
hull.
Let denote the number of packet arrivals at the source

node of flow at time-slot . We assume that packets are of
unit length. Similar to [12], we assume that each arrival process

is a stationary and ergodic Markov chain with countable
state space and satisfies the SLLN: That is, with probability one

(2)

for each flow , where denotes the mean arrival rate
of flow . We let denote the arrival rate
vector.
Let denote the number of packets at the queue

of at the beginning of time-slot . For notational
ease, we also use to denote the queue itself. We let

denote the queue length vector
at time-slot , and use to denote the -norm of a vector,
e.g., . Let denote the
service of at time-slot , which takes a value of either 1 if
link-flow-pair is active, or 0 otherwise, in our settings.
We let denote the actual number of packets transmitted
from at time-slot . Clearly, we have
for all time-slots . Let denote
the cumulative queue lengths up to the th hop for flow .
By convention, we set , and then we have

. The queue length evolves ac-
cording to the following equations:

(3)

where we set .
Let be the total number of packets that arrive at the

source node of flow until time-slot , including those
present at time-slot 0, and let be the total number of
packets that are served at until time-slot . By con-
vention, we set for all link-flow-pairs .
We let denote the sojourn time of the th packet of
in the network at time-slot , where the time is measured from
the time when the packet arrives in the network (i.e., when the
packet arrives at the source node), and let
denote the sojourn time of the HOL packet of in the net-
work at time-slot . We set for all . Fur-
thermore, if , we set . Letting

denote the time when the HOL packet of
arrives in the network, we have that

for all

(4)

As in [27], a discrete-time queueing system is said to be stable
if the underlying Markov chain is positive Harris recurrent.
When the state space is countable and all states communicate (as
in the system that we consider in this paper), this is equivalent
to the Markov chain being positive recurrent. The throughput
region of a scheduling policy is defined as the set of arrival rate
vectors for which the network remains stable under this policy.
Furthermore, the optimal throughput region (or stability region)
is defined as the union of the throughput regions of all possible

scheduling policies. We let denote the optimal throughput
region, which can be represented as

s.t.

(5)

An arrival rate vector is strictly inside , if the inequalities
above are all strict.
We summarize the notations in Appendix A for quick

reference.

III. QUEUE-LENGTH-BASED BACK-PRESSURE ALGORITHM

It has been shown in [1] that Q-BP stabilizes the network
for any feasible arrival rate vector using stochastic Lyapunov
techniques. Specifically, we can use a quadratic Lyapunov func-
tion to show that the function has a negative drift under Q-BP
when queue lengths are large enough. In this section, we revisit
throughput optimality of Q-BP using fluid limit techniques. The
analysis will be extended later to prove throughput optimality of
the delay-based back-pressure algorithm.
To begin with, we define the queue differential as

(6)

and specify the back-pressure algorithm based on queue lengths
as follows.
Queue-length-based Back-Pressure (Q-BP) Algorithm:

(7)

The algorithm needs to solve a MaxWeight problem with
weights as queue differentials, and ties can be broken arbi-
trarily if there is more than one schedule that has the largest
weight sum.
We establish the fluid limits of the system in the following.

A. Fluid Limits

We define the process describing the behavior of the under-
lying system as , where

We define the norm of as

(8)

Clearly, under Q-BP, the evolution of forms a discrete-time
Markov chain with countable state space. Let denote a
process with an initial configuration such that

(9)

The following lemmawas derived in [28] for continuous-time
countable Markov chains, and it follows from more general re-
sults in [29] for discrete-time countable Markov chains.
Lemma 1 ([12, Theorem 4]): Suppose there exist an

and a finite integer such that for any sequence of pro-
cesses , we have

(10)
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Then, the Markov process is positive recurrent.
A stability criteria of (10) leads to a fluid limit ap-

proach [30], [31] to the stability problem of queueing
systems. Hence, we start our analysis by establishing the
fluid limit model as in [12] and [30]. We define the process

, and it is clear that a sample
path of uniquely defines the sample path of . Then,
we extend the definition of , and
to continuous time domain as for each

continuous time .
As in [12], we extend the definition of to the negative

interval by assuming that the packets present in
the initial state arrived in the past at some of the time
instants , according to their delays in
the state . By this convention, we have
for all and , and for all .
Then, applying the techniques used in the proof for

[30, Theorem 4.1] or [12, Lemma 1], we can show that with
probability one, for any sequence of processes ,
where is a sequence of positive integers with ,
there exists a subsequence with as
such that the following convergences hold uniformly over
compact (u.o.c.) intervals:

(11)

(12)

(13)

(14)

(15)

(16)

(17)

Similarly, the following convergences (which are denoted by
“ ”) hold at every continuous point of the limit function:

(18)

(19)

The above convergence properties follow directly from the
Arzela–Ascoli Theorem and the structure of the model: that the
arrival process satisfies the SLLN and that the sequence of the
(scaled) departure process is uniformly bounded and uniformly
equicontinuous.
Any set of limiting functions is called

a fluid limit. The family of these fluid limits is associated
with our original stochastic network. The scaled sequences

and their limits are referred to as a fluid
limit model [27]. Since some of the limiting functions, namely

, are Lipschitz continuous in , they are
absolutely continuous. Hence, at almost all points ,

the derivatives of these limiting functions exist. We call such
points regular time. We then present the fluid model equations
of the system as follows:

(20)

(21)

(22)

(23)

(24)

(25)

(26)

if
otherwise

(27)

where , and we set . Fluid
model equations can be thought of as belonging to a fluid net-
work that is the deterministic equivalence of the original sto-
chastic network. Any set of functions satisfying the fluid model
equations is called a fluid model solution of the system. It is easy
to check that any fluid limit is a fluid model solution.
It is clear from (7) that Q-BP will not schedule link-

flow-pair if . Hence,
if link-flow-pair is scheduled, it must satisfy that

. Moreover, the length of queue
can decrease by at most one within one time-slot, and the
length of queue can increase by at most one within one
time-slot, due to the assumption of unit link capacity (a similar
argument also holds with nonunit link rates). This implies that
if

(28)

initially holds for all at time-slot 0, then the inequality
holds for every time-slot . This further implies that

i.e. (29)

for all (scaled) time , from the convergence of (14). We
assume that at time-slot 0, all queues on the route of each flow
are empty except for the first queue, then it follows that (28)
holds for all (scaled) time , and thus holds
for all time .
Remark: Note that we make the assumption of empty queues

for ease of analysis. Even without this assumption, we can show
that there exists a finite time such that for all time ,
(29) holds for all . This can be proved by induc-
tion. The detailed proof can be found in our online technical
report [32], but the basic idea is as follows. Consider a flow

. We want to show that there exists a finite time
such that for all time , (29) holds for all with

.
1) First, we show that there exists a finite time
such that for all time , (29) holds for link-flow-
pair . Suppose that (29) does not hold for . Then,
Q-BP does not schedule , i.e., does not de-
crease and does not increase. On the other hand,
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Fig. 1. Linear relation between queue lengths and delays in the fluid limits.

due to the exogenous arrivals at the source node of flow
must increase with time. Hence, there must exist a

finite time such that (29) holds for at time .
We can further show that (29) holds for all under
Q-BP. This can be proved by contradiction.

2) Then, we discuss the induction step. Consider
. Suppose that for all time

, (29) holds for , and for all
, we show that there exists a finite

time such that for all time , (29)
holds for and for all . For
simplicity, we consider the case for which , and the
general induction step follows similarly. Now, suppose
that (29) does not hold for , and we prove it by contra-
diction. Clearly, Q-BP will schedule only link-flow-pairs
for which (29) holds (i.e., link-flow-pair in this
case). Hence, the fluid limit model of the subsystem that
consists of link-flow-pairs for which (29) holds must
be stable, from the throughput optimality of Q-BP (see
Proposition 2). This, in particular, implies that is
stable, which further implies that must increase
with time, because Q-BP keeps forwarding packets from

to while not serving . Hence, there must exist
a finite time such that for all time ,
(29) holds for .

Hence, letting , we have that for all time ,
(29) holds for all with . Since the
above arguments can be applied to any flow , we can
complete the proof by setting .

B. Throughput Optimality of Q-BP

Proposition 2: Q-BP can support any traffic with arrival rate
vector that is strictly inside .
Before giving the proof of Proposition 2, in the following

lemma, we present a linear relation between cumulative queue
length and waiting time , which is used for
proving Proposition 2.
Lemma 3: For any fixed , the two conditions

and are equivalent for every
link-flow-pair . Furthermore, if the conditions hold,
we have

(30)

for all , with probability one.
Fig. 1 describes the relations between the variables.
Proof: Since the first part, i.e., that the two conditions are

equivalent, is straightforward from the definition of fluid limits

and (4), we focus on the second part, i.e., if ,
then (30) follows.
Suppose that . Then, by the definition of

, we have , for all . From
(22)–(24), we obtain that

Proof of Proposition 2: We prove stability using standard
Lyapunov techniques. Let denote the Lyapunov func-
tion defined as

(31)

From the results of Lemmas 1 and 3, to show positive recur-
rence, we only need to prove that for any , there exists a
finite time such that for any fluid limit with ,
we have

(32)

for all time . To show the above, it is sufficient to show
that for any , there exists such that
implies for any regular time , where

.
Suppose is strictly inside , then there exists a vector

such that , i.e., for all .
Since is differentiable, then for any regular time , we
can obtain the derivative of as

(33)

where (a) and (b) are from (27) and (25), respectively.
Note that ,

for any . Hence, we have
. Let us

choose , then implies

. Since and
for all , then in the final result of (33), we can
conclude that the first term is bounded as follows:
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and that the second term becomes nonpositive due to the fol-
lowing. Since Q-BP chooses schedules that maximize the queue
differential weight sum (7), then we have that

which implies that

for all . Therefore, this shows that
implies . Then, it immediately follows that
for any , there exists a finite time such that for any
fluid limit with , we have for any time

. Also, we have

(34)

for all . Let us choose large enough, then it follows
from (20), (22), and (34) that

for all and for any time . Hence, we have (30)
from Lemma 3, and thus we have

where (a) and (b) are from (30) and (34), respectively. We can
make arbitrarily small by choosing small enough .
Now, consider any fixed sequence of processes

(for simplicity also denoted by
). Hence, for any fixed , we can always choose a

large enough integer such that for any subsequence
of , there exists a further (sub)subsequence

such that

almost surely. This in turn implies (for small enough ) that

(35)

almost surely. This is because there must exist a sub-
sequence of that converges to the same limit as

.
One can readily show that the sequence

is uniformly integrable using standard techniques by
invoking the Dominated Convergence Theorem, and so the de-
tails are omitted here. Then, the almost sure convergence in (35)
along with uniform integrability implies the following conver-
gence in the mean:

Fig. 2. Delay differentials using new delay metric.

Since the above convergence holds for any sequence of pro-
cesses , the condition of (10) in
Lemma 1 is satisfied. This completes the proof.

IV. DELAY-BASED BACK-PRESSURE ALGORITHM

A. Algorithm Description

In this section, we develop the D-BP policy, and in
Section IV-B, we prove that it is throughput-optimal. A
similar delay-based approach has appeared first in [12] for
single-hop networks. However, as mentioned earlier, when
packets travel multiple hops before leaving the system, the
analytical approach in [12] (i.e., using HOL delay in the queue
as the metric) cannot capture queueing dynamics of multihop
traffic, and the resultant solutions cannot guarantee the linear
relation. We will carefully design link weights using a new
delay metric and reestablish the linear relation between queue
lengths and delays in the fluid limits for multihop traffic.
Recall that denotes the sojourn time of the HOL

packet of queue in the network, where the time is mea-
sured from the time when the packet arrives in the network. We
define the delay metric as

(36)

and also define delay differential as

(37)

The relations between these delay metrics are illustrated in
Fig. 2. We specify the back-pressure algorithm with the new
delay metric as follows.
Delay-based Back-Pressure (D-BP) Algorithm:

(38)

D-BP computes the weight of as the delay differential
and solves the MaxWeight problem, i.e., finds a set

of noninterfering link-flow-pairs that maximizes weight sum.
Ties can be broken arbitrarily if there is more than one schedule
that has the largest weight sum. An intuitive interpretation
of the new delay metric is as follows. Note that the
queue length is roughly the number of packets arriving
at the source node of flow during the time-slots between

, and from the SLLN, is on
the order of when is large. Hence, a large

implies a large queue length , and similarly, a
large delay differential implies a large queue length
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differential . Therefore, being favorable to the delay
weight sum in (38) is in some sense “equivalent” to being
favorable to the queue length weight sum in (7) as Q-BP. We
later formally establish the linear relation between the fluid
limits of queue lengths and delays in Section IV-B.
We highlight here that the last packet problem can be solved

by the D-BP scheme using our proposed delay metric. Let us
focus on the source nodes first. Suppose that at the source node
of flow , there are a finite number of packets waiting to be trans-
mitted and there are no further packet arrivals. From the defini-
tion of (36) and the fact that , we have

. If some of the packets are stuck at the source node,
the delay metric keeps increasing with time. On the
other hand, is equal to the in-
terarrival time between two packets and does not increase with
time, in particular because some packets at the source node are
not served. Hence, the delay differential

also increases with time. This implies that under DBP,
the increasing delay will eventually “push” all the packets that
are waiting at the source node to the second-hop link. After all
the packets leave the source node, we can observe similar pro-
cedure at the transmitting node of the second-hop link: Since

and , we have . Re-
peating the same argument, we can conclude that all the packets
will ultimately be “pushed” to the destination node of flow .
Recall that denotes the time when the HOL packet

of arrives in the network (or the source node, rather
than the current node). We let denote the time when
the packet that arrives (in the network or the source node)
immediately after the HOL packet of arrives in the net-
work. Let denote the interarrival
time between the HOL packet of and the packet that
arrives immediately after it. Clearly, D-BP will not schedule
link-flow-pair if

Hence, if link-flow-pair is scheduled, it must satisfy
. Moreover, the delay can

decrease by at most within one time-slot, and the delay
can increase by at most within one time-slot,

due to the assumption of unit link capacity (a similar argument
also holds with nonunit link rates). Therefore, if inequality

(39)

initially holds for all at time-slot 0, then the inequality
holds for all time-slot . This further leads to

i.e., (40)

for all (scaled) time , in the fluid limits, from the conver-

gence of (18) and that , as

(otherwise, we will arrive a contradiction with the assumption
on the arrival process, i.e., it satisfies the Strong Law of Large
Numbers). Recall that we assume that all queues on each route
are empty at time-slot 0, except for the first queue, then (39) and
(40) follow.

B. Throughput Optimality

The following lemma provides the linear relation between
queue lengths and delays in the fluid limits.
Lemma 4: For any fixed , if for

every link-flow-pair , then we have

(41)

for all , with probability one.
Proof: It follows immediately from Lemma 3.

We emphasize the importance of (41). Lemma 4 implies that
after a finite time (i.e., ), the queue lengths are
times delays in the fluid limit model. Then, the schedules of

D-BP are very similar to those of Q-BP, which implies that D-BP
achieves the optimal throughput region . In the following, we
show that the condition of Lemma 4 indeed holds, i.e., such a
finite time exists.
Lemma 5: Consider a system under the D-BP policy. Then,

for strictly inside , there exists a finite time such that
the fluid limits satisfy the following property with probability
one

(42)

for all link-flow-pairs .
We can prove Lemma 5 by induction following the techniques

described in [12, Lemma 7]. The formal proof is provided in
Appendix B. We next outline an informal discussion, which
highlights the main idea of the proof. First, we consider the base
case. D-BP chooses one of the feasible schedules in (we
omit the term “feasible” in the following, whenever there is no
confusion) at each time-slot. Each schedule receives a fraction
of the total time, and there must exist a schedule that receives at
least fraction of the total time. Thus, after a large enough

time , there must exist a schedule that is chosen
for at least amount of time. The number of initial packets

of is bounded from (20), thus, for a large enough , all
initial “fluid” of at least one link-flow-pair of must be com-
pletely served, i.e., , for at least one with

.
Next, we consider the inductive step. Suppose there exists a

, such that for at least one subset of cardinality ,
we have

(43)

for all . Then, there exists such that

(44)

holds for all link-flow-pairs within at least one subset
of cardinality . Since flows travel hop-by-hop,

packets that have been served by one linkmust have been served
by the link at the previous hop (of the flow to which the packets
belong). Hence, if , we must have .
Repeating the argument, if , we have for

. Let

for

or for (45)
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denote the set of link-flow-pairs such that
is the closest hop to the source of . To avoid unnecessary com-
plications, we discuss the induction step for . The general-
ization for is straightforward. We show that for given
and , there exists a finite time such that (44) with
holds for at least two different link-flow-pairs.
Let denote the link-flow-pair that satisfies (43) with .

Since implies for all , we must
have and . From (45), we have that

(46)

where if , and if .We
discuss only the case that , and the other case can be
easily shown following the same line of analysis. Now suppose
that

for all and all

(47)

i.e., for all the link-flow-pairs except those of , the total
amount of service up to time is no greater than the amount
of the initial fluid for all . We show that this assumption
leads to a contradiction, which completes the induction step.
From the base case and Lemma 4, we have

for all . We view the subset of link-flow-
pairs as a generalized system and consider the time-slots
when there is at least one packet transmission from the outside
of , i.e., . For each such time-slot, we say that
the time-slot is unavailable to .
1) The number of such unavailable time-slots is bounded
from the above by since at every such time-slot, at
least one initial packet will be transmitted and the total
number of initial packets is bounded by
from (9). Hence, the amount of (scaled) time unavailable
to is bounded by .

2) Since the amount of (scaled) time unavailable to is
bounded, there exists a sufficiently large such
that the fraction of time that is given to
is negligible, and we must have 2 and

for .
3) Then, we can restrict our focus on the generalized
system to time and ignore the time that is un-
available to . Then, Q-BP and D-BP are in some sense
“equivalent” in the generalized system for
with the following properties. First, Q-BP will stabilize
the system if the arrival rate vector is strictly inside
. Second, since the linear relation (41) holds for all

link-flow-pairs in from Lemma 4, D-BP will schedule
links similar to Q-BP and also stabilizes the generalized
system .

4) Now let us focus on . Link-flow-pairs in must
have some initial fluid at because .
On the other hand, the generalized network is stable.
This implies that the delay metrics of link-flow-pairs in
should increase on the same order as we increase ,

i.e., for . Then, we have
since from

2We use the standard order notation: implies
; and implies

for some constants and .

and 2). Since the delay differ-
entials for all and for all

are bounded above from stability of
and 2), respectively, D-BP will choose link-flow-pairs

in the set of for most of the time for a sufficiently large
. This implies that the amount of time unavailable to
is , which contradicts with our previous statement in
1) that the fraction of time that is given to
is negligible.

We provide the detailed proof of Lemma 5 in Appendix B.
We then present throughput optimality of D-BP in the fol-

lowing proposition.
Proposition 6: D-BP can support any traffic with arrival rate

vector that is strictly inside .
Proof: We show the stability using fluid limits and standard

Lyapunov techniques. From Lemmas 4 and 5, we obtain the
key property for proving throughput optimality of D-BP in (41),
i.e., after a finite time, there is a linear relation between queue
lengths and delays in the fluid limit model. We start with the
following quadratic-form Lyapunov function

(48)

Following the line of analysis in the proof for Proposition 2, we
can show that for any , there exist and a finite time

such that implies for
any regular time if the underlying scheduler maximizes

. Then, by applying the linear relation
(41), we can see that D-BP indeed satisfies such a condition and
obtain the results. We omit the detailed proof since it mirrors the
derivations in Proposition 2.

V. GREEDY ALGORITHMS

It is well known that the schemes (e.g., Q-BP and D-BP)
based on the back-pressure techniques are complex to imple-
ment because they involve computing aMaxWeight component,
which in general is NP-hard [19]. Hence, although D-BP oper-
ates efficiently and achieves the optimal throughput region, it
could be difficult to implement in practice. Therefore, we are
interested in simpler approximations of D-BP that can achieve
a guaranteed fraction of the optimal performance. The Delay-
based Greedy Maximal Scheduling (D-GMS) algorithm is a
good candidate approximation algorithm. A Greedy Maximal
Scheduling (GMS) algorithm [23], [26], [33], [34] [which is also
known as Longest Queue First (LQF)] operates (in the scenarios
with single-hop traffic) as follows: At each time-slot , starts
with an empty schedule; first picks a link with the maximum
weight (e.g., queue length or delay); adds into the schedule,
and disables other links that interfere with ; next picks a link
with the maximum weight from the remaining set of links, adds
into the schedule, and disables other links that interfere with
; and continues this process until all links are either chosen or
disabled. All chosen links will be scheduled during time-slot .
Note that any schedule obtained by GMS is maximal.
GMS has been extensively studied due to its low com-

plexity [23], distributed implementations [35] (or distributed
approximations [36]) and empirically observed good per-
formance [22]. It was first shown in [33] that GMS is
throughput-optimal in networks where the so-called local
pooling condition is satisfied. The authors of [21] and [34]
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generalize the idea of local pooling to -local pooling, where
is a topological notion depending on the underlying network

topology and is called the local pooling factor. There, the
authors show that GMS can achieve a -fraction of the optimal
throughput region. On the other hand, in [37] and [38], the
local pooling condition is generalized to the scenarios with
multihop traffic, i.e., GMS is throughput-optimal in networks
where the multihop local-pooling condition is satisfied. Next,
we will discuss the performance limits of D-GMS.

Algorithm 1: GMS Algorithm

1: procedure GMS
2:
3:
4: while do
5: pick a link-flow-pair with maximum weight:

6:
7:
8: end while
9: end procedure

To generalize the GMS algorithm to settings with multihop
traffic, we consider link-flow-pairs. We let denote the
weight of link-flow-pair , and conclude the pro-
cedure of GMS in Algorithm 1. We then describe the opera-
tions of D-GMS and its queue-length-based counterpart (called
Q-GMS) in the following.
D-GMS Algorithm: At each time-slot , the algorithm sets the
weight of each link-flow-pair to the delay differential, i.e.,

for all (49)

and finds its schedule in decreasing order of weight con-
forming to the underlying interference constraints, by applying
Algorithm 1.
Queue-length-based Greedy Maximal Scheduling (Q-GMS)
Algorithm: At each time-slot , the algorithm sets the weight
of each link-flow-pair to the queue-length differential, i.e.,

for all (50)

and finds its schedule by applying Algorithm 1.
We characterize the throughput performance of D-GMS in

the following proposition.
Proposition 7: The achievable throughput region of D-GMS

is no smaller than that of Q-GMS.
We omit the proof here since it follows the similar line of

analysis for D-BP to establish the linear relation between queue
lengths and delays in the fluid limits, and the result can then be
obtained by applying the techniques used in [37] and [38].

VI. NUMERICAL RESULTS

In this section, we first highlight the last packet problem
for the queue-length-based back-pressure algorithm. The last
packet problem implies that flows that lack packet arrivals at
subsequent time may experience excessive delays under Q-BP,
which is later confirmed in the simulations. Then, we compare
throughput and delay performance of Q-BP and D-BP in a grid
network topology under the 2-hop interference model. Finally,

Fig. 3. Illustration of the last packet problem under Q-BP. (a) “H”-type net-
work topology. (a) HOL delay of short flow when .

we compare throughput performance of Q-GMS and D-GMS
in a size-6 ring network under the 1-hop interference model.
We first show the last packet problem of Q-BP through sim-

ulations. We observe that several last packets of a short flow
(that carry a finite amount of data) may get stuck, which could
cause excessive delays. We consider a scenario consisting of 7
nodes and 6 links as shown in Fig. 3(a), where nodes are rep-
resented by circles and links are represented by dashed lines
with their associated link capacities.3 We assume a time-slotted
system. We establish three flows: one short flow
and two long flows and . The
short flow arrives in the network with 10 packets at time 0. The
long flows have an infinite amount of data and keep injecting
packets at the source nodes following Poisson distribution with
mean rate at each time-slot. Numerical calculation shows that
the feasible rate under the 2-hop interference should satisfy that

. We conduct our simulation for 10 time-slots and
plot time traces of HOL delay of the short flow when .
Fig. 3(b) illustrates the results that the delay increases linearly
with time under Q-BP, which implies that several last packets of
the short flow are excessively delayed. On the other hand, D-BP
succeeds in serving the short flow and keeps the delay close to
0. This also implies that certain flows whose queue lengths do
not increase due to lack of future arrivals (or whose interarrival
times between groups of packets are very large) may experi-
ence a large delay under Q-BP, which will be confirmed in the
following simulations.
Next, we evaluate the throughput performance of different

schedulers in a grid network that consists of 16 nodes and
24 links as shown in Fig. 4(a), where nodes and links are

3Unit of link capacity is packets per time-slot.
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Fig. 4. Performance of scheduling algorithms for multihop traffic following
Poisson distribution. (a) Grid network topology. (b) Average queue length.

represented by circles and dashed lines, respectively, with link
capacity. We establish nine multihop flows that are represented
by arrows. Let and . At each time-slot, there is
a file arrival with probability for flow
(represented by the red thick arrow in Fig. 4(a)), and the file
size follows Poisson distribution with mean rate4 . Note
that flow has bursty arrivals with a small mean
rate (we simply call it the bursty flow in the following part).
All the other 8 flows have packet arrivals following Poisson
distribution with mean rate at each time-slot. Although
these flows share the same stochastic property with an identical
mean arrival rate , uniform patterns of traffic are avoided
by carefully setting the link capacities and placing the flows
with different number of hops in an asymmetric manner.
We evaluate the scheduling performance by measuring

average total queue lengths in the network over time. Fig. 4(b)
illustrates average queue lengths under different offered loads
to examine the performance limits of scheduling schemes.
Each result represents an average of 10 simulation runs with
independent stochastic arrivals, where each run lasts for 10
time-slots. Since the optimal throughput region is defined as the
set of arrival rates under which the queue lengths remain finite,
we can consider the traffic load, under which the queue length

4Note that given the network topology, it is hard to find the exact boundary of
the optimal throughput region of scheduling policies in a closed form. Hence,
we probe the boundary by scaling the amount of traffic. After we choose ,
which determines the direction of traffic load vector, we run our simulations
with traffic load changing , which scales the traffic loads.

Fig. 5. Delay distribution of the bursty flow under .

increases rapidly, as the boundary of the optimal throughput re-
gion. Fig. 4(b) shows that D-BP achieves the same throughput
region as Q-BP, thus supporting the theoretical results on
throughput performance.
Although Q-BP and D-BP perform similarly in terms of the

average queue length (or average delay due to Little’s Law) over
the network, the tail of the delay distribution of Q-BP could
be substantially longer because certain flows are starved. This
could cause enormous unfairness between flows, resulting in
very poor QoS for certain flows.
Note that although a bursty flow is a long flow that has an in-

finite amount of data, the arrivals occur in a dispersed manner
(i.e., the interarrival times between groups of packets are very
large), and we can view this bursty flow as consisting of many
short flows. Thus, we expect that the bursty flow may experi-
ence a very large delay under Q-BP. This is because the bursty
flow lacks subsequent packet arrivals over long periods of time,
which does not allow the queue-lengths to grow, and thus con-
tributes to the long tail of the delay distribution. However, this
phenomenon may not manifest itself in terms of a higher av-
erage delay for Q-BP, as can be observed in Fig. 4(b), because
the amount of data corresponding to the bursty flow in the sim-
ulation is small compared to the other flows. On the other hand,
D-BP can achieve better fairness by scheduling the links based
on delays and not starving bursty or variable flows. We confirm
this in the following observations.
Fig. 5 illustrates the effectiveness of using D-BP over Q-BP

in terms of how each scheme affects the delay distribution of
bursty flows. We set . The results show that the tail
of the delay distribution under D-BP vanishes much faster than
Q-BP. Furthermore, we plot the mean delay, the 1st and 5th per-
centile delay5 of the bursty flow over offered loads in Fig. 6.
All these delays under D-BP are substantially less than under
Q-BP, which implies that D-BP successfully eliminates the ex-
cessive packet delays. This confirms that Q-BP causes a sub-
stantially long tail for the delay distribution of the network due
to the starvation of the bursty flow, while D-BP overcomes this
and achieves better fairness among the flows by scheduling the
links based on delays.

5Suppose there are packets sorted by their delays from the largest to the
smallest; the th percentile delay is defined as the delay of the th packet.
If , it means the maximum delay. For example, if the delays are [3, 2,
1, 1, 1], the 40th percentile delay is 2.
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Fig. 6. Mean delay, the 1st and 5th percentile delay of the bursty flow
over offered loads.

Fig. 7. Performance comparison of Q-BP, D-BP, Q-GMS, and D-GMS for
multihop traffic under the 1-hop interference model. (a) Size-6 ring network
topology. (b) Average queue length.

Finally, we consider a size-6 ring network topology under the
1-hop interference model as shown in Fig. 7(a), where links
have unit link capacity. We simulate two flows: flow

and flow . It is known [21]
that Q-GMS is not throughput-optimal in this network, as the
local pooling condition is not satisfied (and thus the multihop
local pooling is not satisfied from [38, Lemma 7]). On the other
hand, although D-GMS is at least as efficient as Q-GMS, it is
not known whether D-GMS can achieve larger throughput in
certain scenarios, e.g., in the network in Fig. 7(a).
To see these, we construct a traffic pattern using the idea

in [34]. We consider packet arrivals in a frame of 12 time-slots.
Two flows have the same arrival pattern in each frame. We as-
sume two arrival patterns for each frame. Starting with empty
queues at time-slot 0, in each frame, the number of exogenous

packet arrivals at the source of each flow (i.e., nodes 1 and 4)
follows pattern with prob-
ability , and pattern with
probability , where . The average arrival rate
vector is then , where
is a dimension-2 vector with all components equal to 1. It is

easy to check that lies strictly inside the optimal throughput
region when , while Q-GMS cannot stabilize the net-
work under such a traffic pattern for all . Because under
Q-GMS, when pattern occurs in a frame, all the packets ar-
riving in this frame can be completely served and leave the net-
work by the end of this frame, while pattern occurs, none of
the packets arriving in this frame leaves the network by the end
of this frame. We evaluate the performance of different sched-
uling policies under the above traffic pattern. For each policy
under a fixed , we take the average over 10 independent exper-
iments, with each run being 10 time-slots. In Fig. 7(b), we can
see that Q-BP and D-BP have finite average queue length for

and thus achieve the maximum throughput.
On the other hand, the average queue length increases linearly
with under Q-GMS and D-GMS starting from and

, respectively. This implies that neither Q-GMS nor
D-GMS is throughput-optimal in this setting, while D-GMS
achieves larger throughput . To fully characterize the
performance limits of D-GMS is an interesting yet challenging
problem.

VII. CONCLUSION

In this paper, we developed a throughput-optimal delay-based
back-pressure scheduling scheme for multihop wireless net-
works with fixed routes. We introduced a new delay metric
suitable for multihop traffic and established a linear relation
between queue lengths and delays in the fluid limits, which
plays a key role in the performance analysis and proof of
throughput optimality. Delay-based schemes provide a simple
way around the well-known last packet problem that plagues
queue-based schedulers, and thus avoid flow starvation. As a
result, the excessively long delays that could be experienced
by certain flows under queue-based scheduling schemes are
eliminated without any loss of throughput. Nonetheless, in
this paper, we have only considered the scheduling problem
with fixed routes, albeit with multihop flows. The question
of whether delay-based schemes under dynamic routing can
achieve throughput optimality is still very much open.

APPENDIX A
SUMMARY OF NOTATIONS

Table I lists the summary of notations.

APPENDIX B
PROOF OF LEMMA 5

We show that there exists a finite time such that
the fluid limits satisfy for all link-flow-pairs

. We prove this by induction. We show that there ex-
ists a finite time with at least one link-flow-pair that satisfies
the condition, and for a given set of link-flow-pairs satisfying
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TABLE I
SUMMARY OF NOTATIONS

the condition, at least one additional link-flow-pair will satisfy
the condition by increasing .
We first fix an arbitrary and define a constant

. In the fluid limit model, we will
have

for all

Since queue lengths are no greater than the injected amount of
data, we have that for all , and thus

(51)

where the last inequality is from (20): and the
definition of . Now we show by induction that there exists a
finite time such that

for all link-flow-pairs

Base Case: There exists such that for at least one
link-flow-pair

(52)

Let . Suppose that (52) does not hold, i.e., there ex-
ists at least one packet that arrives before time-slot
and is not served by the end of time-slot . Hence, at each
time-slot between , there exists at least
one schedule that has positive summed weight. Therefore, the
schedule determined by D-BP must serve at least one packet
in the original system, otherwise the summed weight of the

schedule (that does not serve any packet) is zero, which is not
the maximum over all the feasible schedules. Hence, we must
have

Dividing both sides of the above inequality by and letting
, we obtain

Then, from (51), we have

Therefore, for at least one link-flow-pair
.

Inductive Step: Suppose that there exist and a subset
such that for all , we have

(53)

Then, there exists , where , and a
link-flow-pair such that

(54)

Further we define .
We prove the inductive step for . The generalization for
is straightforward. Hence, we show that for given and

, there exists a finite such that (54) with holds for
at least two different link-flow-pairs.
Let denote the link-flow-pair that satisfies (53) with .

Then, we have6 and can specify the set of
link-flow-pairs that is closest to the source of
each flow from (46). We illustrate the case that , and
the other case that can be easily shown following the
same line of analysis. Now, we have

for all

For all the other link-flow-pairs, we observe that

(55)

Suppose that for all , we have

for all (56)

In the following part, we provide a choice of such that
assumption (56) leads to a contradiction, which completes the
inductive step, and then the lemma follows by induction.
We view each sample path after time-slot

as a generalized system with link-flow-pairs in .
We say that a time-slot is unavailable to when a packet from a
link-flow-pair is transmitted during the time-slot.
Let denote the (scaled) amount of time unavailable to

6Note that if , we must have . Hence, for ,
we must have the first hop of a flow, i.e., for some .
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during the period of in the scaled system, for all .
For the scaled generalized system , we obtain from (55) and
(56) that

(57)

for all . Since the time unavailable to is bounded,
as time increases, only link-flow-pairs in will be sched-
uled, which implies that the weight of link-flow-pairs of
becomes negligible. This allows us to focus on . Owing to
Lemma 4 and the definition of , the linear relation between
queue lengths and delays holds for the link-flow-pair in .
Then, it can be easily shown following the same line of anal-
ysis of Proposition 6 that link-flow-pairs in are stable under
D-BP.7 Hence, for all , we have

for all (58)

and thus

for all (59)

for some constant , which depends on and and does
not depend on time .
Recall that denotes the set of link-flow-pairs that is closest

to the source of each flow out of defined in (48). We choose
large enough such that for all and

(60)

From (56), there are packets that arrive at the source node by
time and have not been served at th hop by time for all

, we obtain that

for all (61)

Since for , we have

(62)

for all . From (59), (61), and that ,
we have

(63)

for all . Then, we have

7Note that since Lemmas 4 and 5 hold for the generalized system , Propo-
sition 6 can be applied to .

for all and , where (a) is from (59) and
(63), (b) is from (60), and (c) is from (63) and (62). Hence, for
large , we have that

(64)

Also, from (61), we have that

(65)

for all . Since (65) holds for an arbitrarily
small and from (64), D-BP favors link-flow-pairs of for
all large . Note that is bounded for from
(59), and is bounded for from
(65), and increases linearly on the order of for

from (63). Hence, there exists a large such
that for all , link-flow-pairs in will be scheduled at
all the time-slots between under D-BP.
Then, we can choose and have that

However, this contradicts with (57), which shows that the as-
sumption (56) is false, and there exists a large such that

for at least one

(66)

In fact, our choice of depends on the set . However,
since there are only a finite number of flows, we can always
choose a large enough so that (66) holds for some

.
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