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Abstract—In this paper, we study the scheduling problem for
downlink transmission in a multichannel (e.g., OFDM-based)
wireless network. We focus on a single cell, with the aim of
developing a unifying framework for designing low-complexity
scheduling policies that can provide optimal performance in terms
of both throughput and delay. We develop new easy-to-verify
sufficient conditions for rate-function delay optimality (in the
many-channel many-user asymptotic regime) and throughput
optimality (in general nonasymptotic setting), respectively. The
sufficient conditions allow us to prove rate-function delay op-
timality for a class of Oldest Packets First (OPF) policies and
throughput optimality for a large class of Maximum Weight in
the Fluid limit (MWF) policies, respectively. By exploiting the
special features of our carefully chosen sufficient conditions and
intelligently combining policies from the classes of OPF and MWF
policies, we design hybrid policies that are both rate-function
delay-optimal and throughput-optimal with a complexity of

, where is the number of channels or users. Our
sufficient condition is also used to show that a previously proposed
policy called Delay Weighted Matching (DWM) is rate-func-
tion delay-optimal. However, DWM incurs a high complexity of

. Thus, our approach yields significantly lower complexity
than the only previously designed delay and throughput-optimal
scheduling policy. We also conduct numerical experiments to
validate our theoretical results.

Index Terms—Delay optimality, large-deviations theory,
low-complexity, multichannel, OFDM, quality of service,
scheduling, throughput optimality, wireless networks.

I. INTRODUCTION

D ESIGNING high-performance scheduling algorithms
has been a vital and challenging problem in wireless

networks. Among the many dimensions of network perfor-
mance, the most critical ones are perhaps throughput, delay,
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and complexity. However, it is in general extremely difficult,
if not impossible, to develop scheduling policies that attain the
optimal performance in terms of both throughput and delay,
without the cost of high complexity [1].
In this paper, we focus on the setting of a single-hopmultiuser

multichannel system. A practically important example of such
a multichannel system is the downlink of a single cell in 4G
OFDM-based celluar networks (e.g., LTE andWiMAX). Such a
system typically has a large bandwidth that can be divided into
multiple orthogonal subbands (or channels), which need to be
allocated to a large number of users by a scheduling algorithm.
The main question that we will attempt to answer in this paper is
the following:How dowe design efficient scheduling algorithms
that simultaneously provide high throughput, small delay, and
low complexity?
We consider a multichannel system that has channels and

a proportionally large number of users. This setting is referred
to as the many-channel many-user asymptotic regime when
goes to infinity. The connectivity between each user and each
channel is assumed to be time-varying, due to channel fading.
We assume that the base station (BS) maintains separate first-
in–first-out (FIFO) queues that buffer the packets destined to
each user. The delay metric that we will focus on in this paper
is the asymptotic decay-rate (also called the rate-function in the
large-deviations theory) of the probability that the largest packet
waiting time in the system exceeds a fixed threshold, as both
the number of channels and the number of users go to infinity.
[Refer to (2) for the precise definition.]
Next, we overview some key related works. In [2], the

authors considered a single-server model with time-varying
channels and showed that the longest-connected-queue (LCQ)
algorithm minimizes the average delay for the special case
of symmetric (i.i.d. Bernoulli) arrival and channel. Later, the
results were generalized for a multiserver model in [3]. The
authors of [4] further generalized the multiserver model by
considering more general permutation-invariant arrivals (that
are not restricted to Bernoulli only) and multirate channel
model. Hence, the problem of minimizing a general cost
function of queue lengths (includes minimizing the expected
delay) studied in [4] becomes harder. There, for special cases
of ON–OFF channel model with two users or allowing for
fractional server allocation, an optimal scheduling algorithm
was derived. Using the insights obtained from the analytical
results in [4] for ON–OFF channel model, in [5] the same authors
developed heuristic policies and showed through simulations
that their proposed heuristic policies perform well under a
general channel model. Note that in contrast to this paper, the
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above studies directly minimize queue length or delay in a
nonasymptotic regime, which is an extremely difficult problem
in general.
As we do in this paper, another body of related works [6]–[9]

focuses on the many-channel many-user asymptotic regime,
where the analysis may become more tractable. Even though
the analysis for an asymptotic setting is very different from the
nonasymptotic analysis in [4], it is remarkable that some of the
insights are consistent. For example, from a delay optimality
perspective, the above two bodies of studies both point to the
tradeoff between maximizing instantaneous throughput and
balancing the queues. Thus, we believe that, collectively, these
studies under different settings provide useful insights for
designing efficient scheduling solutions in practice.
In [6]–[9], a number of queue-length-based scheduling

policies for achieving optimal or positive queue-length-based
rate-function1 were developed. In particular, an optimal
scheduling policy that maximizes the queue-length-based
rate-function has been derived with complexity [9].
However, these works have two key limitations. First, the
schedulers’ performance are proven under the assumption that
the arrival process is i.i.d. not only across users, but also in
time, which does not model the temporal correlation present in
most real network traffic. More importantly, it is well known
that good queue-length performance does not necessarily
translate to good delay performance [10]–[12]. A recently
developed scheduling policy called Delay Weighted Matching
(DWM) [10], [11], which makes scheduling decisions by
maximizing the sum of the delays of the scheduled packets in
each time-slot, focuses directly on the delay performance as
we do in this paper. It has been shown that DWM is rate-func-
tion delay-optimal in some cases. However, DWM has the
following two key drawbacks: 1) it is unclear whether DWM
is rate-function delay-optimal in general; and 2) DWM yields
a very high complexity of and is thus not amenable for
practical implementations.
Hence, the state of the art does not satisfactorily answer our

main question of how to design scheduling policies with a low
complexity, while guaranteeing provable optimality for both
throughput and delay. In this paper, we address this challenge
and provide the following key intellectual contributions.
First, we characterize easy-to-verify sufficient conditions for

rate-function delay optimality in the many-channel many-user
asymptotic regime and for throughput optimality in general
nonasymptotic settings. The sufficient conditions allow us
to prove rate-function delay optimality for a class of Oldest
Packets First (OPF) policies and throughput optimality for
a large class of Maximum Weight in the Fluid limit (MWF)
policies. Moreover, the sufficient conditions can be used to
show that a slightly modified version of the DWM policy is
both rate-function delay-optimal and throughput-optimal.
Second, we develop an -complexity scheduling

policy called DWM- . The DWM- policy shares the high-
level similarity with the DWM policy [10], [11], but makes
scheduling decisions in each time-slot by maximizing the sum
of the delays of the scheduled packets over only the oldest

1The queue-length-based rate-function is defined as the asymptotic decay-rate
of the probability that the largest queue length in the system exceeds a fixed
threshold.

Fig. 1. System model. The connectivity between each pair of queue and
server is “ON” (denoted by a solid line) with probability , and “OFF” (de-
noted by a dashed line) otherwise.

packets in the system, rather than over all the packets as in the
DWM policy. We show that DWM- is an OPF policy and
is thus rate-function delay-optimal. However, DWM- is not
throughput-optimal in general and may perform poorly when
is not large.
Third, by exploiting the special features of our carefully

chosen sufficient conditions and intelligently combining poli-
cies from the classes of OPF and MWF policies, we develop a
class of two-stage hybrid policies that are both throughput-op-
timal and rate-function delay-optimal. In particular, we can
adopt the DWM- policy in stage 1 and the Delay-based
MaxWeight Scheduling (D-MWS) policy in stage 2, respec-
tively, so as to design an optimal hybrid policy with a low
complexity of .
Finally, we conduct numerical experiments to validate our

theoretical results in different scenarios.

II. SYSTEM MODEL

We consider a multichannel system with orthogonal chan-
nels and users, which can be modeled as a multiqueue multi-
server system with stochastic connectivity, as shown in Fig. 1.
For ease of presentation, the number of users is assumed to be
equal to the number of channels. Our analysis for rate-function
delay optimality follows similarly if the number of users scales
linearly with the number of channels. Throughout the rest of the
paper, we will use the terms “user” and “queue” interchange-
ably, and use the terms “channel” and “server” interchangeably.
We assume that time is slotted. In a time-slot, a server can be
allocated to only one queue, but a queue can get service from
multiple servers. The connectivity between queues and servers
is time-varying, i.e., it can change between “ON” and “OFF” from
time to time. We assume that perfect channel state information
(i.e., whether each channel is ON or OFF for each user in each
time-slot) is known at the BS. This is a reasonable assumption
in the downlink scenario of a single cell in a multichannel cel-
lular system with dedicated feedback channels.
The notations used in this paper are as follows. We let de-

note the FIFO queue (at the BS) associated with the th user,
and let denote the th server. We assume infinite buffer for
all the queues. Let denote the number of packet arrivals
to queue in time-slot , let denote the
cumulative arrivals to the entire system in time-slot , and let

denote the cumulative arrivals to the
system from time to . We let be the mean arrival rate
of queue , and let denote the ar-
rival rate vector. We assume that packet arrivals occur at the
beginning of each time-slot, and packet departures occur at the
end of each time-slot. We let denote the length of queue
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at the beginning of time-slot immediately after packet ar-
rivals. Also, let denote the delay (i.e., waiting time) of
the th packet of queue at the beginning of time-slot , which
is measured since the time when the packet arrived to queue
until the beginning of time-slot . Note that at the end of each
time-slot, the packets still present in the system will have their
delays increased by one due to the elapsed time. We then let

denote the head-of-line (HOL) packet delay of
queue at the beginning of time-slot . Furthermore, we use

to denote the capacity of the link between queue and
server in time-slot , i.e., the maximum number of packets
that can be served by server from queue in time-slot .
Finally, we let denote the indicator function, and let de-
note the set of positive integers.
We now state the assumptions on the arrival processes. The

throughput analysis is carried out under very general conditions
(Assumption 1) similar to that of [13].
Assumption 1: For each user , the arrival

process is an irreducible and positive recurrent Markov
chain with countable state space and satisfies the Strong Law of
Large Numbers: That is, with probability one

(1)

We also assume that the arrival processes are mutually indepen-
dent across users (which can be relaxed for showing throughput
optimality, as discussed in [13]).
Assumptions 2 and 3 will be used for rate-function delay

analysis.
Assumption 2: There exists a finite such that for

any and , i.e., arrivals are bounded. Furthermore, we assume
for any , and .

Assumption 3: The arrival processes are i.i.d. across users,
and for any user . Given any and , there
exists , and a positive function

independent of and such that

for all and .
Assumptions 2 and 3 are relatively mild. The first part

of Assumptions 2 and 3 have also been used in the pre-
vious work [10], [11] for rate-function delay analysis. In
Assumption 2, the first part requires that the arrivals in each
time-slot have bounded support; the second part guarantees
that there is a positive probability that all users have the max-
imum number of arrivals in any time-interval with any length.
Assumption 3 allows the arrivals for each user to be correlated
over time (e.g., arrivals driven by a two-state Markov chain),
which is more general than the arrival processes (i.i.d. in time)
considered in [6]–[9].
We then describe our channel model as follows.
Assumption 4: In any time-slot is modeled as a

Bernoulli random variable with a parameter , i.e.,

with probability
with probability

All the random variables are assumed to be mutually
independent across all the variables , and .
We assume unit channel capacity as above. Under this

assumption, we will also let denote the connectivity

between queue and server in time-slot , without causing
confusions. As in the previous works [6]–[11], in this paper we
assume i.i.d. channels for the analytical results only. Moreover,
we will show through simulations that our proposed low-com-
plexity solution also performs well in more general scenarios,
e.g., when the channel condition follows a two-state Markov
chain that allows correlation over time. Furthermore, we will
briefly discuss how to generalize our solution to more general
scenarios toward the end of this paper.
Next, we define the optimal throughput region (or stability

region) of the system for any fixed integer . As in [13],
a stochastic queueing network is said to be stable if it can be
described as a discrete-time countable Markov chain and the
Markov chain is stable in the following sense: The set of posi-
tive recurrent states is nonempty, and it contains a finite subset
such that with probability one, this subset is reachedwithin finite
time from any initial state.When all the states communicate, sta-
bility is equivalent to theMarkov chain being positive recurrent.
The throughput region of a scheduling policy is defined as the
set of arrival rate vectors for which the network remains stable
under this policy. Furthermore, the optimal throughput region
is defined as the union of the throughput regions of all possible
scheduling policies. We let denote the optimal throughput
region. A scheduling policy is throughput-optimal if it can sta-
bilize any arrival rate vector strictly inside . For more dis-
cussions on the characterization of , please refer to our online
technical report [14].
For delay analysis, we consider the many-channel many-user

asymptotic regime. Let denote the largest HOL delay over
all the queues (i.e., the largest or worst packet waiting time
in the system) at the beginning of time-slot , i.e.,

. Assuming that the system is stationary and
ergodic, we define the rate-function for integer threshold
as

(2)

We can then estimate when
is large, and the estimation accuracy tends to be higher as in-
creases. Clearly, for large , a larger value of the rate-function
leads to better delay performance, i.e., a smaller probability that
the largest HOL delay exceeds a certain threshold. A sched-
uling policy is rate-function delay-optimal if for any fixed in-
teger threshold , it achieves the maximum rate-function
over all possible scheduling policies.
Note that the rate-function optimality is studied in the asymp-

totic regime, i.e., when goes to infinity. Although the con-
vergence of the rate-function is typically fast, the throughput
performance may be poor for small to moderate values of .
As a matter of fact, a rate-function delay-optimal policy may
not even be throughput-optimal for a fixed (e.g., the DWM-
policy that we will propose in Section IV). To that end, we are
interested in designing scheduling policies that maximize both
the throughput (for any fixed ) and the rate-function (in the
many-channel many-user asymptotic regime).

III. UPPER BOUND ON THE RATE-FUNCTION

In this section, we derive an upper bound on the rate-func-
tion that can be achieved by any scheduling algorithm. Then, in
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Section IV, we will provide a sufficient condition for achieving
this upper bound and thus achieving the optimal rate-function.
As in [10] and [11], for any integer and any real number

, we define the quantity

where is the
cumulant-generating function of and

. From Cramer’s Theorem,
this quantity, , is equal to the asymptotic decay-rate
of the probability that in any interval of time-slots, the total
number of packet arrivals to the system is no smaller than

, as tends to infinity, i.e.,

(3)

Define the following for the case of . For any integer
, we define as

Then, we define . It will
later become clear why the values of in the set are important
and need to be considered separately. Let . Then,
for any integer , we define the quantity

(4)

Furthermore, for any given integer , we define

if
if

In the following theorem, we show that for any given integer
threshold is an upper bound of the rate-function
that can be achieved by any scheduling policy.
Theorem 1: Given the system model described in Section II,

for any scheduling algorithm, we have

for any given integer threshold .
We prove Theorem 1 by considering three types of events that

lead to the delay-violation event and computing
their probabilities. We provide the proof in Appendix A.
Note that in [10], the authors derived another upper bound

, where
and . We would

like to remark that their upper bound was derived by consid-
ering two types of events that lead to the delay-violation event,
which yet accounts for only a proper subset of the events that
we consider in Appendix A. Hence, their upper bound could be
larger than in some cases.

IV. SUFFICIENT CONDITIONS

In [10] and [11], the authors proposed the DWM policy and
studied its rate-function delay optimality2 (without the second
part of Assumption 2) in some cases. Specifically, in [10] and
[11], the authors proved that DWM attains a rate-function that is
no smaller than ,
where . This is proved by showing that
the FBS policy (with a properly chosen operating parameter )
can attain this rate-function and DWM dominates FBS for all
values of in a sample-path sense. As pointed out in [10, Sec.
V.D], there may be a gap between the rate-function attained by
DWM and the upper bound derived in [10], depending on the
value of and the arrival process. More specifically, it can be
shown that for given , if for all
values of for the given arrival process, then both
FBS and DWM are rate-function delay-optimal.
However, it is unclear whether the DWM policy is rate-func-

tion delay-optimal in general. Moreover, its high complexity
renders it impractical. Hence, the grand challenge

is to find low-complexity scheduling policies that are both
throughput-optimal and rate-function delay-optimal. To
that end, in this section, we first characterize easy-to-verify
sufficient conditions for rate-function delay optimality in the
many-channel many-user asymptotic regime and for throughput
optimality in nonasymptotic settings. We then develop two
classes of policies, called the OPF policies and the MWF
polices, that satisfy the sufficient condition for rate-function
delay optimality and throughput optimality, respectively.
As discussed in the Introduction, our ultimate goal is to de-

velop low-complexity hybrid policies that are both rate-function
delay-optimal and throughput-optimal. However, it is unclear
that just because one policy is rate-function delay-optimal and
another one is throughput-optimal, their combinations will nec-
essarily yield the right hybrid policy that is optimal in terms of
both throughput and delay. As we will discuss further in the be-
ginning of Section V, our carefully chosen sufficient conditions
possess some special features that allow us to construct low-
complexity hybrid policies that are both rate-function delay-op-
timal and throughput-optimal.

A. Rate-Function Delay Optimality

We start by presenting the main result of this section in the
following theorem, which provides a sufficient condition for
scheduling policies to be rate-function delay-optimal.
Theorem 2: Under Assumptions 2 and 3, a scheduling policy
is rate-function delay-optimal if in any time-slot, policy

can serve the oldest packets in that time-slot for the largest
possible value of .
To prove Theorem 2, we will exploit a dominance property

(Lemma 3) of the policies that satisfy the above sufficient
condition. Due to space constraint, we have provided the full
proof with all the details in our online technical report [14].
However, in this paper we do provide an outline of the proof
in Appendix B and give the intuition behind it as follows.
First, it is easy to see that the first-come–first-serve (FCFS)

2Although the delay metric considered in [10] and [11] is slightly different
from ours, both metrics are closely related. Moreover, the rate-function delay
analysis for DWM in [10] and [11] is also applicable for our defined rate-func-
tion as in (2).
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policy, which serves the oldest packets first, is (sample-path)
delay-optimal in a single-queue single-server system. Also,
it is not hard to see that for a multiqueue multiserver system
with full connectivity, where all pairs of queue and server are
connected, a policy that chooses to serve the oldest packets
(over the whole system) first is delay-optimal. These motivate
us to ask a natural and interesting question: If a policy chooses
to serve the oldest packets first in a multiqueue multiserver
system with time-varying and partial connectivity (as we
consider in this paper), does it achieve rate-function delay
optimality? Note that in such a system, at most packets
can be served in each time-slot. Hence, if in each time-slot a
policy can serve all the oldest packets in the system (as in the
case with full connectivity), this policy should yield optimal
delay performance. However, due to the random connectivity
between queues and servers, no policy may be able to do so.
Hence, we propose a class of policies that choose to serve the
oldest packets for the largest possible value of . In other

words, for any , if the oldest packets can be
served by some scheduling policy, then our proposed policies
will serve these packets too.
A similar, but less thorough, analysis was also carried out

in [10] and [11]. There, the authors proposed the Frame-Based
Scheduling (FBS) policy, which aims to serve the oldest packets
in each time-slot and can be viewed as an approximation of
FCFS policy. The FBS policy serves packets in units of frames.
With a given positive integer as the operating parameter, each
frame is constructed such that: 1) the difference of the arrival
times of any two packets within a frame must be no greater than
; and 2) the total number of packets in each frame is no greater
than . In each time-slot, the packets arrived at the
beginning of this time-slot are filled into the last frame until any
of the above two conditions are violated, in which case a new
frame will be opened. In any time-slot, the FBS policy serves
the HOL frame that contains the oldest (up to ) packets with
high probability for large . As discussed at the beginning of this
section, it has been shown that the FBS policy with a properly
chosen operating parameter is rate-function delay-optimal in
some cases.
However, FBS may not be rate-function delay-optimal in

some other cases. Specifically, consider i.i.d. Bernoulli arrivals
with . As pointed out in [10], the rate-function attained
by the FBS policy is not optimal in this scenario. We provide
the intuition as follows. Suppose there are a total of packet
arrivals to the system in an interval of time-slots. It is easy to
see that FBS needs at least time-slots to completely serve
these packets since at most packets can be served by FBS
in one time-slot. This could lead to a suboptimal rate-function.
To see this, consider the perfect-matching policy defined as
follows. Let and denote the set of queues and set of servers,
respectively. In a time-slot , let
denote the set of edges between and . Clearly,
forms a bipartite graph. If a perfect matching can be found in
the bipartite graph , then the servers are allocated to
serve the oldest packets in the respective queues as determined
by the perfect matching. Otherwise, none of the servers will
be allocated to the queues. It has been shown in [6] that in
each time-slot, a perfect matching can be found with high
probability for large . Hence, in the case described above,
the perfect-matching policy needs only time-slots to drain all

these packets with high probability for large , while FBS
is suboptimal.
On the other hand, the perfect-matching policy does not per-

form well in many other cases due to the fact that it cannot
serve more than one packet from each queue in a time-slot. For
example, consider the case where there are packets existing
in and the other queues are all empty. FBS can drain these
packets within one time-slot with high probability, yet the per-
fect-matching policy needs at least time-slots.
The above discussions suggest that if we can find a policy

that dominates both the FBS policy and the perfect-matching
policy, there is hope that this policy may be able to achieve
the optimal rate-function in general. We will show in Lemma 3
that a policy that satisfies the sufficient condition in Theorem 2
indeed dominates both the FBS policy and the perfect-matching
policy in a sample-path sense.
In order to state the dominance property of Lemma 3, we

consider the following versions of the FBS policy and the per-
fect-matching policy. Suppose that packet is the th arrival
to the queue in time-slot . Then, we define the weight
of the packet in time-slot as

. For two packets and , we say is older than
if . The above way of defining the weight

ensures that among the packets that arrive at the same time, the
priority is given to the packet that has an earlier order of arrival
in each queue; and furthermore, among the packets (in different
queues) with the same order of arrival, the priority is given to
the packet that arrives to the queue with a smaller index. For the
FBS policy, we assume that the packets with a larger weight
are filled to the frame with a higher priority when there are
multiple packets arriving at the same time. Meanwhile for the
perfect-matching policy, we require that in time-slot , the per-
fect-matching policy only serves packets with the largest value
of . Under this version of the perfect-matching
policy, it is possible that a queue may not have any of its packets
served even if a perfect-matching is found and a server is allo-
cated to the queue. It should be noted that the above versions
of the FBS policy and the perfect-matching policy are used for
analysis only. Next, we present the dominance property in the
following lemma.
Lemma 3: Consider the versions of the FBS policy and the

perfect-matching policy described above. Suppose that policy
satisfies the sufficient condition in Theorem 2. Then, for any

given sample path, by the end of any time-slot , policy has
served every packet that the FBS policy or the perfect-matching
policy has served.
We prove Lemma 3 by contradiction and provide the proof

in Appendix C. Furthermore, by using this dominance prop-
erty, and following a similar argument as in the rate-function
delay analysis for FBS ([10, Theorem 2]), we prove Theorem 2.
Specifically, we consider all the sample paths that lead to the
delay-violation event. There are different ways that the delay-vi-
olation event can occur, each of which has a corresponding
rate-function for its probability of occurring. Large-deviations
theory then tells us that the rate-function for delay violation is
determined by the smallest rate-function among these possibili-
ties (i.e., “rare events occur in the most likely way”). An outline
of the proof for Theorem 2 is provided in Appendix B.
Next, we define a class of OPF policies as follows.
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Definition 1: A scheduling policy is said to be in the class
of OPF policies if policy satisfies the sufficient condition in
Theorem 2.
Clearly, the class of OPF policies is all rate-function

delay-optimal. We would like to emphasize that the sufficient
condition in Theorem 2 is very easy to verify and can be readily
used to design other rate-function delay-optimal policies.
Specifically, Theorem 2 enables us to identify a new rate-func-
tion delay-optimal policy, called the policy, which
substantially reduces the complexity to . This
in turn allows us to design low-complexity hybrid scheduling
policies that are both throughput-optimal and rate-function
delay-optimal (in Section V).
Now, we review the DWM policy proposed in [10] and [11].

DWM operates in the following way. In each time-slot , define
the weight of the th packet of as , i.e., the delay of this
packet at the beginning of time-slot , which is measured since
the time when this packet arrived to queue until time-slot .
Then, construct a bipartite graph such that the
vertices in correspond to the oldest packets from each of
the queues and is the set of all servers. Thus,
and . Let be the set of packets from queue
. If queue is connected to server , then for each packet

, there is an edge between and in graph , and
the weight of this edge is set to the weight of packet . The
schedule is then determined by a maximum-weight matching
over . Clearly, DWM maximizes the sum of the delays of the
packets scheduled.
It has been shown in [10] and [11] that the DWM policy is

rate-function delay-optimal in some cases. However, it is un-
clear whether it is delay-optimal in general. We would like to
highlight that our proposed sufficient condition in Theorem 2
allows us to show that a slightly modified version of the DWM
policy is rate-function delay-optimal in general (under an ad-
ditional mild assumption—the second part of Assumption 2).
Specifically, in the modified version of the DWM policy, we as-
sign the weight of a packet as instead of its delay only.
Then, by simply duplicating the proof of [10, Lemma 7], we can
show that the modified version of the DWM policy is an OPF
policy and is thus rate-function delay-optimal.
However, the DWM policy still suffers from a high com-

plexity, which renders it impractical. Specifically, DWM has a
complexity of since the complexity of finding a max-
imum-weight matching [15] over a bipartite graph is

in general, and the bipartite graph con-
structed by DWM has and .
To overcome the high-complexity issue, we develop a simpler

policy that is also in the class of the OPF policies (and is thus
rate-function delay-optimal), but has a much lower complexity
of . The new policy is called the policy
due to the high-level similarity with DWM. However, it ex-
hibits critical differences when picking packets to construct the
bipartite graph and finding the maximum-weight
matching over . The differences are as follows.
1) In each time-slot, instead of considering the oldest
packets from each queue (and thus packets in total) as
in DWM, DWM- considers only the oldest packets in
the whole system. Hence, the bipartite graph constructed
by DWM- has and .

2) The rest of the operations of DWM- are similar to that
of DWM, i.e., the schedule is determined by a max-
imum-weight matching over , except that DWM-
finds a maximum-weight matching based on the vertex
weights. Such a maximum-weight matching is also called
Maximum Vertex-weighted Matching (MVM) [16], [17].
Specifically, the weight of each vertex is set to

(i.e., the weight of the corresponding packet ), and
the weight of each vertex in the set is set to 0.

In the following proposition, we show that the DWM-
policy is rate-function delay-optimal and has a low complexity.
Proposition 4: The DWM- policy is an OPF policy and

is thus rate-function delay-optimal under Assumptions 2 and
3. Furthermore, the DWM- policy has a low complexity of

.
We provide the proof in Appendix D. The fact that the

DWM- policy is an OPF policy follows from a property of
MVM [16] that if there exists a matching that matches all
of the heaviest vertices, then any MVM matches all of the
heaviest vertices as well. The low complexity of DWM-

follows immediately from the fact that DWM- reduces the
number of packets under consideration ( packets in total),
and that an MVM in an bipartite graph can be found
in time [16]. Note that even if the DWM policy
adopts MVM when determining the schedule, its complexity
can only be reduced to .
Although the DWM- policy achieves rate-function delay

optimality with a low complexity, it may not be throughput-op-
timal in general. This is because the DWM- policy considers
only the oldest packets in the system. It is likely that certain
servers may not be connected to any of the queues that con-
tain these packets, which results in the server being idle and
is thus a waste of service. Hence, DWM- is a lazy policy. In
fact, we can construct a simple counterexample to show that the
DWM- policy is, in general, not throughput-optimal as stated
in Proposition 5.
Proposition 5: TheDWM- policy is not throughput-optimal

in general.
We prove Proposition 5 by constructing a special arrival

pattern that forces certain servers to be idle, even when they can
serve some of the queues. We provide the proof in Appendix E.
Proposition 5 suggests that a rate-function delay-optimal policy
may not have good throughput performance (for a fixed ).
This may appear counterintuitive at the first glance. However,
it should be noted that the rate-function delay optimality is
studied in the asymptotic regime, i.e., when goes to infinity.
Although the convergence of the rate-function is typically fast,
the throughput performance may be poor for small to moderate
values of . Our simulation results (Fig. 3 in Section VI) will
provide further evidence of this.

B. Throughput Optimality

In this section, we present a sufficient condition for
throughput optimality in very general nonasymptotic settings.
Recall that denotes the length of queue at the be-

ginning of time-slot immediately after packet arrivals,
denotes the delay of the th packet of at the beginning of
time-slot denotes the HOL packet delay of
at the beginning of time-slot , and denotes the con-

nectivity between and in time-slot . Let denote the
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set of queues being connected to server in time-slot , i.e.,
, and let denote the

subset of queues in that have the largest weight in time-
slot , i.e., .
We now present the main result of this section.
Theorem 6: Let be the index of the queue that is served

by server in time-slot , under a scheduling policy . Under
Assumption 1, policy is throughput-optimal if there exists a
constant such that, in any time-slot and for all

, queue satisfies that
for all such that .
We prove Theorem 6 using fluid limit techniques [13], [18]

and standard Lyapunov argument. Due to space constraint, we
provide the proof in our online technical report [14]. The condi-
tion in Theorem 6 means the following: In each time-slot, each
server chooses to serve a queue with HOL packet delay no less
than the delay of the th packet in the queue with the largest
HOL delay (among the queues connected to the server); if this
queue (with the largest HOL delay) has less than packets,
then the server may choose to serve any queue.
It is well-known that the MaxWeight Scheduling (MWS)

policy [12], [13], [19]–[22] that maximizes the weighted sum
of the rates, where the weights are queue lengths or delays,
is throughput-optimal in very general settings, including the
multichannel system that we consider in this paper. The intu-
ition behind Theorem 6 is that to achieve throughput optimality
in our multichannel system, it is sufficient for each server to
choose a connected queue with a large enough weight such
that this queue has the largest weight in the fluid limit. This
relaxes the condition that each server has to find a queue with
the largest weight in the original system, and thus significantly
expands the set of known throughput-optimal policies.
Next, we define the class of MWF policies as follows.
Definition 2: A policy is said to be in the class of

MWF policies if policy satisfies the sufficient condition in
Theorem 6.
Clearly, the class of MWF policies is all throughput-optimal.

It is claimed in [10] and [11] that the DWMpolicy is throughput-
optimal, yet the throughput optimality was not explicitly proved
there. For completeness, we state the following proposition on
throughput optimality of the DWM policy and provide its proof
in our online technical report [14].
Proposition 7: The DWM policy is an MWF policy and is

thus throughput-optimal under Assumption 1.
Next, we study a simple extension of the delay-based

MaxWeight policy [12], [13], [22] that is throughput-optimal
in our multichannel system.
D-MWS Policy: In each time-slot , the scheduler al-

locates each server to serve queue such that
. In other words, each server

chooses to serve a queue that has the largest HOL delay
(among all the queues connected to this server), breaking ties
by picking the one with the smallest index if there are multiple
such queues.
It is easy to see that D-MWS is an MWF policy and is thus

throughput-optimal. Also, it is worth noting that D-MWS has a
low complexity of in our multichannel system. However,
we can show that D-MWS suffers from poor delay performance.
Specifically, we show in the following proposition that under
D-MWS, the probability that the largest HOL delay exceeds any

fixed threshold, is at least a constant, even if is large. This
results in a zero rate-function.
Proposition 8: Consider i.i.d. Bernoulli arrivals, i.e., in each

time-slot, and for each user, there is a packet arrival with prob-
ability , and no arrivals otherwise. By allocating servers to
queues according to D-MWS, we have that

(5)

for any fixed integer .
Due to space constraint, we provide the proof in our on-

line technical report [14] and explain the intuition behind it in
the following. Note that under D-MWS, each server chooses
to serve a connected queue having the largest weight without
accounting for the decisions of the other servers. This way of
allocating servers may incur an unbalanced schedule such that
in each time-slot, with high probability, only a small fraction
of the queues ( out of queues) gets served, while
the number of queues having arrivals is much larger .
This then leads to poor delay performance. By an argument sim-
ilar to that of [7, Theorem 3] [where the authors show that the
Queue-length-based MaxWeight Scheduling (Q-MWS) policy
results in a zero queue-length rate-function], we can show that
under D-MWS, the delay-violation event occurs with at least a
constant probability for any fixed threshold even if is large.
We conclude this section with a summary of the scheduling

policies proposed and/or discussed in this section. The FBS
policy is a good policy that is useful for the rate-function delay
analysis of other policies, yet it is neither throughput-optimal
nor rate-function delay-optimal in general. Although (the modi-
fied version of) the DWMpolicy is both throughput-optimal and
rate-function delay-optimal, it yields an impractically high com-
plexity. Our analysis shows that our proposed DWM- policy is
rate-function delay-optimal and substantially reduces the com-
plexity to , but it is not throughput-optimal. Fur-
thermore, we show that a simple throughput-optimal policy, the
D-MWS policy, suffers from a zero rate-function.

V. HYBRID POLICIES

It is clear from Section IV that a policy that satisfies the suf-
ficient conditions in Theorems 2 and 6 is both throughput-op-
timal and rate-function delay-optimal. It remains, however, to
find such a policy with a low complexity. Interestingly, our care-
fully chosen sufficient conditions possess the following special
features, which allow us to construct a low-complexity hybrid
policy that is both rate-function delay-optimal and throughput-
optimal.
• The sufficient condition for throughput optimality has a
decoupling feature, in the sense that the condition can be
separately verified for each individual server.

• The sufficient condition for rate-function delay optimality
guarantees not only rate-function delay optimality itself,
but also that all scheduled servers for the oldest packets
satisfy the sufficient condition for throughput optimality.

Hence, by exploiting the above useful features of our sufficient
conditions, we can now develop a class of two-stage hybrid
OPF-MWF policies that runs an OPF policy (focusing on the
oldest packets only) in stage 1, and runs an MWF policy in

stage 2 over the remaining servers (that are not allocated in
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stage 1) only. We will then show that all policies in this class
of hybrid OPF-MWF policies are both rate-function delay-op-
timal and throughput-optimal. In particular, we can find simple
OPF-MWF policies with a low complexity .
We now formally define the class of two-stage hybrid

OPF-MWF policies.
Definition 3: A scheduling policy is said to be in the class

of hybrid OPF-MWF policies if the following conditions are sat-
isfied under policy : In each time-slot , there are two stages.
1) In stage 1, it runs an OPF policy over the oldest packets
only.

2) In stage 2, let denote the set of servers that are not
allocated by the OPF policy in stage 1, and let be
the index of the queue that is matched by server for

in stage 2. There exists a constant such
that in any time-slot and for all , queue
satisfies that for all such
that . In other words, it runs an MWF policy
over the system with the remaining servers and packets.

In the following theorem, we show that the class of
OPF-MWF policies is both rate-function delay-optimal and
throughput-optimal.
Theorem 9: Any hybrid OPF-MWF policy is rate-function

delay-optimal under Assumptions 2 and 3, and is throughput-
optimal under Assumption 1.
We provide the proof in Appendix F and give the intuition be-

hind it as follows. In stage 1, an OPF policy not only guarantees
rate-function delay optimality, but also satisfies the sufficient
condition for throughput optimality for all allocated servers in
this stage. Note that the allocated servers and packets in stage 1
will not be considered in stage 2. In stage 2, we run an MWF
policy for the remaining servers and packets only. Hence, it en-
sures that the sufficient condition for throughput optimality is
satisfied for the remaining servers as well. Since the allocated
servers and packets in stage 1 are not touched in stage 2, the
satisfaction of the sufficient condition for delay optimality is
not perturbed, and the sufficient condition for throughput opti-
mality is also satisfied.
We note that the idea of combining different policies into

(heuristic) hybrid policies to improve the overall performance,
is not new. However, our goal in this paper is to achieve prov-
able optimality in terms of both throughput and delay. Hence,
the task of designing the right hybrid policy becomes much
more challenging. Furthermore, it is not necessary that all com-
binations of the OPF and MWF policies lead to desired hybrid
policies. For example, it is unclear that the sufficient condition
for throughput optimality can be satisfied if instead we run an
MWF policy in stage 1 and do post-processing by applying an
OPF policy in stage 2. In this case, because the servers allo-
cated by an MWF policy in stage 1 can be reallocated in stage 2,
the sufficient condition for throughput optimality may not hold
any more. In contrast, our solutions exploit the special features
of our carefully chosen sufficient conditions, and intelligently
combine different policies in a right way, to achieve the optimal
performance for both throughput and delay.
There are still many policies in the class of hybrid OPF-MWF

policies. In the following, as an example, we show that the
DWM- policy combined with the D-MWS policy yields an

-complexity hybrid OPF-MWF policy that is both
throughput-optimal and rate-function delay-optimal. Let this
policy be called policy. Then, we present
the main result of this paper in the following theorem.
Theorem 10: DWM- -MWS policy is in the class of hy-

brid OPF-MWF policies and is thus both throughput-optimal
and rate-function delay-optimal. Furthermore, DWM- -MWS
policy has a complexity of .
To show that DWM- -MWS is a hybrid OPF-MWF policy,

it suffices to show that Condition 2) of Definition 3 is satisfied.
We provide the proof in Appendix G.

VI. SIMULATION RESULTS

In this section, we conduct simulations to compare the perfor-
mance of the scheduling policies proposed or discussed in this
paper, where the Hybrid policy we consider is DWM- -MWS
policy. We also compare the delay performance of our proposed
policies along with two -complexity queue-length-based
policies (i.e., using queue lengths instead of delays to calcu-
late weights when making scheduling decisions): Queue-based
Server-Side-Greedy (Q-SSG) and Q-MWS, which have been
studied in [6] and [7]. We implement and simulate these policies
in Java and compare the empirical probabilities that the largest
HOL delay in the system in any given time-slot exceeds a con-
stant , i.e., .
For the arrival processes, we consider bursty arrivals that are

driven by a two-state Markov chain and are thus correlated over
time. (We obtained similar results for i.i.d. 0- arrivals over
time, but omit them here due to space constraints.) We adopt the
same parameter settings as in [10] and [11]. For each user, there
are five packet-arrivals when the Markov chain is in state 1,
and no arrivals when the Markov chain is in state 2. The transi-
tion probability of the Markov chain is given by the matrix [0.5,
0.5; 0.1, 0.9], and the state transitions occur at the end of each
time-slot. The arrivals for each user are correlated over time, but
they are independent across users. For the channel model, we
first assume i.i.d. ON–OFF channels (as in Assumption 4) and set

, and later consider more general scenarios with hetero-
geneous users and bursty channels that are correlated over time.
We run simulations for a system with .
The simulation period lasts for 10 time-slots for each policy
and each system.
The results are summarized in Figs. 2 and 3, where the

complexity of each policy is labeled. In order to compare the
rate-function as defined in (2), we plot the probability
over the number of channels or users, i.e., , for a fixed value
of threshold . In Fig. 2, we compare the rate-function
of different scheduling policies for . The negative of
the slope of each curve can be viewed as the rate-function for
the corresponding policy. From Fig. 2, we observe that the
Hybrid and DWM- policies perform closely to DWM, and
that D-MWS and Q-MWS have a zero rate-function, which
supports our analytical results. Furthermore, the results show
that the delay-based policies (DWM, DWM- , and Hybrid)
consistently outperform Q-SSG in terms of delay performance,
despite that it has been shown through simulations that Q-SSG
performs closely to a rate-function (queue-length) optimal
policy [6], [7]. This provides further evidence of the fact that
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Fig. 2. Performance comparison of different scheduling policies in the case
with homogeneous i.i.d. channels, for delay threshold .

Fig. 3. Performance comparison of different scheduling policies in the case
with homogeneous i.i.d. channels, for channels/users.

good queue-length performance does not necessarily translate
to good delay performance.
We also plot the probability over delay threshold as in

[6]–[8], [10], and [11] to investigate the performance of dif-
ferent policies when is small. In Fig. 3, we report the results
for and . From Fig. 3, we observe
that the Hybrid policy consistently performs closely to DWM
for almost all values of that we consider, while DWM- is
worse than DWM. This is because DWM- may not schedule
all the servers, and the probability that some of the servers are
kept idle can be significant when is small.
Finally, we evaluate the performance of different scheduling

policies in more realistic scenarios, where users are heteroge-
neous and channels are correlated over time. Specifically, we
consider channels that can be modeled by a two-state Markov
chain, where the channel is “ON” when the Markov chain is in
state 1, and is “OFF” when the Markov chain is in state 2. This
type of channel model can be viewed as a special case of the
Gilbert Elliot model that is widely used for describing bursty
channels. We assume that there are two classes of users: users
with an odd index are called near-users, and users with an even
index are called far-users. Different classes of users see dif-
ferent channel conditions: Near-users see better channel condi-
tion, and far-users see worse channel condition. We assume that
the transition probability matrices of channels for near-users
and far-users are [0.833, 0.167; 0.5, 0.5] and [0.5, 0.5; 0.167,
0.833], respectively. The arrival processes are assumed to be
the same as in the previous case. Also, the delay requirements

Fig. 4. Performance comparison of different scheduling policies in the case
with Markov-chain driven heterogeneous channels, for delay threshold .

are assumed to be the same for different classes of users, i.e.,
we still consider the probability that the largest HOL delay ex-
ceeds a fixed threshold, without distinguishing different classes
of users.
The results are summarized in Fig. 4. We observe similar re-

sults as in the previous case, where channels are i.i.d. in time.
In particular, our low-complexity policies (DWM- and Hy-
brid) again perform closely to DWM, in terms of rate-function,
although the delay-violation probability is a bit smaller under
DWM when is not large (i.e., ), which is expected.
Note that in this scenario, rate-function delay-optimal policies
are not known yet. For future work, it would be interesting to
explore whether our proposed policies can achieve optimality
of both throughput and delay in more general scenarios.

VII. CONCLUSION

In this paper, we addressed the question of designing
low-complexity scheduling policies that provide optimal per-
formance of both throughput and delay inmultichannel systems.
We derived simple and easy-to-verify sufficient conditions for
throughput optimality and rate-function delay optimality, which
allowed us to later develop a class of low-complexity hybrid
policies that simultaneously achieve both throughput optimality
and rate-function delay optimality.
Our work in this paper leads to many interesting questions

that are worth exploring in the future. It would be interesting to
know if one can further relax the sufficient conditions and de-
sign even simpler policies that can provide optimal performance
for both throughput and delay. Furthermore, it would be worth-
while to analytically characterize the fundamental tradeoff be-
tween performance and complexity.
Furthermore, it is important to investigate the scheduling

problem in more realistic scenarios, e.g., accounting for more
general multirate channels that are correlated over time, rather
than i.i.d. ON–OFF channels, and heterogeneous users with
different statistics as well as different delay requirements.
Our hope is to find efficient schedulers that can guarantee a
nontrivial lower bound of the optimal rate-function if it is too
hard to achieve (or prove) the optimal delay performance itself
in more general scenarios.
Finally, it is interesting and important for us to understand

the delay performance beyond rate-function optimality as we
considered in this paper. The log-asymptotic results from the
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large-deviations analysis may not suffice since they do not ac-
count for the prefactor of the delay-violation probability. There-
fore, a very important direction is to analyze and understand the
exact delay asymptotics as well as the mean delay performance.

APPENDIX A
PROOF OF THEOREM 1

We begin with stating an important property of
in the following lemma, which will be used in deriving the
upper bound in Theorem 1. Recall that we define the quantity

.
Lemma 11: Suppose . For any given integer , and

for all , the limit
exists and we have .

Proof: Consider any given integer . First, note that
the total number of packet arrivals to the system during an in-
terval of time-slots cannot exceed . Hence, we only need
to consider defined on . By the second part
of Assumption 2, it is easy to see that must be finite
in . Note that is a supremum (over ) of
linear functions (of ). Hence, is a convex function (of
), and is thus continuous on (i.e., the interior of

) ([23, p. 68]). Furthermore, it is easy to see that
is monotone (nondecreasing) on due to (3).

Hence, it is not hard to show that is right-continuous at
the left-most point . Therefore, the limit
exists and we have for any

.
First, we focus on the case where , and consider three

types of events, , and , that imply the delay-violation
event .
Event : Suppose that there is a packet that arrives to the

network in time-slot . Without loss of generality, we as-
sume that the packet arrives to queue . Furthermore, suppose
that is disconnected from all servers in all time-slots from

to .
Then, at the beginning of time-slot 0, this packet is still in the

network and has a delay of . This implies
. Note that the probability that event occurs can be com-

puted as

Hence, we have

and thus

Event : Consider any fixed and any
. Recall that . Then, for all , we have

, and thus
from Lemma 11. Hence, for any fixed , there exists a

such that
. Suppose that from time-slot to ,

the total number of packet arrivals to the system is greater than
or equal to , and let denote the
probability that this event occurs. Then, from Cramer’s The-
orem, we have

. Clearly, the total number of packets that are
served in any time-slot is no greater than . For any fixed , we
have for large enough (when ). Hence, if the
above event occurs, at the end of time-slot , the system
contains at least one packet that arrived before time-slot .
Without loss of generality, we assume that this packet is in .
Now, assume that is disconnected from all servers in the
next time-slots, i.e., from time-slot to . This occurs
with probability , independently of all
the past history. Hence, at the beginning of time-slot 0, there
is still a packet that arrived before time-slot . Thus, we have

in this case. This implies . Note
that the probability that event occurs can be computed as

Hence, we have

and thus

Since the above inequality holds for any ,
any , and any , by letting tend to 0, taking the
infimum over all , and taking the minimum over all

, we have

Event : Consider any fixed . Suppose that from
time-slot to , the total number of packet ar-
rivals to the system is equal to ,
and let denote the probability that this event occurs. Note
that the total number of packet arrivals to the system from time-
slot to can never exceed . Then,
from Cramer’s Theorem, we have

. Clearly, the total number of packets that can
be served during the interval is no greater
than . Suppose that there exists
one queue that is disconnected from all the servers in any one
time-slot in the interval . Then, at the end
of time-slot , the system contains at least one packet that
arrived before time-slot . Without loss of generality, we as-
sume that queue is disconnected from all the servers in a
time-slot, say time-slot . This event occurs with proba-
bility . Furthermore, assume that is discon-
nected from all the servers in the next time-slots, i.e., from
time-slot to . This occurs with probability

, independently of all the past history. Hence, at the be-
ginning of time-slot 0, there is still a packet that arrived before
time-slot . Thus, we have in this case. This im-
plies . Note that the probability that event
occurs can be computed as

Hence, we have
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and thus

Since the above inequality holds for any , by taking the
minimum over all , we have, for

Considering events , and , we have

Next, we consider the case where . In this
case, we only need to consider event , and we have

.
Combining both cases of and , we have

. This completes
our proof.

APPENDIX B
PROOF OF THEOREM 2

Suppose policy satisfies the sufficient condition in
Theorem 2. We want to show that for any given integer
threshold , the rate-function attained by policy is no
smaller than . The proof follows a similar argument as
in the proof of [10, Theorem 2]. However, our proof exhibits
the following key difference. In [10], the authors prove that the
FBS policy can attain a certain rate-function, which, in some
cases only, meets the upper bound derived in [10]. In contrast,
in the following proof, by exploiting the dominance property
over both the FBS policy and the perfect-matching policy
in Lemma 3, we will show that the rate-function attained by
policy is always no smaller than the upper bound that
we derived in Theorem 1 and is thus optimal.
We first consider the case of and want to show that the

rate-function attained by policy is no smaller than .
In the following proof, we will use the dominance property of

policy over the FBS policy and the perfect-matching policy
considered in Lemma 3.We first choose the value of parameter
for FBS based on the statistics of the arrival process. We fix

and . Then, from Assumption 3, there exists a
positive function such that for all and

, we have

for any integer . We then choose

The reason for choosing the above value of will become clear
later on. Recall from Assumption 2 that is the maximum
number of packets that can arrive to a queue in any time-slot .
Let . Then, is the maximum number of packets that
can arrive to a queue during an interval of time-slots, and is
thus the maximum number of packets from the same queue in a
frame.
Let be the last time before time-slot , when the

backlog is empty, i.e., all the queues have a queue length of
zero. Also, let be the set of sample paths such that

and under policy . Then, we have

(6)

Let and be the set of sample paths such that given
, the event occurs under the

FBS policy and the perfect-matching policy, respectively. Re-
call that policy dominates both the FBS policy and the per-
fect-matching policy. Then, for any we have

(7)

Recall that is the mean arrival rate to a queue. Now, we
choose any fixed real number , and fix a finite time
as

(8)

where

(9)

(10)

The reason for defining the above value of will become clear
later on. Then, we apply (7) to (6) and split the summation as

where

and

We divide the proof into two parts. In Part 1, we show that
there exists a finite such that for all , we have

Then, in Part 2, we show that there exists a finite such
that for all , we have



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

Finally, combining both parts, we have

for all . By taking logarithm and limit
as goes to infinity, we obtain

, and thus the desired results.
The detailed proof is provided in our online technical

report [14].

APPENDIX C
PROOF OF LEMMA 3

Suppose policy satisfies the sufficient condition in The-
orem 2. We first want to show that policy dominates the ver-
sion of the FBS policy described in Section IV-A. The proof
follows a similar argument as in the proof of [10, Lemma 7].
Consider two queueing systems, and , both of which

have the same arrival and channel realizations. We assume that
adopts policy and adopts the FBS policy. Recall that

the weight of a packet in time-slot is defined as
. For two packets and , we

say is older than if .
Let represent the set of packets present in the system
at the end of time-slot , for . Then, it suffices to

show that for all time . We let denote the
set of packets that arrive at time . Let denote the set of
packets that depart the system at time t, for . Hence,
we have , for .
We then proceed with the proof by contradiction. Suppose

that for some time . Without loss of generality,
we assume that is the first time such that
occurs. Hence, there must exist a packet, say , such that

and . Because is the first time when such
an event occurs, packet must depart from the system in
time-slot , i.e., .
Let denote the set of packets in

with weight greater than or equal to , for . Clearly,
we have for all , as
by assumption. Since packet is served in the system

in time-slot , we know from the operations of FBS that all
packets in must also be served in time-slot . This
is because packet is part of the HOL frame in time-slot
(as packet is served in time-slot ), and all packets with a
weight greater than must be filled to the frames with higher
priority than packet and thus should also belong to the HOL
frame in time-slot . This further implies that in the system ,
there exists a feasible schedule that can match all packets in

since and both systems have
the same channel realizations.
Now, from the sufficient condition in Theorem 2, policy

will serve all packets in , including packet . This con-
tradicts with the hypothesis that packet is not served (by policy
) in the system in time-slot (i.e., ).
So far, we have shown that for any given sample path and

for any value of , by the end of any time-slot , policy has
served every packet that the FBS policy has served.
Next, we want to show that policy dominates the version of

the perfect-matching policy described in Section IV.A. Note that
in each time-slot, the packets served by the perfect-matching

policy are the oldest packets in the system. The difference be-
tween FBS and the perfect-matching is the following. The HOL
frame that can be served by FBS has at most packets from
each queue and has at most packets from the
system, while the set of packets that can be served by the per-
fect-matching policy has at most one packet from each queue
and has at most packets from the system. Following a similar
argument as above for the FBS policy, we can show that for any
given sample path, by the end of any time-slot , policy has
served every packet that the perfect-matching policy has served.
This completes the proof.

APPENDIX D
PROOF OF PROPOSITION 4

We first prove that DWM- policy is an OPF policy and is
thus rate-function delay-optimal. The proof follows immedi-
ately from a property of the MVM in bipartite graphs. We re-
state this property in the following lemma.
Lemma 12 ([16, Lemma 6]): Consider a bipartite graph, and

the heaviest vertices, for some . If there is a matching that
matches all the heaviest vertices, then any MVM matches all
of them too.
Since DWM- policy finds an MVM in the constructed bi-

partite graph, Lemma 12 implies that for any ,
if the oldest packets can be served by some scheduling policy,
then DWM- policy can serve these packets as well. This
completes the first part of the proof.
Next, we prove that DWM- policy has a complexity of

. Note that in order to select the oldest packets in
the system, it is sufficient to sort the packets picked by DWM
policy, i.e., the oldest packets of each of the queues, as no
other packets can be among the oldest packets in the system.
The complexity of sorting packets [24] is .
Given the oldest packets in the system, DWM- policy
constructs an bipartite graph and finds an MVM [16] in

time. Hence, the overall complexity of DWM-
is , which completes the proof.

APPENDIX E
PROOF OF PROPOSITION 5

The following simple counterexample shows that DWM-
cannot stabilize a feasible arrival rate vector and is thus not
throughput-optimal in general.
Consider a system with two queues and two servers, i.e., a

system with . We assume the i.i.d. ON–OFF channel model
as in Assumption 4, i.e., each server is connected to each queue
with probability , and is disconnected otherwise. In
each time-slot, a server can serve at most one packet of a queue
that is connected to this server. In such a system, the optimal
throughput region can be described as
, and , where the first two inequalities

are obvious, and the last inequality is due to the following. For
each of the two servers, the probability that at least one queue is
connected to the server is , hence, the service each server
can provide is , and the total (effective) capacity is thus

. Note that any arrival rate vector strictly inside the
optimal throughput region is feasible.
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Next, we construct an arrival process as follows. Consider
a frame consisting of two time-slots. In each frame, there are
packet arrivals to the system with probability , and
no arrivals otherwise. In a frame that has arrivals, there are
packet arrivals to queue and no arrivals to queue in

the first time-slot, and there are no arrivals to queue and
packet arrivals to queue in the second time-slot, where we
assume that . This type of arrival process yields an ar-
rival rate vector of . It is easy to check that is
feasible, if .
Now, we characterize an upper bound of the service rate under

DWM- policy. Recall that DWM- considers only the oldest
packets in the system and maximizes the sum of the delays of
the packets scheduled over these packets, and no other packets
will be scheduled. Hence, in each time-slot, DWM- considers
only the two oldest packets in the system. Consider any time-
slot , where out of the packets arriving to queue
in the same time-slot are still waiting in the system. The other
one packet could have been scheduled with a packet in , or
with a packet that arrived to earlier, or it could have been
scheduled alone in a time-slot before . Note that the first
packets out of these packets cannot be scheduled with
packets in queue , due to the operations of DWM- . Hence,
in any time-slot before these packets are completely
evacuated, each server must serve queue if this server is
connected to queue , and no server will serve even if this
server is connected to queue , as the packets of are not
among the two oldest packets in the system in such time-slot .
Hence, the expected service rate for these packets is
, and it thus takes time-slots on average to evacuate the

packets. Similarly, it takes time-slots on average
to evacuate such packets in queue . Therefore, the
total service rate of the system under DWM- is no greater than

. It is clear that the system is unstable if the

total arrival rate is greater than the total service rate, i.e.,
. Then, by choosing and , we

obtain a feasible arrival rate vector that cannot be stabilized
by DWM- . This completes the proof.

APPENDIX F
PROOF OF THEOREM 9

We first show that a hybrid OPF-MWF policy is an (overall)
OPF policy and is thus rate-function delay-optimal. Note that in
stage 1, the operations of an OPF policy guarantee that the suf-
ficient condition in Theorem 2 is satisfied. In stage 2, since the
matched servers and packets in stage 1 will not be considered,
it ensures that the operations do not perturb the satisfaction of
the sufficient condition for rate-function delay optimality.
In the following, we want to show that a hybrid OPF-MWF

policy is an (overall) MWF policy and is thus throughput-op-
timal. Let . We want to show that the sufficient condition
in Theorem 6 is satisfied, i.e., in any time-slot and for all

, a hybrid OPF-MWF policy allocates server to
serve queue , which satisfies that for
all such that .
First, we want to show that in stage 1, an OPF policy also

guarantees that all allocated servers in stage 1 satisfy the
sufficient condition for throughput optimality. Consider each

server such that , i.e., all servers
that are allocated in stage 1. Then, is the queue served by
server in stage 1 of time-slot . Since we run an OPF policy
in stage 1, server serves a packet among the oldest packets
in the system, and it must satisfy that for
any such that .
Next, consider each server such that , then

is the queue served by server in stage 2 of time-slot . It is
clear fromCondition 2) of Definition 3 that
for all such that .
Therefore, a hybrid OPF-MWF policy is an (overall) MWF

policy and is thus throughput-optimal.

APPENDIX G
PROOF OF THEOREM 10

To show that DWM- -MWS is a hybrid OPF-MWF policy, it
is sufficient to show that Condition 2) of Definition 3 is satisfied.
Given any time-slot , consider each server such that
, then is the queue served by server in stage 2

under D-MWS. Let . We want to show that
for all such that .

Let be the HOL delay of queue at the beginning of
stage 2. Let denote the set of queues that are connected
to server and have the largest weight among the connected
queues at the beginning of stage 2 of time-slot , i.e.,

, where
. According to the operations of D-MWS,

the index of queue that is served by server satisfies that
, hence, we have

for any . This implies that
for any such that , where

the last inequality is because and thus the HOL
packet of queue at the beginning of stage 2 must not have a
later position than the th packet in queue at the beginning
of time-slot . This holds for all and any time-slot .
Therefore, DWM- -MWS is a hybrid OPF-MWF policy.
Since the complexity of DWM- and D-MWS is

and , respectively, the overall com-
plexity of DWM- -MWS policy is .
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