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standard and is provided in our online technical report [17].
Then, the almost surely convergence in (51) along with uniform
integrability implies the following convergence in the mean:

Since the above convergence holds for any sequence of
processes , the condition of type
(10) in Lemma 6 is satisfied. This completes the proof of
Proposition 1.

APPENDIX B
STABILITY OF THE SHADOW QUEUES UNDER LQ-MWS

Similarly to (11)–(24), we can establish the fluid limits of the
system: .
We present a lemma similar to Lemma 9. This will be used

to show that the fluid limit model for the subsystem consisting
of shadow queues is stable under LQ-MWS. We omit its proof
since it follows the same line of analysis for the proof of
Lemma 9.
Lemma 15: For all (scaled) time and for all links ,

we have that with probability one

(52)

Now, we can show that the fluid limit model for the subsystem
of shadow queues is stable under LQ-MWS.
Lemma 16: The fluid limit model for the subsystem of

shadow queues operating under LQ-MWS satisfies the fol-
lowing: For any , there exists a finite such that for
any fluid model solution with , we have that with
probability one

for all

for any arrival rate vector strictly inside .
The proof is similar to that of Lemma 11 and is thus omitted.

APPENDIX C
PROOF OF LEMMA 3

Recall that denotes the loop-free route of the flow . We
prove Lemma 3 in a constructive way, i.e., for a network where
flows do not form loops, wewill give an algorithm that generates
a ranking such that the following statements in Lemma 3 hold:
1) for any flow , the ranks are monotonically increasing
when one traverses the links on the route of the flow from
to , i.e., for all ; and 2)
the packet arrivals at a link are either exogenous or forwarded
from links with a smaller rank.
We start with some useful definitions.
Definition 1: Two flows , are connected if they have

common (directed) links on their routes, i.e.,
, and disconnected otherwise. A sequence of flows
is a communicating sequence if every two adjacent flows and

are connected with each other. Two flows and com-
municate if there exists a communicating sequence between
and .

Fig. 4. Examples of different types of components. Links and flows are denoted
by dashed lines with numbers and solid lines with arrows, respectively. Note that
links without data flows are omitted (not numbered), and two numbers labeled
beside a dashed line stand for two links with opposite directions, e.g., links 1
and 8 in (b). (a) Component containing a flow-loop (2, 3, 4, 5, 6, 7), and the
component is not a flow-tree. (b) Flow-tree with one flow-path: (1, 2, 3, 4, 5,
6, 7, 8). (c) Flow-tree and with five flow-paths: ,

, , , and
.

Definition 2: Let denote the set of flows passing
through link , and let denote the set of
flows passing through a set of links . A nonempty set
of links is called a component if the following conditions are
satisfied.
1) .
2) Either , or any two flows ,
communicate.

Definition 3: Consider a component ; a sequence4 of flows
, where , is said to form a

flow-loop, if one can find two links and for each
, satisfying:

1) for each ;

2)
for each

An example of a component that contains a flow-loop is pre-
sented in Fig. 4(a), where the network consists of seven links
and six flows. The routes of the flows are as follows:

, , , ,
, .

Definition 4: A component is called a flow-tree if does
not contain any flow-loops.
Definition 5: Consider a component ; a link is called

a starting link if there exists a flow such that
and for all other and all , i.e., a
starting link has only exogenous arrivals. Similarly, a link
is called an ending link if there exists a flow such that

and for all other and all
, i.e., an ending link transmits only packets that will leave

the system immediately. A path ,
where denotes the length of path and denotes

4By slightly abusing the notation, we also use to denote the
set of unique elements of the sequence.
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the th hop link of , is called a flow-path, if the following
conditions are satisfied.
1) Links and are the only starting and ending
link on the path , respectively.

2) Either , or for each , there
exists a flow such that, and ,
i.e., two adjacent links and are on the route of
some flow.

In general, a flow-tree consists of multiple (possibly over-
lapped) flow-paths. An illustration of flow-loop, flow-path, and
flow-tree is presented in Fig. 4. It is clear from Definition 3 that,
if there exists a flow-loop in a component, this component must
contain a cycle of links, while the opposite is not necessarily
true. For example, the components in Fig. 4(b) and (c) both con-
tain a cycle, while neither of them contains a flow-loop.
Now, we describe Algorithm 1, which is used to generate a

ranking for a network without flow-loops such that the mono-
tone property in Lemma 3 holds.

Algorithm 1: Rank Assignment

1: procedure
2: for all
3:
4: while do
5: pick a flow-path
6:
7: for do
8: if then
9:
10: else if then
11:
12: else
13: for all do
14:
15: end for
16:
17: end if
18:
19: end for
20:
21: end while
22: end procedure

Let denote the set of links belonging to flow-path . Let
denote a flow-tree, and let denote the set of all flow-

paths in , i.e., is a flow path . Let
denote the flow-path chosen in the th while-loop when

running Algorithm 1 for , and let . Let
denote the rank of link , and let denote the set

of flow-paths passing through link , i.e.,
. Let

denote the set of links that belong to the flow-paths of
(i.e., flow-paths that pass through link and are

chosen in the th while-loop for ) and have a rank greater
than .
The details of ranking are provided in Algorithm 1. In line 2,

we do initialization by setting the rank of all links of to . In
lines 4–21, we pick a flow-path and assign a rank to each
link of starting from link . We may update a link’s rank if

TABLE I
EVOLUTION OF THE RANKING FOR THE FLOW-TREE IN FIG. 4(C)

we already assigned a rank to that link. The set of flow-paths
is updated in line 20. The while-loop continues until becomes
empty. We set in line 6 and assign a rank to links
for each . For each link , we consider the
following three cases: 1) ; 2) ;
3) .
Case 1) Link has not been assigned a rank yet. We set

in line 9.
Case 2) Link already has a rank that is no smaller than the

current . In this case, the rank does not need an
update, and we set in line 11.

Case 3) Link already has a rank that is smaller than the
current . In this case, we update the rank of
some other links as well as that of link . Specif-
ically, for all the links , i.e., links that
belong to the flow-paths in and have
a rank greater than , we increase their ranks
by in lines 13–15. Then, we update
the rank of link by setting it to in line 16.

After considering all three cases, we increase the value of
by 1 in line 18.

The intention of this ranking is to assign a rank to each link
such that the ranks are monotonically increasing when one tra-
verses any flow-path from its starting link. Algorithm 1 may
give different ranking to a given flow-tree depending on the
order of choosing flow-paths. We give two examples for illus-
tration as follows. In Fig. 4(b), one (and the unique one in this
case) example of the ranking for the flow-tree is (1, 2, 3, 4, 5, 6,
7, 8) for links 1–8. In Fig. 4(c), one example of the ranking for
the flow-tree is (1, 2, 3, 4, 5, 3, 1, 6, 7, 7, 8, 9) for links 1–12. The
evolution of the ranking for the flow-tree in Fig. 4(c) is presented
in Table I, where flow-path is chosen in the th while-loop,
for .
Since we assume for all , a net-

work graph can be decomposed into multiple disjoint com-
ponents. Clearly, a network with no flow-loops is equivalent to
that all the components of the network are flow-trees. Without
loss of generality, in the rest of the proof, we assume that the
network we consider consists of one single component, which
is a flow-tree under the condition of Lemma 3. The same argu-
ment applies to the case with multiple disjoint components. We
claim the following lemma and provide its proof in our online
technical report [17].
Lemma 17: Algorithm 1 assigns a rank to each link of a

flow-tree such that for any flow-path , the ranks
are monotonically increasing when one traverses the links of
from to , i.e., for all

and for any .
Now, consider any flow . The statement 1) holds triv-

ially for the case of . Hence, we assume that
. It is clear that for any , the links and
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must belong to some flow-path , where is
assumed to be a flow-tree. Therefore, the statement 1) follows
from Lemma 17.
Note that the packet arrivals at a link are either exogenous or

from the previous hop on the route of some flow passing through
it. Owing to the monotonically increasing rank assignment, it is
clear that these previous hop links have a smaller rank. Hence,
the statement 2) immediately follows from statement 1). This
completes the proof of Lemma 3.
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