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Abstract—In this paper, we consider the problem of link sched-
uling in multihop wireless networks under general interference
constraints. Our goal is to design scheduling schemes that do not
use per-flow or per-destination information, maintain a single
data queue for each link, and exploit only local information, while
guaranteeing throughput optimality. Although the celebrated
back-pressure algorithm maximizes throughput, it requires
per-flow or per-destination information. It is usually difficult to
obtain and maintain this type of information, especially in large
networks, where there are numerous flows. Also, the back-pres-
sure algorithm maintains a complex data structure at each node,
keeps exchanging queue-length information among neighboring
nodes, and commonly results in poor delay performance. In this
paper, we propose scheduling schemes that can circumvent these
drawbacks and guarantee throughput optimality. These schemes
use either the readily available hop-count information or only
the local information for each link. We rigorously analyze the
performance of the proposed schemes using fluid limit techniques
via an inductive argument and show that they are throughput-op-
timal. We also conduct simulations to validate our theoretical
results in various settings and show that the proposed schemes can
substantially improve the delay performance in most scenarios.

Index Terms—Fluid limit tecniques, multihop wireless networks,
per-hop/per-link queues, scheduling, throughput-optimal, without
per-flow information.

I. INTRODUCTION

L INK scheduling is a critical resource allocation function-
ality in multihop wireless networks, and also perhaps the

most challenging. The seminal work of [1] introduces a joint
adaptive routing and scheduling algorithm, called back-pres-
sure, that has been shown to be throughput-optimal, i.e., it can
stabilize the network under any feasible load. This paper focuses
on the settings with fixed routes, where the back-pressure algo-
rithm becomes a scheduling algorithm consisting of two com-
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ponents: flow scheduling and link scheduling. The back-pres-
sure algorithm calculates the weight of a link as the product of
the link capacity and the maximum “back-pressure” (i.e., the
queue length difference between the queues at the transmitting
nodes of this link and the next hop link for each flow) among
all the flows passing through the link, and solves a MaxWeight
problem to activate a set of noninterfering links that have the
largest weight sum. The flow with the maximum queue length
difference at a link is chosen to transmit packets when the link
is activated.
The back-pressure algorithm, although throughput-optimal,

needs to solve a MaxWeight problem, which requires central-
ized operations and is NP-hard in general [2]. To this end,
simple scheduling algorithms based on carrier sensing multiple
access (CSMA) [3]–[5] are developed to achieve the optimal
throughput in a distributed manner for single-hop traffic and
are later extended to the case of multihop traffic [3] leveraging
the basic idea of back-pressure.
However, the back-pressure-type of scheduling algorithms

(including CSMA for multihop traffic) have the following
shortcomings: 1) require per-flow or per-destination infor-
mation, which is usually difficult to obtain and maintain,
especially in large networks where there are numerous flows;
2) need to maintain separate queues for each flow or desti-
nation at each node; 3) rely on extensive exchange of queue
length information among neighboring nodes to calculate link
weights, which becomes the major obstacle to their distributed
implementation; and 4) may result in poor overall delay per-
formance, as the queue length needs to build up (creating the
back-pressure) from a flow destination to its source, which
leads to large queues along the route a flow takes [6], [7]. An
important question is whether one can circumvent the above
drawbacks of the back-pressure-type of algorithms and design
throughput-optimal scheduling algorithms that do not require
per-flow or per-destination information, maintain a small
number of data queues (ideally, a single data queue for each
link), exploit only local information when making scheduling
decisions, and potentially have good delay performance.
There have been some recent studies (e.g., [6] and [8]–[10]) in

this direction. A cluster-based back-pressure algorithm that can
reduce the number of queues is proposed in [9], where nodes
(or routers) are grouped into clusters and each node needs only
to maintain separate queues for destinations within its cluster.
In [6], the authors propose a back-pressure policymaking sched-
uling decisions in a shadow layer (where counters are used as
per-flow shadow queues). Their scheme only needs to main-
tain a single first-in–first-out (FIFO) queue instead of per-flow
queues for each link and shows dramatic improvement in the
delay performance. However, their shadow algorithm still re-
quires per-flow information and constant exchange of shadow
queue length information among neighboring nodes. The work
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in [8] proposes to exploit the local queue-length information
to design throughput-optimal scheduling algorithms. Their ap-
proach combined with CSMA algorithms can achieve fully dis-
tributed scheduling without any information exchange. Their
scheme is based on a two-stage queue structure, where each
node maintains two types of data queues: per-flow queues and
per-link queues. The two-stage queue structure imposes addi-
tional complexity and is similar to queues with regulators [11],
which have been empirically noted to have very large delays.
In [10], the authors propose a back-pressure algorithm that inte-
grates the shortest path routing to minimize the average number
of hops between each source and destination pair. However,
their scheme further increases the number of queues by main-
taining a separate queue at each node for the packets
that will be delivered to destination node within hops.
Although these algorithms partly alleviate the effect of the

aforementioned disadvantages of the traditional back-pressure
algorithms, to the best of our knowledge, no work has addressed
all the aforementioned four issues. In particular, a critical draw-
back of the earlier mentioned works is that they require per-flow
or per-destination information to guarantee throughput opti-
mality. In this paper, we propose a class of throughput-optimal
schemes that can remove this per-flow or per-destination infor-
mation requirement, maintain a single data queue for each link,
and remove information exchange. As a by-product, these pro-
posed schemes also improve the delay performance in a variety
of scenarios.
The main contributions of our paper are as follows.
First, we propose a scheduling scheme with per-hop queues

to address the four key issues mentioned earlier. The proposed
scheme maintains multiple FIFO queues at the transmit-
ting node of each link . Specifically, any packet whose trans-
mission over link is the th hop forwarding from its source
node is stored at queue . This hop-count information is
much easier to obtain and maintain compared to per-flow or per-
destination information. For example, hop-count information
can be obtained using time-to-live (TTL) information in packet
headers. Moreover, as mentioned earlier, while the number of
flows in a large network is very large, the number of hops is
oftenmuch smaller. In the Internet, the longest route a flow takes
typically has tens of hops,1 while there are billions of users or
nodes [14], and thus the number of flows could be extremely
large. A shadow algorithm similar to [6] is adopted in our frame-
work, where a shadow queue is associated with each data queue.
We consider the MaxWeight algorithm based on shadow queue
lengths and show that this per-Hop-Queue-based MaxWeight
Scheduler (HQ-MWS) is throughput-optimal using fluid limit
techniques via a hop-by-hop inductive argument. For illustra-
tion, in this paper, we focus on the centralized MaxWeight-
type of policies. However, one can readily extend our approach
to a large class of scheduling policies (where fluid limit tech-
niques can be used). For example, combining our approach with
the CSMA-based algorithms of [3]–[5], one can completely re-
move the requirement of queue-length information exchange
and develop fully distributed scheduling schemes, under which
no information exchange is required. To the best of our knowl-
edge, this is the first work that develops throughput-optimal

1In the Routing Information Protocol (RIP) [12], the longest route is limited
to 15 hops. In general, an upper bound on the length of a route is 255 hops in
the Internet, as specified by TTL in the Internet Protocol (IP) [13].

scheduling schemes without per-flow or per-destination infor-
mation in wireless networks with multihop traffic. In addition,
we believe that using this type of per-hop queue structure to
study the problem of link scheduling is of independent interest.
Second, we have also developed schemes with per-link

queues (i.e., a single data queue per link) instead of
per-hop queues, extending the idea to per-Link-Queue-based
MaxWeight Scheduler (LQ-MWS). We propose two schemes
based on LQ-MWS using different queueing disciplines. We
first combine it with the priority queueing discipline (called
PLQ-MWS), where a higher priority is given to the packet that
traverses a smaller number of hops, and then prove throughput
optimality of PLQ-MWS. It is of independent interest that this
type of hop-count-based priority discipline enforces stability.
This, however, requires that nodes sort packets according to
their hop-count information. We then remove this restriction by
combining LQ-MWS with the FIFO queueing discipline (called
FLQ-MWS) and prove throughput optimality of FLQ-MWS in
networks where flows do not form loops.
Finally, we show through simulations that the proposed

schemes can significantly improve the delay performance in
most scenarios. In addition, the schemes with per-link queues
(PLQ-MWS and FLQ-MWS) perform well in a wider variety
of scenarios, which implies that maintaining per-link queues
not only simplifies the data structure, but also can contribute to
scheduling efficiency and delay performance.
The remainder of the paper is organized as follows. In

Section II, we present a detailed description of our system
model. In Section III, we prove throughput optimality of
HQ-MWS using fluid limit techniques via a hop-by-hop in-
ductive argument. We extend our ideas to show throughput
optimality of PLQ-MWS and FLQ-MWS in Section IV. Fur-
thermore, we evaluate different scheduling schemes through
simulations in Section V. Finally, we conclude our paper in
Section VI.

II. SYSTEM MODEL

We consider a multihop wireless network described by a di-
rected graph , where denotes the set of nodes and
denotes the set of links. Nodes are wireless transmitters/re-

ceivers, and links are wireless channels between two nodes if
they can directly communicate with each other. Let and

denote the transmitting node and receiving node of link
, , respectively. Note that we distinguish links

and . We assume a time-slotted system with a single
frequency channel. Let denote the link capacity of link , i.e.,
link can transmit at most packets during a time-slot if none
of the links that interfere with is transmitting at the same time.
We assume unit capacity links, i.e., for all . A
flow is a stream of packets from a source node to a destina-
tion node. Packets are injected at the source and traverse mul-
tiple links to the destination via multihop communications. Let
denote the set of flows in the network. We assume that each

flow has a single, fixed, and loop-free route that is denoted by
, where the route of flow has

hop length from the source to the destination, denotes the
th hop link on the route of flow , and denotes the cardi-
nality of a set. Let denote the length
of the longest route over all flows. Let be 1 if
link is the th hop link on the route of flow , and 0 other-
wise. Note that the assumption of single route and unit capacity
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is only for ease of exposition, and one can readily extend the
results to more general scenarios with multiple fixed routes and
heterogeneous link capacities, applying the techniques used in
this paper. We also restrict our attention to those links that have
flows passing through them. Hence, without loss of generality,
we assume that , for all .
The interference set of link is defined as

link interferes with link . We consider a general interfer-
ence model, where the interference is symmetric, i.e., for any
, , if , then . A schedule is a set of
(active or inactive) links, and can be represented by a vector

, where component is set to 1 if link is ac-
tive, and 0 if it is inactive. A schedule is said to be feasible if
no two links of interfere with each other, i.e., for all
, with and . Let denote the set of all fea-
sible schedules over , and let denote its convex hull.
Let denote the cumulative number of packet arrivals

at the source node of flow up to time-slot . We assume that
packets are of unit length. We assume that each arrival process

is an irreducible positive recurrent Markov
chain with countable state space and satisfies the Strong Law of
Large Numbers (SLLN): That is, with probability one

(1)

for each flow , where is the mean arrival rate of flow .
We let denote the arrival rate vector. Also, we assume
that the arrival processes are mutually independent across flows.
(This assumption can be relaxed as in [15].)
As in [15], a stochastic queueing network is said to be stable

if it can be described as a discrete-time countable Markov chain
and the Markov chain is stable in the following sense: The set
of positive recurrent states is nonempty, and it contains a fi-
nite subset such that, with probability one, this subset is reached
within finite time from any initial state. When all the states com-
municate, stability is equivalent to the Markov chain being pos-
itive recurrent [16]. We define the throughput region of a sched-
uling policy as the set of arrival rate vectors for which the net-
work is stable under this policy. Furthermore, we define the op-
timal throughput region (or stability region) as the union of the
throughput regions of all possible scheduling policies, including
the offline policies [1]. We denote by the optimal throughput
region, whereby can be represented as

for some

for all links (2)

An arrival rate vector is strictly inside if the inequalities
above are all strict.
Throughout the paper, we let denote the

larger value between and 0.

III. SCHEDULING WITH PER-HOP QUEUES

In this section, we propose scheduling policies with per-hop
queues and shadow algorithm. We will later extend our ideas to
developing schemes with per-link queues in Section IV. We de-
scribe our scheduling schemes using the centralizedMaxWeight
algorithm for ease of presentation. Our approach combined with
the CSMA algorithms can be extended to develop fully dis-

tributed scheduling algorithms. (Please refer to our online tech-
nical report [17].)

A. Queue Structure and Scheduling Algorithm

We start with the description of queue structure, and then
specify our scheduling scheme based on per-hop queues and
a shadow algorithm. We assume that, at the transmitting node
of each link , a single FIFO data queue is maintained
for packets whose th hop is link , where .
Such queues are called per-hop queues. For notational conve-
nience, we also use to denote the queue length of at
time-slot . Let denote the service of at time-slot ,
which takes a value of (i.e., 1 in our setting) if queue
is active, or 0 otherwise. Let denote the cumulative
number of packet departures from queue up to time-slot ,
and let be the number of packet
departures from queue at time-slot . Since a queue may
be empty when it is scheduled, we have for
all time-slots . Let denote the cumulative number
of packets transmitted from the st hop to the th hop
for flow up to time-slot for , where we set

. Let be the cumulative number of ag-
gregate packet arrivals (including both exogenous arrivals and
arrivals from the previous hops) at queue up to time-slot .
Then, we have , and in particular,

. Let
denote the number of arrivals for queue at time-slot . We
adopt the convention that and for all

and . The queue length evolves as

(3)

For each data queue , we maintain a shadow queue ,
and let denote its queue length at time-slot . The ar-
rival and departure processes of the shadow queues are con-
trolled as follows. We denote by and its cumu-
lative amount of arrivals and departures up to time-slot , re-
spectively. Also, let ,
and denote the amount of ser-
vice, arrivals, and departures of queue at time-slot , re-
spectively. Likewise, we have for .
We set by convention that and for all
queues . The arrivals for shadow queue are set to
times the average amount of packet arrivals at data queue
up to time-slot , i.e.,

(4)

where is a sufficiently small positive number such that
is also strictly inside given that is strictly inside

. Then, the shadow queue length evolves as

(5)

Using these shadow queues, we determine the service of both
data queues and shadow queues using the followingMaxWeight
algorithm.
1) Per-Hop-Queue-Based MaxWeight Scheduler (HQ-

MWS): At each time-slot , the scheduler serves data queues
for , where

for each link (6)
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(7)

In other words, we set the service of data queue as
if and , and otherwise. We also
set the service of shadow queues as for all
and .
Remark: The algorithm needs to solve a MaxWeight

problem based on the shadow queue lengths, and ties can be
broken arbitrarily if there is more than one queue having the
largest shadow queue length at a link or there is more than one
schedule having the largest weight sum. Note that we have

under this scheduling scheme, for all links
and and for all time-slots . Once a

schedule is selected, data queues for links with
are activated to transmit packets if they are nonempty,

and shadow queues “transmit” shadow packets as well.
Note that shadow queues are just counters. The arrival and
departure process of a shadow queue is simply an operation of
addition and subtraction, respectively.

B. Throughput Optimality

We present the main result of this section as follows.
Proposition 1: HQ-MWS is throughput-optimal, i.e., the net-

work is stable under HQ-MWS for any arrival rate vector
strictly inside .
We prove the stability of the network in the sense that the

underlying Markov chain (whose state accounts for both data
queues and shadow queues; see Appendix A for the detailed
state description) is stable under HQ-MWS, using fluid limit
techniques [15], [18]. We provide the proof of Proposition 1 in
Appendix A and discuss the outline of the proof as follows.
Note that the shadow queues serve only single-hop traffic,

i.e., after packets in the shadow queues are served, they leave the
system without being transmitted to another shadow queue. We
also emphasize that the single-hop shadow traffic gets smoothed
under the arrival process of (4), and in the fluid limits (which
will be formally established in Appendix A), after a finite time,
the instantaneous shadow arrival rate is strictly inside the op-
timal throughput region with small enough . Then,
using the standard Lyapunov approach, we can show the sta-
bility for the subsystem consisting of shadow queues.
Now, we consider the data queues in the fluid limits starting

from the first-hop data queue for each link . Since the
arrival process of data queue satisfies the SLLN, the
instantaneous arrival of shadow queue will be equal to

. This implies that the service rate of shadow
queue is no smaller than due to the
stability of shadow queues. Then, the service rate of data
queue is also no smaller than because

under HQ-MWS. Since the arrival rate of
data queue is , the service rate is strictly greater
than the arrival rate for , establishing its stability. Using
this as an induction base, we can show the stability of data
queues via a hop-by-hop inductive argument. This immediately
implies that the fluid limit model of the joint system is stable
under HQ-MWS.
Although our proposed scheme shares similarities with [6]

and [8], it has important differences. First, in [6], per-flow
information is still required by their shadow algorithm. The
shadow packets are injected into the network at the sources and

are then “transmitted” to the destinations via multihop com-
munications. Their scheme strongly relies on the information
exchange of shadow queue lengths to calculate the link weights.
In contrast, we take a different approach for constructing the
instantaneous arrivals at each shadow queue according to (4)
that is based on the average amount of packet arrivals at the
corresponding data queue. This method of injecting shadow
packets allows us to decompose multihop traffic into single-hop
traffic for shadow queues and exploit only local information
when making scheduling decisions. Second, although the basic
idea behind the shadow arrival process of (4) is similar to the
service process of the per-flow queues in [8], the scheme in [8]
requires per-flow information and relies on a two-stage queue
architecture that consists of both per-flow and per-link data
queues. In contrast, our scheme needs only per-hop (and not
per-flow) information, i.e., the number of hops each packet
has traversed, completely removing per-flow information and
per-flow queues. This simplification of required information
and data structure is critical due to the fact that the maximum
number of hops in a network is usually much smaller than
the number of flows in a large network. For example, in the
Internet, the longest route a flow takes typically has tens of
hops, while there are billions of nodes, and thus the number of
flows could be extremely large.
Note that the hop-count in our approach is counted from the

source. Such per-hop information is easy to obtain (e.g., from
time-to-live or TTL information in the Internet and ad hoc net-
works). At each link, packets with the same hop-count (from the
source of each packet to the link) are kept at the same queue, re-
gardless of sources, destinations, and flows, which significantly
reduces the number of queues. In Section IV, we extend our ap-
proach to the schemes with per-link queues and further remove
even the requirement of per-hop information.

IV. SCHEDULING WITH PER-LINK QUEUES

In the previous section, we show that per-hop-queue-based
MaxWeight scheduler (HQ-MWS) achieves optimal throughput
performance. In this section, we extend our ideas to developing
schemes with per-link queues. To elaborate, we show that
per-link-queue-based MaxWeight scheduler, when associated
with priority or FIFO queueing discipline, can also achieve
throughput optimality.

A. MaxWeight Algorithm With Per-Link Queues

We consider a network where each link has a single data
queue . Let , , , , and de-
note the queue length, cumulative arrival, cumulative departure,
service, departure and arrival at the data queue , respectively.
Also, we maintain a shadow queue associated with each ,
and let , , , , and denote the
queue length, cumulative arrival, accumulative departure, ser-
vice, departure and arrival at the shadow queue , respectively.
Similar to (4) for per-hop shadow queues, we control the arrivals
to the shadow queue as

(8)

where is a sufficiently small positive number.
Next, we specify the MaxWeight algorithm with per-link

queues as follows.
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1) Per-Link-Queue-Based MaxWeight Scheduler (LQ-
MWS): At each time-slot , the scheduler serves links in
(i.e., for , and otherwise), where

Also, we set the service of shadow queues as for
all .
Similar as in HQ-MWS, the shadow traffic under LQ-MWS

gets smoothed due to the shadow arrival assignment of (8), and
the instantaneous arrival rate of shadow queues can be shown
to be strictly inside the optimal throughput region . Hence,
we show in Lemma 16 (see Appendix B) that the fluid limit
model for the subsystem consisting of shadow queues is stable
under LQ-MWS, using the standard Lyapunov approach and
following the same line of analysis for HQ-MWS.

B. LQ-MWS With Priority Discipline

We develop a scheduling scheme by combining LQ-MWS
with priority queueing discipline, called PLQ-MWS. Regarding
priority of packets at each per-link queue, we define hop-class as
follows: A packet has hop-class if the link where the packet
is located is the th hop from the source of the packet. When
a link is activated to transmit packets, packets with a smaller
hop-class will be transmitted earlier; and packets with the same
hop-class will be transmitted in a FIFO fashion.
Proposition 2: PLQ-MWS is throughput-optimal.
We provide the outline of the proof and refer to our online

technical report [17] for the detailed proof. Basically, we follow
the line of analysis for HQ-MWS using fluid limit techniques
and induction method. Since a link transmits packets according
to their priorities (i.e., hop-classes or hop-count from their re-
spective source nodes), we can view packets with hop-class
at link as in a subqueue (similar to the per-hop queues
under HQ-MWS). Now, we consider the data queues in the
fluid limits. Since the exogenous arrival process satisfies the
SLLN, the instantaneous arrival to shadow queue will be
at least for each link . This implies
that the service rate of shadow queue is no smaller than

due to the stability of the shadow queues
(see Lemma 16 in Appendix B). Then, the service rate of sub-
queue is also no smaller than because:
1) under PLQ-MWS; and 2) the highest priority
is given to subqueue when link is activated to transmit.
Since the arrival rate of subqueue is , the ser-
vice rate is strictly greater than the arrival rate for subqueue

, establishing its stability. Similarly, we can show that the
hop-class- subqueues are stable for all , given the sta-
bility of the hop-class- subqueues for all . Therefore,
we can show the stability of the data queues via a hop-by-hop in-
ductive argument. This immediately implies that the fluid limit
model of the joint system is stable under PLQ-MWS.
We emphasize that a “bad” priority discipline may cause in-

stability (even in wireline networks). See [19] and [20] for two
simple counterexamples showing that in a two-station network,
a static priority discipline that gives a higher priority to cus-
tomers with a larger hop-count may result in instability. (Inter-
ested readers are also referred to [16, Ch. 3] for a good summary
of the instability results.) The key intuition of these counterex-
amples is that by giving a higher priority to packets with a larger

hop-count in one station, the priority discipline may impede for-
warding packets with a smaller hop-count to the next-hop sta-
tion, which in turn starves the next-hop station. On the other
hand, PLQ-MWS successfully eliminates this type of ineffi-
ciency by giving a higher priority to the packets with a smaller
hop-count and continues to push the packets to the following
hops.
Note that PLQ-MWS is different from HQ-MWS, although

they appear to be similar. HQ-MWS makes scheduling deci-
sions based on the queue length of each per-hop shadow queue.
This may result in a waste of service if a per-hop queue is acti-
vated but does not have enough packets to transmit, even though
the other per-hop queues of the same link have packets. In con-
trast, PLQ-MWS makes decisions based on the queue length
of each per-link shadow queue and allows a link to transmit
packets of multiple hop-classes, avoiding such an inefficiency.
The performance difference due to this phenomenon will be il-
lustrated through simulations in Section V. Furthermore, the
implementation of PLQ-MWS is easier than HQ-MWS since
PLQ-MWS needs to maintain only one single shadow queue
per link.
Another aspect of PLQ-MWS we would like to discuss is

about the hop-count-based priority discipline in the context of
multiclass queueing networks (or wireline networks). In oper-
ations research, stability of multiclass queueing networks has
been extensively studied in the literature (e.g., see [16] and
the references therein). To the best of our knowledge, however,
there is very limited work on the topic of “priority enforces sta-
bility” [21]–[23]. In [21] and [22], the authors obtained suffi-
cient conditions (based on linear or piecewise linear Lyapunov
functions) for the stability of a multiclass fluid network and/or
queueing network under priority disciplines. However, to verify
these sufficient conditions relies on verifying the feasibility of
a set of inequalities, which in general can be very difficult. The
most related work to ours is [23]. There, the authors showed
that under the condition of “Acyclic Class Transfer,” where cus-
tomers can switch classes unless there is a loop in class trans-
fers, a simple priority discipline stabilizes the network under the
usual traffic condition (i.e., the normalized load is less than one).
Their priority discipline gives a higher priority to customers that
are closer to their respective sources.
Interestingly, our hop-count-based priority discipline (for

wireline networks) is similar to the discipline proposed in [23].
However, there is a major difference in that while [23] studies
stability of wireline networks (without link interferences) under
the usual traffic condition, we consider stability of wireless
networks with interference constraints that impose the (link)
scheduling problem, which is much more challenging. In
wireless networks, the service rate of each link depends on the
underlying scheduling scheme, rather than being fixed as in
wireline networks. Hence, the difficulty is to establish the usual
traffic condition by designing appropriate wireless scheduling
schemes. In this paper, we develop PLQ-MQS scheme and
show that the usual traffic condition and then stability can be
established via a hop-by-hop inductive argument under the
PLQ-MWS scheme.

C. LQ-MWS With FIFO Discipline

In this section, we develop a scheduling scheme, called
FLQ-MWS, by combining the LQ-MWS algorithm developed
in Section IV-A with FIFO queueing discipline (instead of
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priority queueing discipline) and show that this scheme is
throughput-optimal if flows do not form loops. We emphasize
that FLQ-MWS requires neither per-flow information nor
hop-count information.
To begin with, we define a positive integer as the rank

of link and call a ranking of .
Recall that denotes the loop-free route of flow . In the
following, we prove a key property of the network where flows
do not form loops, which will be used to prove the main results
in this section.
Lemma 3: Consider a network with a set of

flows , where the flows do not form loops. There exists a
ranking such that the following two statements hold.
1) For any flow , the ranks are monotonically increasing
when one traverses the links of flow from to , i.e.,

for all .
2) The packet arrivals at a link are either exogenous or for-
warded from links with a smaller rank.

We provide the proof of Lemma 3 in Appendix C. Note that
such a ranking with the monotone property exists because the
flows do not form a loop. In contrast, it is clear that if flows
form a loop, then such a ranking does not exist. Two examples
of the networks where flows do not form loops are provided in
Fig. 4(b) and (c) in Appendix C, and an example of the network
where flows do form a loop is provided in Fig. 4(a). Note that
the ranking is only for the purpose of analysis and plays a key
role in proving the system stability under FLQ-MWS, while it
will not be used in the actual link scheduling algorithm.
Now, we give the main results of this section in the following

proposition.
Proposition 4: FLQ-MWS is throughput-optimal in net-

works where flows do not form loops.
We omit the detailed proof and refer to our online technical

report [17]. In the following, we provide the outline of the proof.
Motivated by Lemma 3, we extend our analysis for HQ-MWS
(or PLQ-MWS). Compared to the PLQ-MWS algorithm, there
are differences only in the operations with data queues, and
the underlying LQ-MWS algorithm remains the same. Thus,
the shadow queues will exhibit similar behaviors, and the fluid
limit model for the subsystem of shadow queues is stable under
FLQ-MWS (see Lemma 16 in Appendix B). Also, note that
Lemma 3 implies that given the qualified ranking (without loss
of generality, assuming that the smallest rank is 1), the packet
arrivals at links with rank 1 are all exogenous, then following a
similar argument in the proof of Proposition 1, we can prove the
stability of the corresponding data queues by showing that the
instantaneous arrival rate is less than the instantaneous service
rate. Since Lemma 3 also implies that the packet arrivals at links
with rank 2 are either exogenous or from links with rank 1, we
can similarly show the stability of links with rank 2. Repeating
the above argument, we can prove the stability of all data queues
by induction, which completes the proof of Proposition 4.
Corollary 5: FLQ-MWS is throughput-optimal in tree

networks.
The above corollary follows immediately from Proposition 4

because a tree network itself does not contain a cycle of links
and flows are all loop-free.

V. NUMERICAL RESULTS

In this section, we evaluate different scheduling schemes
through simulations. We compare scheduling performance of

Fig. 1. Performance of BP, HQ-MWS, PLQ-MWS, and FLQ-MWS in a linear
network topology . (a) Linear network topology with 10 links.
(b) Average delay.

HQ-MWS, PLQ-MWS, FLQ-MWS with the original
back-pressure (BP) algorithm under the node-exclusive2

interference model. Note that we focus on the node-exclusive
interference model only for the purpose of illustration. Our
scheduling schemes can be applied to general interference
constraints as specified in Section II. We will first focus on
a simple linear network topology to illustrate the advantages
of the proposed schemes and further validate our theoretical
results in a larger and more realistic grid network topology. The
impacts of the parameter on the scheduling performance are
also explored and discussed in our online technical report [17].
First, we evaluate and compare the scheduling performance

of HQ-MWS, PLQ-MWS, FLQ-MWS, and the back-pressure
algorithm in a simple linear network that consists of 11 nodes
and 10 links as shown in Fig. 1(a), where nodes are represented
by circles and links are represented by dashed lines with link ca-
pacity, respectively. We establish 10 flows that are represented
by arrows, where each flow is from node 1 to node via
all the nodes in between. We consider uniform traffic where all
flows have packet arrivals at each time-slot following Poisson
distribution with the same mean rate . We run our sim-
ulations with changing traffic load . Clearly, in this scenario,
any traffic load with is feasible. We use
for HQ-MWS, PLQ-MWS, and FLQ-MWS. We evaluate the
performance by measuring average packet delays (in unit of
time-slot) over all the delivered packets (that reach their respec-
tive destination nodes) in the network.
Fig. 1(b) plots the average delays under different offered

loads to examine the performance limits of different scheduling
schemes. Each result represents a simulation run that lasts
for 10 time-slots. Since the optimal throughput region is
defined as the set of arrival rate vectors under which queue
lengths and thus delays remain finite, we can consider the
traffic load, under which the average delay increases rapidly, as
the boundary of the optimal throughput region. Fig. 1(b) shows
that all schemes achieve the same boundary (i.e., ),
which supports our theoretical results on throughput optimality.
Moreover, all the three proposed schemes achieve substantially
better delay performance than the back-pressure algorithm.
This is because under the back-pressure algorithm, the queue
lengths have to build up along the route a flow takes from the
destination to the source, and in general, earlier hop link has
a larger queue length. This leads to poor delay performance

2It is also called the primary or 1-hop interference model, where two links
sharing a common node cannot be activated simultaneously. It has been known
as a good representation for Bluetooth or FH-CDMA networks [2].
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Fig. 2. Performance of BP, HQ-MWS, PLQ-MWS, and FLQ-MWS in a linear
network topology . (a) Linear network topology with 10 links.
(b) Average delay.

especially when the route of a flow is lengthy, which is the case
in Fig. 1(a). Note that in this specific scenario, there is only one
per-hop queue at each link under HQ-MWS. Hence, HQ-MWS
is equivalent to PLQ-MWS and FLQ-MWS in this scenario,
which explains why the three proposed schemes perform the
same as in Fig. 1(b).
Second, we evaluate the performance of the proposed

schemes in the same linear network as in the previous case
while reversing the direction of each flow. The new topology
is illustrated in Fig. 2(a). In this scenario, the number of
per-hop queues HQ-MWS maintains for each link is the same
as the number of flows passing through that link. Hence,
HQ-MWS is expected to operate differently from PLQ-MWS
and FLQ-MWS and achieves different (and potentially poorer)
delay performance. All the other simulation settings are kept the
same as in the previous case. Fig. 2(b) shows that all schemes
achieve the same boundary (i.e., ) in this scenario,
which again supports our theoretical results on throughput per-
formance. However, we observe that HQ-MWS has the worst
delay performance, while PLQ-MWS and FLQ-MWS achieve
substantially better performance. This is because PLQ-MWS
and FLQ-MWS transmit packets more efficiently and do not
waste service as long as there are enough packets at the acti-
vated link, while the back-pressure algorithm and HQ-MWS
maintain multiple queues for each link and may waste service
if the activated queue has less packets than the link capacity.
HQ-MWS has larger delays than the back-pressure algorithm
because the scheduling decisions of HQ-MWS are based on
the shadow queue lengths rather than the actual queue lengths:
A queue with very small (or even zero) queue length could
be activated. This introduces another type of inefficiency in
HQ-MWS. Note that PLQ-MWS and FLQ-MWS also make
scheduling decisions based on the shadow queue lengths.
However, their performance improvement from a single queue
per link dominates delay increases from the inefficiency. These
observations imply that maintaining per-link queues not only
simplifies the data structure, but also improves scheduling
efficiency and reduces delays.
Finally, we evaluate the performance of all the proposed

schemes in a larger grid network with 16 nodes and 24 links
as shown in Fig. 3(a), where the capacity of each link has been
shown beside the link and carefully assigned to avoid traffic
symmetry. Similar types of grid networks have been adopted
in the literature (e.g., [4], [6], and [24]) to numerically evaluate
scheduling performance. We establish 10 multihop flows that
are represented by arrows in Fig. 3(a). Again, we consider

Fig. 3. Performance of all the proposed scheduling schemes in a grid network
with 16 nodes and 24 links. In Fig. 3(b), the vertical dotted line
denotes an upper bound for the feasible values of . (a) Grid network topology.
(b) Average delay for MWS schemes with .

uniform traffic where each flow has independent packet arrivals
at each time-slot following Poisson distribution with the same
mean rate . In this scenario, we can calculate an upper
bound of for the feasible
value of by looking at the flows passing through node 6,
which is the bottleneck in the network.
We choose for HQ-MWS, PLQ-MWS, and

FLQ-MWS. Under each scheduling scheme along with the
back-pressure algorithm, we measure average packet delays
under different offered loads to examine their performance
limits. Fig. 3(b) shows that the proposed schemes have higher
packet delays than the back-pressure algorithm when traffic
load is light (e.g., ). This is due to the aforemen-
tioned inefficiency under the proposed schemes: Since the
scheduling decisions are based on the shadow queue lengths
rather than the actual queue lengths, queues with very small
(or even zero) queue length can be activated. However,
the effect tends to decrease with heavier traffic load since
the queue lengths are likely to be large. The results also
show that the proposed schemes consistently outperform the
back-pressure algorithm when . Note that with

, the shadow traffic rate vector is outside the op-
timal throughput region when ,
however, interestingly, the schedules chosen based on the
shadow queue lengths can still stabilize the data queues even
if (which is still feasible). Note that in the
above scenario, FLQ-MWS does not guarantee throughput
optimality since flows
and form a loop. However,
the results in Fig. 3(b) suggest that all the schemes, including
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FLQ-MWS, empirically achieve the optimal throughput perfor-
mance. This opens up an interesting question about throughput
performance of FLQ-MWS in general settings.

VI. CONCLUSION

In this paper, we developed scheduling policies with per-hop
or per-link queues and a shadow algorithm to achieve the
overall goal of removing per-flow or per-destination informa-
tion requirement, simplifying queue structure, exploiting only
local information, and potentially reducing delay. We showed
throughput optimality of the proposed schemes that use only
the readily available hop-count information, using fluid limit
techniques via an inductive argument. We further simplified the
solution using FIFO queueing discipline with per-link queues
and showed that this is also throughput-optimal in networks
without flow-loops. The problem of proving throughput opti-
mality in general networks with algorithms (like FLQ-MWS)
that use only per-link information remains an important open
and challenging problem. Furthermore, it is also worthwhile
to investigate the problem with dynamic routing and see if
per-flow and per-destination information can be removed even
when routes are not fixed.

APPENDIX A
PROOF OF PROPOSITION 1

To begin with, let and
denote the queue length vector and the shadow queue length
vector at time-slot , respectively. We use to denote the
-norm of a vector, e.g., . We

let be the index of the flow to which the th packet of
queue belongs. In particular, indicates the index
of the flow to which the head-of-line packet of queue
belongs. We define the state of queue at time-slot as

in an increasing order
of the arriving time, or an empty sequence if .
Then, we denote its vector by . Define

, and let be the set of finitely ter-
minated sequences taking values in . It is evident that

, and hence . We define

, and then
is the process describing the behavior of the underlying system.
Note that in the third term of , we use instead of

so that it is well defined when . Clearly, the evo-
lution of forms a countable Markov chain under HQ-MWS.
We abuse the notation of -norm by writing the norm of

as . Let
denote a process with an initial condition such that

(9)

The following Lemma was derived in [19] for continuous-
time countableMarkov chains, and it follows frommore general
results in [25] for discrete-time countable Markov chains.
Lemma 6 (Theorem 4 of [15]): Suppose that there exist a

and a finite integer such that for any sequence
of processes , we have

(10)

Then, the Markov chain is stable.
Lemma 6 implies the stability of the network. A stability cri-

terion of type (10) leads to a fluid limit approach [18] to the sta-
bility problem of queueing systems. We start our analysis by es-
tablishing the fluid limit model as in [15] and [18]. We define an-
other process ,
where the tuple denotes a list of vector processes. Clearly, a
sample path of uniquely defines the sample path of .
Then, we extend the definition of to each continuous time

as .
Recall that a sequence of functions is said to converge

to a function uniformly over compact (u.o.c.) intervals if
for all , . Next,

we consider a sequence of processes that is
scaled both in time and space. Then, using the techniques of
[18, Theorem 4.1] or [15, Lemma 1], we can show the conver-
gence properties of the sequences in the following lemma.
Lemma 7: With probability one, for any sequence of pro-

cesses , where is a sequence of positive

integers with , there exists a subsequence with
as such that the following u.o.c. conver-

gences hold:

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

where the functions , , , , , , , are
Lipschitz continuous in .
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Note that the proof of the above lemma is quite standard using
the techniques developed in [15], [18], and [26]. We provide the
proof in our online technical report [17] for completeness.
Any set of limiting functions

is called a fluid limit. The
family of these fluid limits is associated with our original
stochastic network. The scaled sequences
and their limits are referred to as a fluid limit model [16]. Since
some of the limiting functions, namely , , ,
, , , , , are Lipschitz continuous in
, they are absolutely continuous. Therefore, these

limiting functions are differentiable at almost all time
, which we call regular time.

Next, we will present the fluid model equations of the system,
i.e., (25)–(40). Fluid model equations can be thought of as be-
longing to a fluid network, which is the deterministic equiva-
lence of the original stochastic network. Any set of functions
satisfying the fluid model equations is called a fluid model so-
lution of the system. We show in the following lemma that any
fluid limit is a fluid model solution.
Lemma 8: Any fluid limit

satisfies the
following equations:

(25)

(26)

(27)

(28)

(29)

(30)

(31)

if
otherwise

(32)

(33)

(34)

(35)

(36)

(37)

if
otherwise

(38)

(39)

(40)

The proof of the above lemma is straightforward and is pro-
vided in our online technical report [17] for completeness.
Due to the result of Lemma 6, we want to show that the sta-

bility criterion of (10) holds. Note that from system causality,

we have for all link
and all , for all . Then, we have

almost surely, and thus

(41)

almost surely, for all . Therefore, it remains to be shown
that the fluid limit model for the joint system of data queues and
shadow queues is stable (Lemma 14). Then, by uniform inte-
grability of the sequence , it im-
plies that (10) holds. We divide the proof of Lemma 14 into two
parts: 1) in Lemma 11, we show that the subsystem consisting
of shadow queues is stable; 2) in Lemma 13, the subsystem con-
sisting of data queues is stable. Before proving Lemmas 11 and
13, we state and prove Lemmas 9 and 12, which are used to
prove Lemmas 11 and 13, respectively.
The following lemma shows that the instantaneous shadow

arrival rate is bounded in the fluid limit and is used to show that
the fluid limit model for the subsystem consisting of shadow
queues is stable under HQ-MWS.
Lemma 9: For all (scaled) time , and for all links
and , with probability one, the following

inequality holds:

(42)

and in particular

(43)

Proof: We start by stating the following lemma, which will
be used to prove Lemma 9.
Lemma 10: If a sequence satisfies

, then the following holds:

The proof of the above lemma is quite standard and is omitted
in this paper. Interested readers can find the full proof in our
online technical report [17].
Now, we prove Lemma 9. Note that we have

(44)

for any and for any link and due to
system causality.
Since the arrival processes satisfy SLLN of type (1), we ob-

tain from Lemma 10 that with probability one

for all (45)

Note that we will omit the superscript of the random
variables (depending on the choice of the sequence )
throughout the rest of the proof for notational convenience
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(e.g., we use to denote ). Then, for all regular
time , all links and , we have

where in the last inequality, the first term is from (45), and the
second term is from the fact that: 1) implies

; and 2)

[see our technical report [17] for the derivation of 2)].
Combining 1) and 2), we have

where the equality is from the L’Hospital’s Rule.
So far, we have shown (42). Note that when , (44) re-

duces to . Then, in the above deriva-
tion of , the first inequality [which follows from (44)]
becomes an equality, and the right-hand side of this inequality
becomes

Hence, we obtain (43).
Remark: Lemma 9 holds when the exogenous arrival pro-

cesses satisfy the SLLN, and the shadow arrivals are controlled

as in (4). Note that Lemma 9 does not hold for data queues
since the data arrival processes do not satisfy (4) due to their
dependency on the service of the previous hop queues. Lemma
9 is important to proving the stability of the shadow queues and
implies that in the fluid limit model, the instantaneous arrival
rate of shadow queues is strictly inside the optimal throughput
region after a finite time.
Then, in the following lemma, we show that the fluid limit

model for the subsystem consisting of shadow queues is stable3

under HQ-MWS.
Lemma 11: The fluid limit model for the subsystem of

shadow queues operating under HQ-MWS satisfies the fol-
lowing: For any , there exists a finite such that for
any fluid model solution with , we have that with
probability one

for all

for any arrival rate vector strictly inside .
Proof: Suppose is strictly inside , we can find a small
such that is strictly inside . Then, there

exists a vector such that , i.e.,
, for all . Let denote the

smallest difference between the two vectors, which is defined as
. Clearly, we have

. Let be a finite time such that , then we

have . Let

. Then,
we have

(46)

and from (42), we have

(47)

for all regular time . This implies that the instanta-
neous arrival rate of shadow queues is strictly inside the optimal
throughput region .
We consider a quadratic-form Lyapunov function

. It is sufficient to show that for any ,
there exist and a finite time such that at any
regular time , implies .
Choose . Since is differentiable for any regular
time , we can obtain the derivative of as

(48)

where , and the first
equality is from (38).

3Similar to [15], we consider a weaker criterion for the stability of the fluid
limit model in Lemma 11, which can imply the stability of the original system
from Lemma 6.
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Let us choose such that implies
. Then, in the final result of (48),

we can conclude that the first term is bounded. That is

where the second inequality is from (47). For the second term,
since HQ-MWS chooses schedules that maximize the shadow
queue length weighted rate, the service rate satisfies that

(49)

where: 1) ; and 2)
with when . This implies that

, for all ,
where the first equality and the second inequality are from (46)
and (49), respectively. Then, we obtain that the second term
of (48) is nonpositive. This shows that implies

for all regular time . Hence, it
immediately follows that for any , there exists a finite

such that , for all .
We next present Lemma 12 that is used to show that the sub-

system consisting of data queues is stable under HQ-MWS in
the fluid limit model.
Lemma 12: If data queues are stable for all and

for all , then there exists a finite such that for
all regular time and for all , we have that with
probability one

The proof follows a similar argument used in the proof for
Lemma 9 and is provided in our technical report [17].
In the following lemma, using a hop-by-hop inductive argu-

ment, we show that the fluid model for the subsystem of data
queues is stable.
Lemma 13: The fluid limit model of the subsystem of data

queues operating under HQ-MWS is stable, i.e., there exists
a finite such that, for any fluid model solution with

, we have

for all

for any arrival rate vector strictly inside .
Proof: We prove the stability of data queues by induction.

Suppose is strictly inside , and the subsystem of shadow
queues is stable from Lemma 11. Let us choose sufficiently
small such that , then there exists a finite
time such that we have for any regular time

. Thus, we have from (37), for all

. Hence, for all data queues and all regular time ,
we have

(50)

from (36) and (40).

Now we show by induction that all data queues are stable in
the fluid limit model.
Base Case: First, note that

from (43) and (50). Consider a subsystem that contains only
queue . From and (32), we have

, if
. This implies that the subsystem that contains only

is stable, for all .
Induction Step: Next, we show that if is stable for all
and all , then each queue is also stable for all
, where .

Since is stable for all and all , i.e.,
there exists a finite such that for all
regular time , then

for
all and for all regular time . Thus, we have

from
(27), and from (28) by taking deriva-
tive, for all and all regular time . Then, note that
we have from Lemma 12.
Hence, we have from
(50). Therefore, we have

, if . This implies that
is stable for all .

Therefore, the result follows by induction.
The following lemma says that the fluid limit model of joint

data queues and shadow queues is stable, which follows imme-
diately from Lemmas 11 and 13.
Lemma 14: The fluid limit model of the joint system of data

queues and shadow queues operating under HQ-MWS sat-
isfies the following: For any , there exists a finite
such that for any fluid model solution with ,
we have that with probability one

for all

for any arrival rate vector strictly inside .
Now, consider any fixed sequence of processes

(for simplicity also denoted by
). By Lemmas 7 and 14, we have that for any fixed ,

we can always choose a large enough integer such
that for any subsequence of , there exists a further
(sub)subsequence such that

almost surely. This, along with (41), implies that

almost surely, which in turn implies (for small enough ) that

(51)

almost surely. This is because there must exist a sub-
sequence of that converges to the same limit as

.
We can show that the sequence

is uniformly inte-
grable. The proof of showing uniform integrability is very
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standard and is provided in our online technical report [17].
Then, the almost surely convergence in (51) along with uniform
integrability implies the following convergence in the mean:

Since the above convergence holds for any sequence of
processes , the condition of type
(10) in Lemma 6 is satisfied. This completes the proof of
Proposition 1.

APPENDIX B
STABILITY OF THE SHADOW QUEUES UNDER LQ-MWS

Similarly to (11)–(24), we can establish the fluid limits of the
system: .
We present a lemma similar to Lemma 9. This will be used

to show that the fluid limit model for the subsystem consisting
of shadow queues is stable under LQ-MWS. We omit its proof
since it follows the same line of analysis for the proof of
Lemma 9.
Lemma 15: For all (scaled) time and for all links ,

we have that with probability one

(52)

Now, we can show that the fluid limit model for the subsystem
of shadow queues is stable under LQ-MWS.
Lemma 16: The fluid limit model for the subsystem of

shadow queues operating under LQ-MWS satisfies the fol-
lowing: For any , there exists a finite such that for
any fluid model solution with , we have that with
probability one

for all

for any arrival rate vector strictly inside .
The proof is similar to that of Lemma 11 and is thus omitted.

APPENDIX C
PROOF OF LEMMA 3

Recall that denotes the loop-free route of the flow . We
prove Lemma 3 in a constructive way, i.e., for a network where
flows do not form loops, wewill give an algorithm that generates
a ranking such that the following statements in Lemma 3 hold:
1) for any flow , the ranks are monotonically increasing
when one traverses the links on the route of the flow from
to , i.e., for all ; and 2)
the packet arrivals at a link are either exogenous or forwarded
from links with a smaller rank.
We start with some useful definitions.
Definition 1: Two flows , are connected if they have

common (directed) links on their routes, i.e.,
, and disconnected otherwise. A sequence of flows
is a communicating sequence if every two adjacent flows and

are connected with each other. Two flows and com-
municate if there exists a communicating sequence between
and .

Fig. 4. Examples of different types of components. Links and flows are denoted
by dashed lines with numbers and solid lines with arrows, respectively. Note that
links without data flows are omitted (not numbered), and two numbers labeled
beside a dashed line stand for two links with opposite directions, e.g., links 1
and 8 in (b). (a) Component containing a flow-loop (2, 3, 4, 5, 6, 7), and the
component is not a flow-tree. (b) Flow-tree with one flow-path: (1, 2, 3, 4, 5,
6, 7, 8). (c) Flow-tree and with five flow-paths: ,

, , , and
.

Definition 2: Let denote the set of flows passing
through link , and let denote the set of
flows passing through a set of links . A nonempty set
of links is called a component if the following conditions are
satisfied.
1) .
2) Either , or any two flows ,
communicate.

Definition 3: Consider a component ; a sequence4 of flows
, where , is said to form a

flow-loop, if one can find two links and for each
, satisfying:

1) for each ;

2)
for each

An example of a component that contains a flow-loop is pre-
sented in Fig. 4(a), where the network consists of seven links
and six flows. The routes of the flows are as follows:

, , , ,
, .

Definition 4: A component is called a flow-tree if does
not contain any flow-loops.
Definition 5: Consider a component ; a link is called

a starting link if there exists a flow such that
and for all other and all , i.e., a
starting link has only exogenous arrivals. Similarly, a link
is called an ending link if there exists a flow such that

and for all other and all
, i.e., an ending link transmits only packets that will leave

the system immediately. A path ,
where denotes the length of path and denotes

4By slightly abusing the notation, we also use to denote the
set of unique elements of the sequence.
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the th hop link of , is called a flow-path, if the following
conditions are satisfied.
1) Links and are the only starting and ending
link on the path , respectively.

2) Either , or for each , there
exists a flow such that, and ,
i.e., two adjacent links and are on the route of
some flow.

In general, a flow-tree consists of multiple (possibly over-
lapped) flow-paths. An illustration of flow-loop, flow-path, and
flow-tree is presented in Fig. 4. It is clear from Definition 3 that,
if there exists a flow-loop in a component, this component must
contain a cycle of links, while the opposite is not necessarily
true. For example, the components in Fig. 4(b) and (c) both con-
tain a cycle, while neither of them contains a flow-loop.
Now, we describe Algorithm 1, which is used to generate a

ranking for a network without flow-loops such that the mono-
tone property in Lemma 3 holds.

Algorithm 1: Rank Assignment

1: procedure
2: for all
3:
4: while do
5: pick a flow-path
6:
7: for do
8: if then
9:
10: else if then
11:
12: else
13: for all do
14:
15: end for
16:
17: end if
18:
19: end for
20:
21: end while
22: end procedure

Let denote the set of links belonging to flow-path . Let
denote a flow-tree, and let denote the set of all flow-

paths in , i.e., is a flow path . Let
denote the flow-path chosen in the th while-loop when

running Algorithm 1 for , and let . Let
denote the rank of link , and let denote the set

of flow-paths passing through link , i.e.,
. Let

denote the set of links that belong to the flow-paths of
(i.e., flow-paths that pass through link and are

chosen in the th while-loop for ) and have a rank greater
than .
The details of ranking are provided in Algorithm 1. In line 2,

we do initialization by setting the rank of all links of to . In
lines 4–21, we pick a flow-path and assign a rank to each
link of starting from link . We may update a link’s rank if

TABLE I
EVOLUTION OF THE RANKING FOR THE FLOW-TREE IN FIG. 4(C)

we already assigned a rank to that link. The set of flow-paths
is updated in line 20. The while-loop continues until becomes
empty. We set in line 6 and assign a rank to links
for each . For each link , we consider the
following three cases: 1) ; 2) ;
3) .
Case 1) Link has not been assigned a rank yet. We set

in line 9.
Case 2) Link already has a rank that is no smaller than the

current . In this case, the rank does not need an
update, and we set in line 11.

Case 3) Link already has a rank that is smaller than the
current . In this case, we update the rank of
some other links as well as that of link . Specif-
ically, for all the links , i.e., links that
belong to the flow-paths in and have
a rank greater than , we increase their ranks
by in lines 13–15. Then, we update
the rank of link by setting it to in line 16.

After considering all three cases, we increase the value of
by 1 in line 18.

The intention of this ranking is to assign a rank to each link
such that the ranks are monotonically increasing when one tra-
verses any flow-path from its starting link. Algorithm 1 may
give different ranking to a given flow-tree depending on the
order of choosing flow-paths. We give two examples for illus-
tration as follows. In Fig. 4(b), one (and the unique one in this
case) example of the ranking for the flow-tree is (1, 2, 3, 4, 5, 6,
7, 8) for links 1–8. In Fig. 4(c), one example of the ranking for
the flow-tree is (1, 2, 3, 4, 5, 3, 1, 6, 7, 7, 8, 9) for links 1–12. The
evolution of the ranking for the flow-tree in Fig. 4(c) is presented
in Table I, where flow-path is chosen in the th while-loop,
for .
Since we assume for all , a net-

work graph can be decomposed into multiple disjoint com-
ponents. Clearly, a network with no flow-loops is equivalent to
that all the components of the network are flow-trees. Without
loss of generality, in the rest of the proof, we assume that the
network we consider consists of one single component, which
is a flow-tree under the condition of Lemma 3. The same argu-
ment applies to the case with multiple disjoint components. We
claim the following lemma and provide its proof in our online
technical report [17].
Lemma 17: Algorithm 1 assigns a rank to each link of a

flow-tree such that for any flow-path , the ranks
are monotonically increasing when one traverses the links of
from to , i.e., for all

and for any .
Now, consider any flow . The statement 1) holds triv-

ially for the case of . Hence, we assume that
. It is clear that for any , the links and



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

must belong to some flow-path , where is
assumed to be a flow-tree. Therefore, the statement 1) follows
from Lemma 17.
Note that the packet arrivals at a link are either exogenous or

from the previous hop on the route of some flow passing through
it. Owing to the monotonically increasing rank assignment, it is
clear that these previous hop links have a smaller rank. Hence,
the statement 2) immediately follows from statement 1). This
completes the proof of Lemma 3.
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