
Virginia Tech AED Locator Android Application
Mark Conover

conoverm@vt.edu

Charlie Cook
cmcook@vt.edu

Craig Estep
craigy@vt.edu

Robert Lyerly
rlyerly@vt.edu

ABSTRACT

In this paper, we describe the development of an Android

application for finding Automated External Defibrillators (AEDs)

on the Virginia Tech campus.

1. INTRODUCTION
Over 446,000 people in the United States fall victim to sudden

cardiac arrest annually. A person experiences cardiac arrest when

they have no pulse because their heart has suddenly stopped

beating. As minutes pass, heart muscle dies and the body’s vital

organs are deprived of oxygen rich blood. An AED gives an

electrical shock to restart the heart within 2 to 3 minutes and gives

the person a 90 percent greater chance of surviving than someone

who does not receive the shock. In order to increase the survival

chances of a person within the Virginia Tech campus and to

decrease the annual victim total, an Android mobile application to

help people find the nearest AED on campus was developed.

2. ACKNOWLEDGMENTS
Our thanks to VT Rescue for allowing us to develop their idea.

3. HOW IT WORKS
The Virginia Tech AED Locator Android application is made for

all devices that have an Android operating system. The

components used to run the application are a Microsoft Windows

Azure server with database, SQLite database, GPS and Network

provider, and Google Maps API.

4. WINDOWS AZURE
For our project, we were given a 3-month license to use Windows

Azure, Microsoft’s solution to Cloud Computing. Windows

Azure is a platform for hosting web services and applications,

handling domain name services and allowing flexible scaling [1].

After registering for our license, management of the service was

provided through a clean but robust and full-featured web

interface (note that this web interface utilizes Microsoft

Silverlight, so compatibility is limited on non-Windows

platforms). It allowed us to register services (web applications

and relational databases), deploy applications in a staging or

production environment, and scale our applications to fit demand.

Using Windows Azure was fairly simple; there are many existing

tools to help with development and deployment. Installing the

Windows Azure SDK provides several tools which are necessary

to create an Azure application. The first is the packaging tool

which builds a deployable-package from your web application

code. It creates all of the necessary files to deploy your

application to the cloud. The second is a set of emulators used for

testing your web application locally. These tools simulate the

Azure OS on your computer so you can test without having to

deploy the application to the cloud after every change, a very slow

process. Since the emulator runs a virtual machine containing the

Azure OS, the way your application behaves locally mirrors the

way your application runs on the cloud.

4.1 Azure Server
The server was developed in the SpringSouce framework. It

comes packaged in a WAR file along with the java run-time

environment. This allows the server to be easily deployed on a

with variety of platforms. For our service we deployed it in a

Tomcat instance running on the Microsoft Azure cloud. The

server is responsible for maintaining the master list of AEDs and

determining which AED records have been changed when a client

asks for an update, this is done by attaching a timestamp to each

record and updating the timestamp every time that record is

changed, the client simply provides the last time it updated and all

new or changed records since that time are sent back to the client.

AED records can also be created, modified and destroyed by

authenticated users. The authentication is achieved by the

authentication manager in the Spring framework and is tracked

using session ids so that once a client has authenticated itself it

may perform the privileged actions for a set amount of time before

having to renew its session.

4.1.1 Apache Tomcat
Since we were designing the AED locator app for Android

phones, we did not have the close integration with Windows

Azure that developers for Windows Phone have. Also, Android

phone apps are written in Java, eliminating some of the tools that

come with the Windows Phone SDK that uses C#. We decided to

create a more flexible cloud interface that could run on any

platform. We chose to deploy our web application using the

Apache Tomcat web server, a mature, robust web server that runs

on any system that has a Java Virtual Machine (JVM) installed

[2]. It also provides easy web application deployment features

that interacted nicely with Spring. Using Apache Tomcat, the

web application portion of our project can be run on any

webserver, including other cloud computing platforms and pre-

existing servers.

4.1.2 Server-side Improvements
There are several possible improvements that would enhance our

system further. We could make a web interface for our database

so that VT Rescue team members could log into a website and

easily add, edit or delete one or more AEDs at a time. As of right

now, the only interface for doing this is on the Android app which

only lets you add or edit one device at a time. Another future

improvement would be to possibly offload some of the

computation to the server. One of the nice things about our

application is its ability to run even without an internet

connection. However, if the app is connected to the internet,

utilizing the resources of the server could potentially increase the

efficiency of the application in terms of computational overhead

and power consumption.

4.2 Azure Database
The server’s list of AEDs is persisted using the Hibernate

framework. Hibernate provides a single interface for the

persistence and querying of objects to the server but allows the

actual instantiation of the database to vary. This allows the

database to be able to be changed, or swapped out for another

type of database, without affecting the server. Additionally, the

Hibernate framework can analyse the object’s code can update the

tables of the database if new fields are necessary. This provides

for easier maintenance and updates to the server code without

having to update the database manually.

4.3 Windows Azure Plugin for Eclipse
Another tool that we utilized was the Windows Azure Plugin for

Eclipse with Java (since Spring is built on top of Eclipse, the

plugin was compatible with Spring as well) [3]. It integrates

many of the tools of the Azure SDK with Eclipse – you can create

Windows Azure projects, build the projects for the emulator or for

deployment to the cloud, adjust minute details of your web

application (such as which port on which to accept connections)

and it provides scripts that handle setting up the emulator to

simulate your web applications. The tool allowed easy project

management; the web application could be edited in Spring, then

dropped into an Azure project and simulated.

5. SQLITE DATABASE
The SQLite database is for storing a list of Virginia Tech’s

campus buildings and AEDs with their corresponding GPS

coordinates. The application queries the SQLite database to find

the Virginia Tech building that is closest to the device and finally

the AEDs that are reside in that building. The SQLite database is

updated either daily or weekly, depending on the set user

preference, by syncing with the Azure server’s database. In order

to increase a device’s battery life, all operations for determining

new AEDs and Virginia Tech buildings that need to be added to a

device’s SQLite database is done on the Azure server. A device

simply sends an HTTP request with a timestamp of the last time

the device sync’d with the Azure server’s database. Thus, the

Azure server is able to determine the new AEDs and Virginia

Tech buildings for that device and return them in XML format

within an HTTP response.

6. MAP
The most fleshed-out method for finding AEDs is also the most

useful for navigating to one. It provides a visual way to find an

AED as well as tools for locating and navigating to a chosen

AED.

There are actually multiple cloud services working behind the

scenes that allow us to hook into them. The first is the Google

Maps API, specifically for Android, and the second is the

Directions API, which we use to get walking directions from the

user’s location to a given AED.

6.1 Google Maps API
Because our app runs on the Android platform, we have the

opportunity to utilize the Google Maps API. It is very simple to

enable Google APIs for an Android project, with a little more

setup required to get the map working.

To use maps, an API Key is required. It is free from Google and is

very easy to acquire. However, we ran into the problem that each

developer on our team (four of us) needed a separate key, as they

are tied with the local Android SDK. There are ways to get a

shared key for a larger team but because our team is so small it

was simply a minor annoyance.

6.1.1 Features
Like the web interface, the Google Maps API for android uses

tiles and different zoom levels to display a map to users. From

there, using Overlays or custom rendering, as a developer you can

customize the display and contents of the map.

It supports both standard maps and satellite view, which is very

useful for us because it could give the user a better perspective

about their location if location services were not available.

6.1.1.1 MyLocationOverlay
A useful feature in the library is the overlay provided for

displaying the user location on the map, using the Android

Location API which hooks into GPS, IP tagged location using

WiFi, and network tower triangulation.

For our app we customized this class with a compass direction

indicator. The way we accomplish this is to request updates from

the compass, then change the current icon shown on the map

using eighteen icons from the open source My Tracks project

which are arrows pointing in those various directions.

6.1.1.2 Custom Location
The MyLocationOverlay is only useful if location services are

operating and accurate. This would not be the case if the user was

inside with only GPS enabled and no other location services. The

GPS chip would try to get a fix but it is very unlikely that it would

be able to without a clear view of the sky.

Our solution, which is similar to our list based method for

choosing an AED by choosing a building, is to allow the user to

manually enter a location on the map. This is done either by long-

pressing on the map and using the context menu, or through the

options menu which is opened using a key. These are both

standard methods for selecting a choice like this, with the options

menu more visible.

Once the user chooses a location, the Activity will automatically

load AEDs near that point. It will basically treat it as the users

location from that point on, and they can navigate to AEDs as

they normally would from an automatic location. If they want they

can also switch to automatic again and try to pick up GPS or other

location signals.

6.1.2 Limitations
Compared with the Google Maps app, the feature support in the

public Maps API in MapView is very limited. Some examples are

it does not support rotation, which would be useful for a

navigation mode.

It also does not support many of the layers that the full app does,

such as traffic, terrain, transit, and others.

A very new feature was introduced to the main app as well. Indoor

maps would be an amazing feature in our program, as at the

moment we can only guide users to the building itself, and

provide a textual description of the location of the defibrillator

inside the building. With indoor maps we could show them a

visual indication. Unfortunately it will take a long time for this

feature to trickle down into the API, if it comes at all.

6.1.3 Conclusion
The Google Maps API makes a map display possible, and

abstracts away much of the work, such as downloading tiles of the

appropriate zoom level, rendering, and even mapping latitude and

longitude points to allow us to do our own custom drawing.

6.2 Directions API
Once the user has determined their location and the nearest AED

they need a way to navigate to that AED. We help them do this by

providing directions using the Google Directions API. The way

this API is used is by forming an HTTP request, and then

receiving XML or JSON output containing what amounts to a list

of points that the user will travel.

To go into more detail, a response is layered into different aspects.

These are Routes, Legs, Steps, and finally Polylines. Here is a

description of the various aspects and how we utilize and present

them.

6.2.1 Routes and Legs
A route represents a way to get from the source to the destination,

and the response can contain multiple routes. We do not want to

overwhelm the user with options, though, so we simply ignore all

but the first route.

Legs represent a section of a route, and so the sum of all the legs

is the entire journey. For simplicity, we simply combine the legs

by iterating over all of their components, steps.

We use a custom Overlay to draw the route on the map.

6.2.2 Steps
A step represents a latitude and longitude along the way, with an

instruction on how to proceed to the next step. It contains text as

well as a numerical value to describe how far away the next step

is.

Using the custom Overlay, we draw a circle at each step point.

6.2.3 Polyline points
A polyline is an encoded set of points. Because there is no utility

in the Google Maps API for decoding a polyline into latitude and

longitude points, we used a class from a third party to do this.

Once the points are decoded, we draw a line connecting each

polyline point in the entire route.

6.2.4 List format
In addition to the graphical display of the directions, we provide

an options menu item that lets the user see a list of the steps, as

well as on overall summary of the route. If they click on an item

in the list it will immediately take them to the map.

6.2.5 Conclusion
Because finding an AED is so time-critical, and we assume that

they will be close enough to travel on foot, we give the user

walking directions. It is doubtful that other types of directions

would be useful, because we are dealing with such a time-critical

situation. It would simply take too much time to get in any sort of

vehicle to find an AED.

7. PERFORMANCE
Important to any software is performance. For mobile apps in

particular, perceived performance is crucial. If the interface feels

slow or unresponsive for a period of time, then users will simply

uninstall the application and replace it with something better.

The Android Developers site has a page titled Designing for

Performance. They give many tips and examples of how to

improve performance. An interesting fact they state is that users

will be put off by a 100ms-200ms delay when performing an

action. Our goal, therefore, is to reduce the perceived lag to below

this threshold wherever possible.

7.1 Profiling onCreate
While it is possible to try to ‘eyeball’ performance, in order to

start optimizing it is important to quantify it first. Switching

Activities turns out to be a common area for performance

degradation in our app, so we put simple clock measures at the

beginning and end of the onCreate method, which is where an

Activity is created before being shown to the user.

The profiling showed that there is usually quite a difference

between starting an Activity for the first time, and starting it

subsequently from then on. In some cases the difference is quite

drastic.

Here is the graph of our findings.

7.2 Problem Areas
There are some ‘usual suspects’ that cause these performance

issues. They are database reads and writes, as well as network

communication.

7.2.1 Database
Loading items from our SQLite database is time consuming. On

average, it takes over 200ms to load AEDs or Buildings, which is

well outside the target time.

One reason behind this is because the database is stored on disk.

However, this does not fully explain it, because a query for the

number of items in the database can be run at around 40ms. The

queries for the objects take so long because usually they are done

based on the location of the user, so a formula is applied to the

SQLite query.

7.2.2 Network
Network activity, for example downloading directions, is very

slow. It can take seconds, or at the very least over half a second.

The benefits of using cloud services are met with the downside of

slow network bandwidth and response times.

7.3 Solutions
Because this is such a common issue, there are a number of

common approaches to solving it. Here are two aspects of the

problem and the solutions available.

7.3.1 Threading
Android applications use a ‘main’ thread to draw the user

interface. In order to run a time consuming operation without

affecting the user interface, it must be run in a separate thread

with updates posted to the main UI thread.

The first way this can be done is using the standard Java Thread

object, and using callback methods to post updates to the user

interface controls. This is the approach we went with in our app.

A more advanced method is to use Android’s AsyncTask class,

which has methods for the computation, updates, and result.

7.3.2 User Feedback
Running operations in a separate thread is not enough, however.

The user must be kept informed about what is going on.

In most cases, we simply display a spinner and some text

describing what is going on. Other times we display a numerical

count to estimate how far we are. In both of these cases we use the

ProgressBar widget and post our updates to it from a Thread, or

remove it when the operation finishes.

7.4 Effect of solutions
The effect of using a different thread to perform computation is

shown below for the ChangeBuildingActivity, which involves

loading items from the database.

7.5 Library loading
The map Activity is very slow to start for the first time, probably

due to the loading of libraries when the map is created for the first

time. Unfortunately there does not seem to be much we can do to

alleviate this, as the View itself must be inflated on the UI thread,

and so there is no way to move this operation to a separate

Thread.

7.6 Conclusion
Android provides many built-in and standardized ways to deal

with long running processes. We were able to take advantage in

order to reduce perceived delays caused by long running

operations to negligible amounts.

8. REFERENCES
[1] Apache Tomcat – an open source software implementation of

the Java Servlet and JavaServer Pages technologies.

Copyright © 1999-2011, the Apache Software Foundation.

http://tomcat.apache.org/

[2] "Community Material." HIBERNATE. RedHat, n.d. Web. 12

Dec 2011. <http://www.hibernate.org/docs>.

[3] "SpringSource Documentation." SpringSource. VMware,

n.d. Web. 12 Dec 2011.

<http://static.springsource.com/projects/documentation/index

.html>.

[4] "University Public Access AED Program." Virginia Tech

Rescue Squad. VT Rescue Squad. Web. 2 Dec. 2011.

<http://www.rescue.vt.edu/aed.php>.

[5] Windows Azure. Copyright © 2011 Microsoft.

http://www.windowsazure.com/en-us/

[6] Windows Azure Plugin for Eclipse with Java. Copyright ©

2009 Soyatec. http://www.windowsazure4e.org/

http://tomcat.apache.org/
http://www.windowsazure.com/en-us/
http://www.windowsazure4e.org/

