
Highly Available Websites Despite Massive Failure
JAN GRAJKOWSKI, ZACH SWASEY and PAT WHELAN
{jang115, zswasey, pat717}@vt.edu
Virginia Tech

We introduce a new software project to test highly available websites and
attempt to point out weak points in website infrastructures. This paper will
cover the goals of our project, as well as the April 21st, 2011 event that
sparked the need for such a thing. The software results of the project can
be useful for testing how well a website faces massive failure in the cloud.
We also discuss recommendations for developing a highly available in the
cloud, with ideas not just specific to the cloud but could apply to a regular
data center as well.

Categories and Subject Descriptors:

General Terms: High availability, Failure models, Cloud

Additional Key Words and Phrases: high availability, failure models, cloud

1. BACKGROUND

On the 21st of April in 2011 Amazon Web Services (AWS)1 suf-
fered major outages in its Elastic Block Store (EBS) offerings.
EBS is a distributed, replicated block data store that is optimized
for consistency and low latency read and write access from Elastic
Compute Cloud (EC2) instances. Due to a network change pushed
in the US East Region of AWS there was a short network outage
and many EBS nodes were isolated from other EBS nodes in their
replication clusters. When the network connectivity was restored
all these nodes rapidly started looking for server space where they
could re-mirror its data. This rapid search by many nodes at once
caused roughly 13% of EBS nodes to be in a “stuck” state where
they were unable to process normal requests.

Issues related to this outage lasted approximately 2 days as EBS
nodes and volumes were restored. In this time, however, many sites
were affected and down as a result. A partial list of websites in-
cludes: Reddit, Quora, AirBNB, and Kickstarter. A notable excep-
tion was Netflix, one of AWS’s largest customers. Netflix doesn’t
use EBS itself, but it does use other services that AWS offers that
use EBS on the backend. While they should have been affected by
the outage Netflix had testing in place that made it so they were able
to stay afloat. They had graceful degradation in place all over their
infrastructure allowing them to recover from failure in a quick and
easy fashion. One of their main solutions was a testing framework
known as “Chaos Monkey”.

What Chaos Monkey does is randomly select services that exist
in the Netflix infrastructure and terminate them. After this, testing
is performed to determine how the website handles the loss of these
services. When a service goes down they should be automatically
recovered without any manual intervention. What Chaos Monkey
wasn’t designed for, however, was the failure of an entire Availabil-
ity Zone which is essentially what happened on April 21st. Despite
this though, Netflix was able to weather the storm of the failure
quite well.

1http://aws.amazon.com

2. INTRODUCTION

We set out with three goals in mind: write a replacement for the
Chaos Monkey framework that would run on the newly developed
OpenStack Cloud platform, create a highly available website infras-
tructure similar to Netflix’s and attack it with Chaos Monkey, and
to develop a website to sit on top of the infrastructure and be able to
reliably determine its uptime. The outcome of these three objectives
working together would be a website that would be able to stand up
against failure. We worked in collaboration with Rackspace and
used their Rackspace Cloud2 and alpha release version of Open-
Stack3 to develop and test our implementation of the above goals.

This paper will describe the steps we took to attempt each of the
three goals. We will cover the process that was used in developing
the Chaos Monkey replacement, the highly available infrastructure,
and the website that would sit on top of the infrastructure. Unfor-
tunately, in developing our infrastructure for testing purposes we
were unable to get it to an automated state on par with what would
be acceptable for such a thing. We did, however, come up with
many recommendations as to what should be done to avoid the sit-
uation that happened to many websites with the AWS outage on
April 21st, 2011.

3. NETFLIX: WEATHERING THE STORM

As mentioned in the Background Netflix was one of the few web-
sites hosted in the affected availability zone that wasn’t majorly
affected by the service outage. They way they designed their in-
frastructure for high availability saved them from failure, thanks
in part to Chaos Monkey and their Rambo Architecture. Rambo is
Netflix’s Active/Active system of having undifferentiated servers
that can handle any and all requests. What this means is that if one
server is supposed to be handling a specific job, such as acting as a
load balancer, and it goes away then any other server can take it’s
place while waiting for new servers to be launched.

During the April 21st event Chaos Monkey wasn’t actually as
big a help as some might think, but it surely did help. Chaos Mon-
key wasn’t designed at the time to handle a whole availability zone
in AWS going down, but merely just a handful of server instances
here and there. So when the servie outage happened the engineers
were unsure how things would be handled even though it was tested
by Chaos Monkey. Since the event Netflix has increased their team
of Monkeys to a “Netflix Simian Army”[Netflix Inc. a], which in-
cludes Monkeys to do all sorts of monitoring of services, testing,
and terminating of instances.

One affect that Netflix did have was with loss of connections
when using AWS’s Elastic Load Balancer (ELB). Since ELB bal-
ances across availability zones first, and then across nodes, a ser-
vice interruption in a single availability zone can cause a bunch of
connections to the ELB to not go through. When servers started
crashing in the affected availability zone, that portion of the ELB

2http://www.rackspacecloud.com
3http://www.openstack.org

ACM Transactions on Graphics, Vol. 28, No. 4, Article 106, Publication date: August 2009.



2 • Grajkowski, Swasey, Whelan

round robin balancing stopped responding, causing a drop in con-
nections. ELB is also partially backed by EBS, causing even more
trouble when the EBS volumes were unable to be contacted.

4. ANARCHO CHIMP:
CHAOS MONKEY ON OPENSTACK

Our first goal was to recreate Chaos Monkey in an OpenStack envi-
ronment. While Netflix only briefly describes Chaos Monkey and
what it does, they don’t release any source code for it or discuss
how it works in relation to AWS. There was, however, a publicly
available open source implementation4 hosted on Github. It was
written in .NET and only implemented the very basic idea proposed
by Netflix: select random severs without discretion and terminate
them. This was a good place to start, and we set out to develop just
that. As a fork of the concept of Chaos Monkey, but not any ac-
tual code, we decided that a new name would be appropriate, thus
Anarcho Chimp was born.

While the implementation of Chaos Monkey on Github was writ-
ten in .NET we decided to write our implementation in Python. We
chose Python because in the server administration world, Python is
king. There are also many different libraries available for Python
that can do a wide variety of tasks, so there would undoubtedly be
a tool available for whatever we need. To talk to the OpenStack
API we used the Python bindings developed by Rackspace, known
as python-novaclient5. Originally we had considered develop-
ing our implementation of Chaos Monkey as being cloud service
independent so that it could run on AWS, Rackspace Cloud, Open-
Stack, or any other cloud services provider. To this end, we investi-
gated using Apache’s Libcloud6, but found that it abstracted away
too many of Rackspace and OpenStack specific API calls. The next
idea was to abstract out the platform specific parts of our implemen-
tation so that the python-novaclient or Boto (python bindings for
various AWS APIs) specific sections could be dynamically loaded
for attacks against OpenStack or AWS, respectively. This was aban-
doned due to our main goal being to develop this system for Open-
Stack specifically. However, it wouldn’t be too difficult to refactor
the codebase to allow for the latter description in the future.

With the programming language and API bindings settled upon
we set out to design our Chaos Monkey implementation in a way
that could be expanded upon in the future if needed. This was pretty
easy in Python, as it has full object oriented capabilities. In the
process of designing the program we decided that it should do more
than just randomly kill instances, but it should also attempt to be
smarter about it. Following brainstorming and meeting with our
professor we came up with four basic failure models that we think
are a good starting point.

4.1 Failure Models

Our Anarcho Chimp includes several failure models: Random Fail-
ure, Network Failure, Process Failure, and Graph Failure. These
can unleashed upon a random subset of all instances, or a random
subset of instances that are tagged with a specific string of metain-
formation supplied at runtime.

4.1.1 Random Failure. This is the classic model described in
Netflix’s description of Chaos Monkey. It gets supplied the list of
instances to be considered, which consists of all instances or the

4https://github.com/simonmunro/ChaosMonkey
5https://github.com/rackspace/python-novaclient
6http://libcloud.apache.org

subset of instances with the specified tag, and a number of times to
repeat. Given these two items, it will randomly select an instance
and call its delete method. That server is essentially removed from
the list of considered servers, and the process is repeated a specified
number of times.

4.1.2 Network Failure. This is the next model that we wished
to implement for Anarcho Chimp. What it does is simulate a net-
work outage on the current server instance. In AWS there’s a con-
cept known as “Security Groups” which are basically iptables
rules that get applied to a server instance. Using security groups in
AWS to simulate a network failure would be easy, since we would
need only remove all security groups from the selected instance,
and add our own security groups that will drop all incoming and
outgoing packets to the instance. OpenStack, as of the Diablo al-
pha release, doesn’t have support yet for security groups, so we
had to develop a different way to accomplish the same thing.

Since security groups would basically act as iptables rule, we
decided that we might as well install the actual iptables rules to
do just what we wanted. To accomplish this we would need to be
able to ssh into the instance and run our commands. This would
require no additional information at Anarcho Chimp runtime if the
server instances were given the runner’s public key at boot time. If
this isn’t the case, a JSON file can be passed in at runtime tying
a server IDs to their respective root passwords. At this point, the
process is very similar to Random Failure: the model is given a
list of instances to act on, one is randomly selected, and an action
is performed upon it. Using the python module Paramiko an ssh
session is established to the server and the following command is
issued:

nohup sleep 5 && iptables -P INPUT DROP
&& iptables -P OUTPUT DROP && iptables
-P FORWARD DROP &

This will install the iptables rules to drop all incoming, outgoing,
and forwarded packets. It will also sleep 5 seconds in nohup back-
ground mode, so that the ssh connection has time to end without
getting stuck.

4.1.3 Process Failure. In this next failure model we wanted
the ability to not just kill a random server instance, but also random
processes running on that server. Examples of such processes are:
mysqld, httpd, haproxy, mongrel. These are the main processes run-
ning on servers that create the software infrastructure for the web-
site. The process in developing this model is very much the same as
for Network Outage, but when we ssh into the server we’re calling
killall to kill the process. This model requires that a JSON file gets
passed in at runtime that contains a mapping of server ID to a list
of main processes running on that server. The model will then act
much like Random Failure, and select a random instance and then
a random process, establish an ssh connection, and kill it.

4.1.4 Graph Failure. The final model that we implemented de-
pends on a user supplied graph structure of the infrastructure. It will
then determine which instances in the graph have the highest de-
gree, and terminate those. This simulates the most connected server
in a website’s infrastructure crashing. The format supplied is JSON
with a list of servers each with in and out connections specified to
other server IDs.

4.2 Further Development

As stated earlier we originally wanted Anarcho Chimp to be plat-
form independent and to be able to attack any cloud services

ACM Transactions on Graphics, Vol. 28, No. 4, Article 106, Publication date: August 2009.



Highly Available Websites Despite Massive Failure • 3

provider. This would be a main feature in a future iteration of the
software, but it would be pretty easy to accomplish and integrate
with Boto or other python API bindings. We would also like to de-
velop further failure models that simulate various types of failures
that might affect a server, such as hardware failure. Along these
lines, we’d like to implement several features of some of the other
works in Netflix’s Simian Army[Netflix Inc. a], including processes
that simulate delayed calls to APIs, killing instances that are no
longer healthy, or killing instances that don’t seem to be doing any-
thing.

5. WEBSITE INFRASTRUCTURE IN THE CLOUD

After writing an implementation of Netflix’s Chaos Monkey on
OpenStack, we needed something to test it against. We set out to
develop a highly available infrastructure that would run on top of
OpenStack and be resilient to the failure models implemented in
Anarcho Chimp. From the beginning we had a few requirements in
mind: complete automation so servers could be reinitialized with-
out human intervention, load balanced so that the loss of a single
server in a replicated cluster would be unnoticeable, highly repli-
cated so that no data would be lost in the event of a failure, and
no single point of failure. Each requirement will be talked about in
depth, covering methods that we considered and eventually tested,
problems we encountered, and solutions to those problems.

5.1 Automation

We knew that there would be a need for some sort of configuration
management tool, such as Puppet7 or Chef8, to be able to bootstrap
new servers and make sure they were up to date from time to time.
Requirements that we had for such a tool was that it had to be able
to keep various templates for different server types, keep up to date
versions of files that would need to go to different servers, and allow
the bootstrapping and integration of new servers with the current
state of the infrastructure. Puppet was chosen due to already being
somewhat familiar with it, and its fulfilment of our requirements.

Setting up Puppet was relatively easy. We were able to create
some templates for various server types, such as “webserver”, “db-
server”, and “webhaproxy”, and say exactly what we want done on
each. For example, in the webserver config type we would want it
to install Apache, start it, and make sure that it’s always running.
On the puppetd’s first run on the client it will grab the configura-
tion and make sure that all requirements are met, and if they aren’t
it will take the steps to ensure that they are. Puppet also allows us to
have a central repository of files that all servers might need, such as
the master hosts file that includes the IP addresses and hostnames
of all servers in the infrastructure. This is useful so that servers will
be able to talk to each other as “dbserver1” instead of having to
hardcode an IP address into configuration files.

New servers are created from a blank server image created with
modifications to include an updated operating system, updated apt
repositories, Puppet already installed, the puppetmaster host-
name already in /etc/hosts, and the puppetd cronjob running ev-
ery minute to poll the puppetmaster for config changes. Once a
server is initially bootstrapped the only changes that’ll be happen-
ing to configs is updating /etc/hosts when new servers go up and
down.

Puppet by itself doesn’t have the ability to do everything we
needed in regards to automation. So we set out to write a sim-

7http://www.puppetlabs.com
8http://www.opscode.com/chef

ple script, which was dubbed Ventriloquist, that would run every
minute and check on the current state of the infrastructure. If a
server had somehow died, it would spin up a new one of the same
configuration, and tell Puppet that it needs to be bootstrapped when
it first checks in. This script that ran on a cronjob read in a descrip-
tion of the infrastructure in JSON format that said what should be
running and what type of server it should be; if the current state
didn’t match, it was made to match. The process from start to end
goes like this:

(1) Ventriloquist on a cronjob every minute does a request to get a
list of all server instances.

(2) It then compares the names of the instances to a JSON file that
provides the whole infrastructure, including server name and
what type of puppet configuration they should be.

(3) If a server is in the JSON file, but not in the results from the
API request, then it will need to be relaunched.

(4) A boot request is made with our custom image.
(5) The information for this newly booted image is stored in the

JSON file on the desk.
(6) A new Puppet node file is created with the config information

provided in the JSON file.
(7) Puppet is informed to clean any certificates previously under

the hostname of the new server, and accept the certificate of
the new server.

(8) Puppet then waits for the server to bootstrap, and sets the JSON
file to reflect this final state.

Our current recommendation is to also have your
puppetmaster server running out of the cloud and in your
own domain on your own hardware. This will mediate any issues
of the configuration server being the victim of a data center crash.

Unfortunately, we were unable to get automation working flaw-
lessly the way we wanted. It wasn’t an inherent problem with Pup-
pet, but in getting the servers bootstrapped and reinitialized in a the
correct manner. For example, when starting a new dbserver it needs
to be brought up to speed with the current state of the database,
users have to be created, and it needs to be set in its rightful place in
the database hierarchy (is it a master? a slave?). These tasks were
difficult to get right, and due to time constraints with the project
were left unfinished.

5.2 Load Balancing

For websites nowadays load balancing is a key part of making a
highly available website. Instead of having one server take on all
the work, it makes more sense to spread the work out amongst many
less powerful servers. One popular use is to load balance over sev-
eral identical web servers, all running the same software. When a
request comes in to the load balancer it will route it to the server
that it feels would be best to get the next request. This causes the
work to be evenly spread out amongst all the webservers. The load
balancer will periodically check the health of a server that it’s man-
aging to make sure that it’s able to still handle requests. In the case
of web servers it will do a health check on port 80 to make sure it’s
still listening, and if it isn’t over a particular time span then it will
be removed. Once a server is removed from the load balancing its
traffic is redistributed over the remaining servers.

There are several options for load balancing software to oper-
ate in the cloud. AWS has their own load balancer called Elas-
tic Load Balancer (ELB), that has many configuration options and
APIs available to make it highly useable. However, during the April
21st event it had a high number of failures because parts of the

ACM Transactions on Graphics, Vol. 28, No. 4, Article 106, Publication date: August 2009.



4 • Grajkowski, Swasey, Whelan

Fig. 1. The highly available website that we proposed. Not shown is the offsite puppetmaster config server.

ELB backend utilize EBS volumes. RackSpace Cloud offers a ba-
sic load balancer as a service, but it doesn’t have more than the
most basic configuration options. Third party software includes:
HAProxy, Linux Virtual Server, and Ultra Monkey. HAProxy9 is
widely used for highly available load balancing and provides many
configuration options for basically any setup. Linux Virtual Server
(LVS)10 is a much more advanced option that can load balance
amongst servers within a Linux cluster, amongst applications on
those servers, and provide virtual IP services. Ultra Monkey11 is
a collection of various softwares that provides configuration for
them, including LVS, ldirectord, and the Linux-HA software heart-
beat.

For the purposes of our small testing infrastructure it would seem
that Ultra Monkey would have provided the best solution to most
everything we would need for load balanced and highly available
services. Unfortunately it is no longer actively developed, and the
last release was 6 years ago. After attempting to get LVS working,
and failing due to the complexity and necessary overhead, we set-
tled on using HAProxy as our load balancing solution. It was a very
easy setup that consisted of merely a single configuration file that
contains the necessary options about which servers should be load
balanced, what port they should be listening on, what port HAProxy
should be listening on, and how the load should be balanced. The
default balance algorithm is round robin, which fairly distributes
the load amongst the servers in turn. At this point, it was merely a
task of creating a config in Puppet for a “webhaproxy” type, ensure

9http://haproxy.1wt.eu/
10http://www.linuxvirtualserver.org
11http://ultramonkey.org

that it would install haproxy and keep it running, and load it with
a configuration file that contained the list of webservers.

5.3 Data Replication

The idea of data replication was only necessary in our concept for
our database servers. We wanted new database servers to be able to
start off where the old one that it’s replacing ended. To accomplish
this there needs to be data replication amongst the various database
servers. Methods for data replication for MySQL12, our database of
choice, exist in two forms: database level, and block level. Database
level options are provided by MySQL’s built in replication services.
This is a common method that allows a database to act as a mas-
ter, receive all writes, and replicate the written data down to slaves.
These slaves then receive all the reads that would happen against
the database. This is a nice method, but bringing new servers up to
date requires dumping the current database and importing it into a
new slave, and having it catch up to the current state of the mas-
ter. This can be time consuming and error prone, as MySQL level
replication often is.

Block level replication often comes in the form of Distributed
Replicated Block Device (DRBD)13 which basically implements a
RAID1 setup over a network. This means that a block device on
each server can be kept mirrored between itself and another server.
DRBD is nice because in newer versions it can mimic RAID1 be-
tween three servers, with the first two acting as primary and sec-
ondary, and the third server acting as disaster recovery. Without a

12http://www.mysql.com
13http://www.drbd.org

ACM Transactions on Graphics, Vol. 28, No. 4, Article 106, Publication date: August 2009.



Highly Available Websites Despite Massive Failure • 5

third server, DRBD would have to catch up the block device on a
newly launched server, which could take a while. However, with
this third server waiting around with the fresh set of data it just
needs to failover to it. Then a new server can be launched with and
get caught up in the background, acting as the new disaster recovery
DRBD node.

Given the capabilities of DRBD versus MySQL replication, we
recommend using the former. It’s a bit more complicated to set
up, but the gains are well worth it. As mentioned earlier, we were
unable to get automation set up reliably for our database servers,
which includes the data replication. Although we are recommend-
ing DRBD, we felt the configuration necessary and the risks to
our small demo was too much, so we opted to attempt the easier
MySQL replication route.

To make the database highly available and up to date we decided
to use HAProxy, the load balancer discussed earlier with regards to
web servers, along with servers in a Master-Master configuration,
and servers in Master-Slave configurations. Two servers would be
in Master-Master configuration, both being able to be written to
and update the other. Each of those servers would have a legitimate
Slave attached to it that would be kept up to date by having updates
pushed to it from its Master. These slaves would only be used for
reading data. HAProxy would be sitting in front of this setup, with
configuration setup to provide a port to listen on for writes, and it
would direct all traffic to be balanced between the two Masters, and
another port to listen on for reads, which would balance reads be-
tween the slaves. When new servers come up and down by Puppet
they would need to be placed in their appropriate position and set
as a Master or a Slave.

5.4 No Single Point of Failure

A single point of failure is just what it sounds like: one single server
that if it were to crash, a service might fail. This is at the heart of the
reason behind high availability. One of the main ways to provide no
single point of failure is with IP failover. If you have a single for-
ward facing IP address for the web server load balancers, then if
that server goes it can switch the IP address over to another server
that’ll act exactly the same as the original one. Two pieces of soft-
ware are widely used for this: heartbeat and keepalived. Heartbeat14

provides a lot of different capabilities to monitor various services,
such as apache and mysql, if the service goes down it’ll switch over
the virtual IP address. Keepalived15 does basically the same thing,
but more barebones, and for our purposes, much easier to set up.

Both require that they’re able to listen for the other instance, but
this isn’t very easy to do in the cloud which lacks multicast support.
We had to use the keepalived-unicast16 patch to allow to specify the
secondary server to listen to. This wasn’t very difficult, and Pup-
pet handled setting up the configuration files. We would be using
keepalived only on our HAProxy boxes, so if the primary goes
down the virtual IP would be switched out very quickly.

OpenStack provides the capabilities for what they call “floating
IPs”, but they aren’t implemented as of the Diablo alpha release.
AWS provides what they call Elastic IPs which are IPs that can
be assigned to any instance at any point in time; they are perfect
for this situation. Rackspace Cloud allows sharing of IP addresses
between server instances in a single IP “group”, but only if the
initial server with that address is kept alive, which obviously causes
problems for our testing purposes. There’s also the ability to request

14http://www.linux-ha.org/wiki/Heartbeat
15http://http://www.keepalived.org
16http://1wt.eu/keepalived

an additional public IP address, however it has to be tied to a server
at any point in time, which again causes problems for our purposes.

6. FINAL RESULTS

Despite the inability to get automation and replication setup in our
test infrastructure, we still have a number of recommendations for
highly available websites. Figure 1 shows the setup that we had
planned on supporting and testing Anarcho Chimp against. As you
can see, the frontend WebHAProxy Primary is the only thing visi-
ble to the user, but there’s plenty going on behind it to make sure
the website is always running.

Some of our final recommendations are listed below. They are
used by many websites, including Netflix, in keeping their websites
highly available and ready for most kinds of failures.

—Keep your puppetmaster in your own domain. Then you have
much more control over the software and hardware that’s han-
dling the automation of your entire website’s infrastructure.

—Use DRBD with a third server serving as a hot backup for disas-
ter recovery.

—Use Monit17 to monitor processes on servers. It can then be used
to send an email, or any other kind of alert to warn you that a
process might have tied. It will also restart that process if you
tell it to.

—Have some sort of IP failover, either by Heartbeat and Pace-
maker18, or keepalived. If using AWS, request additional Elastic
IPs. If using Rackspace Cloud, have your HAProxy servers in a
shared IP group.

—Use a configuration management tool such as Puppet or Chef.
They both provide many of the same features and have Domain
Specific Languages (DSL) for their templates and node files, so
it’s easy to write what you want them to do.

—Use Nagios19 to monitor everything about your server instances,
including: processes, uptime, in/out network traffic, CPU load,
etc. Nagios can be integrated with Puppet to provide the ability
to use Nagios stats with Puppet configs.

—Consider having N+1 server instances ready just in case some-
thing goes awry. In AWS you can purchase reserve instances that
are ready whenever you need them and will always be available
to you.

—Also consider an Active-Active arrangement of server instances.
This implies that any instance can pick up where another left off
if it were to crash. Netflix uses a similar architecture codenamed
Rambo, where all servers run the same processes and can handle
any role in the infrastructure. This allows you to quickly provi-
sion these servers.

—Have instances across availability zones and regions, so the web-
site can still be available even if an entire region’s data center
were to go down, such as an event in 2010 when an AWS data
center in Virginia lost power.

7. TESTING APPLICATION

Once we had the infrastructure for the website ready to go, the
next step would have been to deploy an actual website on to the
web servers and benchmark it. We had developed a Twitter clone
alongside the infrastructure in a framework called Grails20, which

17http://mmonit.com/monit
18http://www.clusterlabs.org
19http://www.nagios.org
20http://grails.org

ACM Transactions on Graphics, Vol. 28, No. 4, Article 106, Publication date: August 2009.



6 • Grajkowski, Swasey, Whelan

tries to provide an easy Model-View-Controller framework for the
Groovy21 much the same way that Ruby on Rails22 does.

The application would run on Apache Tomcat23 on the web
servers and be routed to by HAProxy. It was designed so that it’d be
able to act as a regular third party piece of software that anybody
might happen to run on such an infrastructure. It makes database
queries to the the database specified which would be the HAProxy
sitting in front of the databases, which would then decide which
database server to route the requests to.

If we had gotten the infrastructure to an automated point, we
would have deployed this application and launched Anarcho Chimp
to knock out a few servers and determine whether or not the site was
still fully functional. If it wasn’t fully functional we would have
been timing how long it took for everything to get back to a normal
state. We would also be testing how long it takes pages to load and
how the infrastructure holds up against thousands of simultaneous
connections using Apache Bench (ab)24.

8. SOME PRELIMINARY NUMBERS

While we don’t have many hard numbers, we can make some es-
timates. On the RackSpace Cloud the average time for a server to
go from the initial boot request to Active state is around 3 minutes.
Then, if you run puppet on a cronjob every minute or two, you
have to wait for that to bootstrap your server. If the cronjob script
that checks if the servers are up or not runs every minute, then we
can estimate that to get a server back up if the original were to
disappear, it could take from 6-8 minutes if everything was auto-
mated. In our example infrastructure, this wouldn’t affect down-
time since everything has a backup and is load balanced. However,
if both HAProxy servers go down, there’s going to be a problem.
We would have to wait the 6-8 minutes for it to come back online
and the site would be down in that time.

With regards to HAProxy, it takes 3 failed health checks in a
row by default for a server to be considered down. So a server is
removed from HAProxy within 10 seconds of it going away. In that
time, HAProxy could still route requests to it, so an optimistic loss
of requests is around 10 seconds for requests to a HAProxy with a
missing server.

9. CONCLUSIONS

Obviously, your mileage my vary. Not every website has the same
needs and some site infrastructures might look completely different
or implement different ideas for high availability. What we have
presented, however, is a good start for a medium sized website that
wants to ensure that its services available as much as possible. Also
take what we learned to heart: automating stuff like this to always
work without any sort of human intervention is difficult. It requires
a lot of tweaking and testing to make sure that when the engineers
are sleeping that the website will take a licking and keep on kicking.

ACKNOWLEDGMENTS
We’d like to thank Gabe Westmaas at Rackspace Cloud for giving
us an account with free range to do what we pleased with it. It was
very useful and educational to help learn what Rackspace Cloud

21http://groovy.codehaus.org
22http://www.rubyonrails.org
23http://tomcat.apache.org
24http://httpd.apache.org/docs/2.0/programs/ab.html

and OpenStack are like. Hopefully OpenStack progresses more and
becomes a viable option for cloud services compared to AWS.

We’d also like to thank our professor Ali R Butt for many ideas
in group meetings through the semester and giving us several extra
chances.

REFERENCES

ENRIGHT, G. Easy web server load-balancing with haproy.
http://blog.rimuhosting.com/2011/07/05/easy-web-serve-load-
balancing-with-haproxy/.

NETFLIX INC. 5 lessons weve learned using aws.
http://techblog.netflix.com/2010/12/5-lessons-weve-learned-using-
aws.html.

NETFLIX INC. Lessons netflix learned from the aws outage.
http://techblog.netflix.com/2011/04/lessons-netflix-learned-from-aws-
outage.html.

NETFLIX INC. The netflix simian army.
http://techblog.netflix.com/2011/07/netflix-simian-army.html.

WILLIAMS, A. Using haproy for mysql failover and redun-
dancy. http://www.alexwilliams.ca/blog/2009/08/10/using-haproxy-for-
mysql-failover-and-redundancy/.

ACM Transactions on Graphics, Vol. 28, No. 4, Article 106, Publication date: August 2009.


