
Xenio
Controlling Virtual Machine Disk Access in Xen

Austin Brooks, Charles Dallachie, Andrew Forsman, William Gomez,
Mike Lapping, CJ Norris, Alan Scherger

December 12, 2011

Abstract

Quality of service (QoS) through a hypervisor is cur-
rently an unsolved and unexplored problem. It in-
volves keeping track of all disk IO through the hyper-
visor while keeping the smallest footprint so as not
to hinder the performance of the virtual machines
(VMs) and, when necessary, throttling disk access
to a designated limit. In this paper, we describe
our method of QoS inside the Xen hypervisor. We
achieved this goal by modifying the Dom0 ’s backend
block driver and providing a new module in the ker-
nel of the Dom0. We then proceeded to use account-
ing data to throttle the VMs’ disk IO to provide a
system where basic QoS could occur.

1 Introduction

Currently in computing, companies are shifting into
clouds and performing processing for clients on ded-
icated machines. A complication that arises here
is that multiple users will compete for resources on
a given machine. Though each client has its own
VM, multiple VMs will battle over CPU resources,
memory resources, and disk resources. As of now,
companies have managed to implement ways to re-
strict VMs from accessing too much of the CPU re-
sources or memory resources to enable fair usage.
This way companies can charge different rates for
resource consumption on a per VM basis. Unfortu-
nately, as of now there is no way to restrict disk IO
for each virtual machine. The development of Xe-
nio, as described throughout this paper, attempts to
solve this problem and allow for fair distribution of
disk resources.

2 Background

Xen is an open source virtual machine monitor soft-
ware package. It abstracts the interactions between
guest operating systems (DomU s) and underlying
hardware. Xen relies on a host OS, known as Dom0
in Xen configurations, whose kernel must be mod-
ified to perform hardware operations upon request
from Xen. Due to the modified kernel requirement,
Dom0 s are generally limited to open source, unix-
like kernels such as Linux, Solaris, and BSD.

DomU s run in two modes: paravirtualized kernel
(PV) and unmodified kernel (HVM). As it pertains
to this project, PV DomU s perform disk IO in a dif-
ferent manner than HVM DomU s. PVs make use
of Xen-specific system calls known as hypercalls[1]
that map an efficient path for disk requests to flow
through Xen to the Dom0. For HVM’s, Xen presents
an emulated disk interface with the help of QEMU.
In both cases, disk requests are routed to Dom0,
whose job is to perform those requests on behalf of
the DomU s. Consequently, hypercalls are more ef-
ficient than the emulated disk interface. The goal
of this project is to control disk IO for PV DomU s
only.

PVs use a two-piece block device driver (split
driver) to handle disk IO. The first piece of the
driver runs within the PV DomU (frontend) and
the second runs within the Dom0 (backend). The
frontend and backend block drivers share data us-
ing ring buffers. Ring buffers are consumer-producer
data structures used for queueing IO requests; one
is created for every block device (device pair) used
by a PV DomU. The backend block driver running
in Dom0 is a threaded, kernel mode process that re-
ceives IO request events from the Xen events system
and routes IO requests to and from the Dom0 ’s disk
scheduler. Each thread, known as a block interface,
handles a specific block device pair, communicating

1



request information over the pair’s dedicated ring
buffer.

3 Xenio

Based upon the design of the Xen IO path, we imple-
mented our Xenio system to allow significant flexi-
bility while also remaining lightweight. Xenio specif-
ically works within the Dom0. The main work of Xe-
nio is done within a kernel module. To ensure perfor-
mance, it was important to keep most computational
work within the Xenio module. The Xenio module
keeps track of any statistics and data structures and
provides an interface for a user to view statistics or
regulate enforcement. It was decided that a kernel
module would be the best method because it allows
the user to insert or remove the module as they de-
sire. If the module is removed, the device driver for
the Dom0 functions as if Xenio does not exist at all
on the machine, allowing for slightly better perfor-
mance.

In order to grab these statistics, Xenio must also
do some work within the backend block driver. For-
tunately, there was a single function within the
driver that has all of the information Xenio needs,
and also was appropriate for enforcing IO QoS as
well. This function is accessed individually by each
DomU, which makes this an excellent space to re-
strict disk IO or perform accounting per DomU.

Xenio’s work begins in the backend block driver,
and starts to collect statistical data for each DomU,
shown in Figure 1. It records this data in the mod-
ule’s memory space. The module’s memory space
has two major areas within the data structure used
by the driver. The first major area of the memory
segment deals with the disk IO of each guest VM
and the total disk IO between all VMs for a cer-
tain time period. The other major area of the mem-
ory segment holds data about each guest VM’s total
disk IO over the life of the VM and the total disk
IO between all VMs since the Xenio module was in-
serted. In order to view the statistical data that has
been gathered at any point, the user simply needs
to cat one of two proc files: /proc/xenio timed or
/proc/xenio totals. The xenio timed proc file keeps
track of the timed data, and the xenio totals proc file
keeps track of the totals data. This method was cho-
sen to keep the data from displaying on the screen in
a cluttered manner and to make both categories of
data much more accessible to the user. In addition

Figure 1: Xenio Design

to providing an output for guest disk IO statistics,
both proc files provide the user with an input vector
to the Xenio system. The xenio totals file provides
the user the ability to clear recorded data via writing
into the file while the xenio timed file takes a given
DomID followed by a number to be used as a cap
for the enforcement system.

3.1 Accounting

One of Xenio’s primary goals was to account for disk
IO. Accounting is essential in demonstrating the ef-
fect of enforcement. First, it is important to mention
the limitations of accounting as they currently exist.

There are only two minor drawbacks to account-
ing, which can easily be fixed in the future. First,
accounting keeps track of data based on the Do-
mID. Because the DomID changes and no DomID is
reused unless the hypervisor is rebooted, if a guest
VM is shut down and restarted, its old data will stay
tied to its old DomID, and the new data will begin
from scratch. Due to this issue, the Xenio module
cannot handle the DomID for a guest VM exceed-
ing 40. If this happens, the Xenio module will crash.
Second, as of now there is no place where any histor-
ical statistics are stored. It would be expected that
future iterations will keep track of historical statis-
tics using a database.

Despite these two drawbacks, useful data is avail-
able from the system that was implemented. Be-
cause a relatively low number of DomU s will run

2



over Xen’s runtime, DomIDs will not usually grow
close to 40. Accounting focuses on the total disk IO
over the life of a VM. The data is never reset and
keeps track of all of the stored data per DomID. Xe-
nio is only privvy to the information accompanying
incoming requests within the backend block driver,
so the four meaningful statistics that are accounted
for are the number of reads, the number of writes,
the number of sectors read and the number of sectors
written. While the accounting aspect is important
and exists as the foundation of Xenio, enforcing is
another major aspect and will be discussed next.

3.2 Enforcement

Xenio’s second goal was to enforce basic QoS. Xenio
enforcement is designed to control the flow of disk
IO requests from a DomU to the disk. To accom-
plish the enforcement, Xenio creates a set of timed
accounting data which allows us to check how much
disk IO has happened in a single time period. Once a
set limit is reached for a time period, the VM should
not be allowed to complete more disk IO until the
time period has ended.

A new set of data structures that holds only timed
data was created along with a timing thread to con-
trol it. The timing thread is started upon insertion of
the Xenio module and sleeps for a given time period.
Once the thread wakes up, it clears the timed data,
performs a check of future values, which we will de-
scribe later, stores a time value for the enforcement
code in the backend block driver and sleeps again.
The time value lets a thread which needs to sleep
calculate the time left until the end of the current
time period. For all our testing, the time period was
set to five seconds.

In the backend block driver, the timed data is up-
dated at the same time as the totals data for stan-
dard accounting. Before accounting, however, checks
are made which determine if the current request
should be allowed to complete. Theoretically, en-
forcement can occur based on any of the data stored
in the timed data, but for our purposes we imple-
mented enforcement based on the total number of
sectors accessed by the VM in both read and write
requests. If the next request causes the total number
of sectors accessed to be greater than the set limit,
the block interface thread is told to sleep for the re-
mainder of the current time period before allowing
the request to be completed. Otherwise, the request
is allowed to complete as usual.

During our initial testing we realized there was
a special case we had not yet handled. What if a
low limit is set and a single request accesses more
sectors than the limit allows? Without handling this
properly, it is possible either to allow too much disk
access to a VM over time, or to indefinitely hang
a VM. Our system for handling the situation is the
futures. When a single request accesses more sectors
than the limit, the request is allowed to complete on
the next cleared time period. The amount of sectors
over the limit that it requests is stored as the VM’s
future value. The future value acts as a timed limit
modifier, meaning that the next time period will act
as if the limit is now limit − future. If the future
value is greater than the limit, then the VM will
not be allowed to complete any disk requests until
the future value drops below the limit. Futures are
decremented in the timing thread.

4 Results

Our final design allowed us the ability to not only
monitor IO operations for guests but also to enforce
IO limits on each guest individually. To ensure the
capability of our design we performed several tests
on our system, with various limits enforced across
several VMs. To test our enforcement we used an
IO benchmarking tool named IOZone which would
make large amounts of disk requests. These requests
are made in various sizes and patterns to allow anayl-
sis of performance. To ensure consistent data, we set
up each VM to run IOZone at the same start time.

The first test we performed was a simple bench-
mark for a single VM with a limit, the purpose of
this test was to illustrate the effectiveness of our en-
forcement, as can be seen in Figure 2. As can be

Figure 2: Limiting with Futures

3



seen from the graph, the VM is incapable of writ-
ing or reading over the imposed limit of 10 sectors.
However, there is one notable exception to this en-
forcement policy. As previously mentioned, a single
operation sector size can exceed the imposed limit, if
the limit is low enough. For this instance, we allow
the operation to occur, imposing a modified limit on
the next time period based on the futures policy, as
can be seen in Figure 2.

The next test we performed in the evaluation of
our system was to examine the performance while
running several guests at one time. For this test,
we first recorded the total sectors per guest when
running the same IOZone benchmark on 4 VMs at
once given staggered limits at 1000, 2000, 4000 and
8000 sectors, respectively, as seen in Figure 3. This
produced the expected behavior as each guest VM
consumed up to, but not above, its limiting factor.
The next part of this test was to then dynamically
change the limits to a constant value. This change
was reflected in our graph, as we can see the sectors
consumed per VM converge on the same value of
2000 sectors.

Figure 3: Limit Enforcement across VMs

Beyond proving that our enforcement worked, it
was also imperative that we analyze the performance
of our Xenio system. Since a large portion of the im-
plementation involved modifying the backend block
driver and executed on each IO operation, it is vi-
tal that our system not consume large amounts of
resources. To determine the impact of our system,
we compared the results of IO benchmarks run on a
clean Xen installation with both our accounting im-
plementation and our enforcement implementation
with enforcing limits set exceptionally high as to pre-
vent actually limiting during the benchmark.

From this comparision in Figure 4 we see that our

Figure 4: Performance Anaylsis of Xenio

accounting implementation only decreased disk per-
formance 1.343% while our enforcement implemen-
tation incurs a 2.249% overhead. This data confirms
that our solution is an efficient and effective method
of control disk operations through the hypervisor.

5 Conclusion

We have presented an initial method of providing
both disk IO accounting and QoS for VMs on the
Xen hypervisor. In terms of accounting, our system
manages to provide a modular solution to recording
and analyzing disk operations for guest operating
systems. When coupled with this accounting sys-
tem, our enforcement methodology has shown that
sleeping block interface threads assigned to overcon-
suming DomU s is an effective method for delaying
the execution of disk operations and providing reli-
able QoS for multiple guests. In addition, we have
shown that our solution provided these services in an
extremely efficient manner, with low overhead and
resource consumption. Finally, our system provides
this functionality in a simple kernel module that sup-
ports dynamic changes to enforcement policy as well
as giving the user access to detailed accounting in-
formation.

6 Future Work

So far, Xenio has made excellent progress with QoS.
However, there is still much to be done. Currently,
there are five improvements that are on the list to
be implemented. First, a database to keep track
of past statistics per VM, to enable persistent ac-
counting and keep track of data over long periods
of time. Second, the method for keeping track of

4



statistics should be changed from being based off of
the DomID to being based off of a unique identifier
for each VM. This should enable more robust hyper-
visor use and keep the system from crashing. Third,
implementing separate limits for reads and writes.
Separating the limits allows for more user flexibil-
ity and also allows machines to access more of what
they have paid for. Fourth, improve Xenio to al-
low for customizable enforcement policies, to allow
users to change how they would like Xenio to limit
disk resources for specific DomU s. Lastly, the lim-
its could be changed remotely via a website or other
web console. There are clearly many different ways
to improve upon the Xenio module; however, even
without these improvements, Xenio is still incredibly
powerful and flexible.

References

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, A.
Warfield. Xen and the Art of Virtualization.
University of Cambridge Computer Laboratory,
2003.

5


