
Background
§ Google’s BigTable set the stage for this new breed of structured

storage software.
§ Stores high volume of sparse data with fault tolerance

§ Amazon Dynamo describes their “highly-available key-value store”
§ Achieves reliability using a Distributed Hash Table

§ These and other NoSQL ideas were implemented as open-source
projects

§ Apache Cassandra, Apache HBase, MongoDB, Redis, …
§ NoSQL databases gain scalability (partition tolerance) by sacrificing

either consistency or availability, corresponding to Eric Brewer’s
Consistency, Availability, Partition tolerance (CAP) theorem.

Yes or NoSQL
Andy Street, Casey Link, David Mazary, Jonathan Berkhahn, Val Komarov

In partnership with Booz | Allen | Hamilton

Motivation
§ NoSQL databases are a new technology gaining traction

§ Sacrifice an attribute of a traditional RDBMS
§ Better suited to large data tasks

§ Businesses are using larger and larger data sets
§ Amazon, Facebook, Google are key users of NoSQL
§ More conservative businesses could benefit from

adopting NoSQL technologies

Implementation Evaluation

Performance Evaluation

Future Work
§ Create applications built on NoSQL using different workflows
§ Evaluate a broader range of the many NoSQL databases

Use in a real world application
§ Documented the developer experience using:

§ Cassandra – Based on BigTable and Dynamo
§ HBase – Based on BigTable
§ MySQL – Traditional RDBMS

§ Developed a web application involving insertion and querying of
data, with the ability to toggle the storage backend.

Yahoo Cloud-Serving Benchmark

§ Schema design requires a deep
understanding of the very
different storage architectures.

§ Cassandra and MySQL have the
most mature language bindings,
while HBase is centered around
Java development.

§ Cassandra clusters are easiest to
create since they are DHT-based,
followed by MySQL sharding,
and HBase has the most
involved setup, emulating the
full Google BigTable platform.

§ A Yahoo! Research project to generate workloads
for testing structured storage systems

§ Updated and ran these workloads against HBase
0.90.2 and Cassandra 0.7.4

CS4284 Systems & Networking Capstone. Spring 2011. Faculty advisor: Ali R. Butt

Brewer’s CAP Theorem

Symbol {
 Date {
 open:
 close:
 low:
 high:
 volume
 }
}

+----------------+------------------------+
| row | column families |
+----------------+------------------------+
| | price: | volume: |
+----------------+--------------+---------+
<symbol><date>	price_open	
	price_high	
	price_low	
	price_close	
+----------------+--------------+---------+

Sample schemas for
Cassandra and HBase

Workload Operations Application

Update heavy Read/update: 50/50 Session store recording recent actions

Read mostly Read/update: 95/5 Photo tagging: Add a tag is an update, but
most operations are read tags

Read only Read: 100 User profile cache, where user profiles are
constructed elsewhere

Read latest Read/insert: 95/5 User status updates: people want to read
the latest

Short ranges Scan/insert: 95/5 Threaded conversations, where each scan is
for a post in a given thread

Read-modify-write Read/read-modify-write: 50/50 User database, where user records are read
and modified by the user or to record user
activity

Results

Proportions of Operations and the Applications of YCSB Workloads

§ Cassandra demonstrated favorable throughput and
latency.

§ HBase is designed for consistency rather than
availability

§ Tradeoff between performance and application
design goals

