
Background
§ Google’s BigTable set the stage for this new breed of structured 

storage software.
§ Stores high volume of sparse data with fault tolerance

§ Amazon Dynamo describes their “highly-available key-value store”
§ Achieves reliability using a Distributed Hash Table

§ These and other NoSQL ideas were implemented as open-source 
projects

§ Apache Cassandra, Apache HBase, MongoDB, Redis, …
§ NoSQL databases gain scalability (partition tolerance) by sacrificing 

either consistency or availability, corresponding to Eric Brewer’s 
Consistency, Availability, Partition tolerance (CAP) theorem. 
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Motivation
§ NoSQL databases are a new technology gaining traction

§ Sacrifice an attribute of a traditional RDBMS
§ Better suited to large data tasks

§ Businesses are using larger and larger data sets
§ Amazon, Facebook, Google are key users of NoSQL
§ More conservative businesses could benefit from 

adopting NoSQL technologies

Implementation Evaluation
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Future Work
§ Create applications built on NoSQL using different workflows
§ Evaluate a broader range of the many NoSQL databases

Use in a real world application
§ Documented the developer experience using:

§ Cassandra – Based on BigTable and Dynamo
§ HBase – Based on BigTable
§ MySQL – Traditional RDBMS

§ Developed a web application involving insertion and querying of 
data, with the ability to toggle the storage backend.

Yahoo Cloud-Serving Benchmark

§ Schema design requires a deep 
understanding of the very 
different storage architectures.

§ Cassandra and MySQL have the 
most mature language bindings, 
while HBase is centered around 
Java development.

§ Cassandra clusters are easiest to 
create since they are DHT-based, 
followed by MySQL sharding, 
and HBase has the most 
involved setup, emulating the 
full Google BigTable platform.

§ A Yahoo! Research project to generate workloads 
for testing structured storage systems

§ Updated and ran these workloads against HBase 
0.90.2 and Cassandra 0.7.4
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Brewer’s CAP Theorem

Symbol {
  Date {
    open:
    close:
    low:
    high:
    volume
  }
}

+----------------+------------------------+
| row            | column families        |
+----------------+------------------------+
|                | price:       | volume: |
+----------------+--------------+---------+
| <symbol><date> | price_open   |         |
|                | price_high   |         |
|                | price_low    |         |
|                | price_close  |         |
+----------------+--------------+---------+

Sample schemas for 
Cassandra and HBase

Workload Operations Application

Update heavy Read/update: 50/50 Session store recording recent actions

Read mostly Read/update: 95/5 Photo tagging: Add a tag is an update, but 
most operations are read tags

Read only Read: 100 User profile cache, where user profiles are 
constructed elsewhere

Read latest Read/insert: 95/5 User status updates: people want to read 
the latest

Short ranges Scan/insert: 95/5 Threaded conversations, where each scan is 
for a post in a given thread

Read-modify-write Read/read-modify-write: 50/50 User database, where user records are read 
and modified by the user or to record user 
activity

Results

Proportions of Operations and the Applications of YCSB Workloads

§ Cassandra demonstrated favorable throughput and 
latency.

§ HBase is designed for consistency rather than 
availability

§ Tradeoff between performance and application 
design goals


