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Introduction

Background
Although not the first, Google’s BigTable paper initiated the current trend of modifying the 
attributes of data-storage systems to give up some attributes of traditional RDBMS’s in order to 
create massively-scalable cloud data storage systems. Eric Brewer’s Toward Robust Systems 
established a Consistency-Availability-Partition tolerance (CAP) theorem stating that data 
storage systems can have only two of the properties of data consistency, data availability, or 
partition tolerance.
 

Figure #1: CAP Theorem
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Traditional RDBMSs such as Oracle and MySQL were consistent and available, but they were 
not very scalable as they lacked partition tolerance. Google’s BigTable gains Partition Tolerance 
by running atop the distributed Google File System, Amazon’s Dynamo cloud-storage system 
gains partition-tolerance through the use of distributed hash table assignment of data to storage 
nodes. These systems developed internally at their respective companies, but open-source 
implementations of these systems were developed as Apache Cassandra, Apache HBase, 
Project Voldemort, Riak, HyperTable, and others.
 
The term NoSQL means Not-Only SQL, and includes many other types of storage systems. For 
example, CouchDB and MongoDB are classified as NoSQL because they are document-based 
storage systems. Many other types of non-traditional storage systems such as graph-based 
storage also fall under the NoSQL umbrella. The focus of our investigation was on distributed 
cloud-based data storage systems, so we did not make use of many such technologies.

Motivation
Booz Allen Hamilton proposed that we investigate data storage and management platforms 
in the context of moving applications to a cloud computing model. We were asked to research 
the various cloud data store solutions, to compare them, and to build a simple application 
leveraging NoSQL data stores to document the differences and challenges in creating 
applications leveraging NoSQL data stores.
 

Approach
 
Given these goals, we then built a demo application to study implementation issues, and ran 
benchmarks to understand the performance characteristics.

Demo Application
In order to compare and evaluate the NoSQL solutions we created a web application as a 
demonstration. There were several goals we aimed to achieve with the demo application. Our 
primary goal was to create a real life example of the NoSQL databases to see them in action. 
The secondary goals stemmed from this primary goal. They included getting a sense of what it 
takes to implement these systems in real life, what their APIs were like to work with, the quality 
of the documentation and community support, and gauging the difficulty of employing there non-
relational data models.
 
Most commercial uses of NoSQL systems involve serving data for a high-traffic, data intensive 
web application or service. Notable examples of companies using various NoSQL solutions as 
primary or secondary data stores in production applications are detailed in the table below.

http://labs.google.com/papers/gfs.html
http://labs.google.com/papers/gfs.html
http://labs.google.com/papers/gfs.html
http://labs.google.com/papers/gfs.html
http://labs.google.com/papers/gfs.html
http://portal.acm.org/citation.cfm?id=1294281


 
 

Company NoSQL Solution 

Facebook Cassandra, HBase

Google BigTable

Intuit MongoDB

Twitter Cassandra, HBase

 
Given that the application platform most commonly associated with NoSQL data stores is the 
web, we decided to build our demo application using web technologies. 
 
In order to accurately compare the implementation experiences we built a single web application 
with multiple database interface layers using a common query interface. This approach allowed 
us to write the client side HTML and Javascript code as well as the server side code that 
handled HTTP requests once. The figure below depicts the demo application’s architecture.

 

http://www.google.com/url?q=http%3A%2F%2Fwww.facebook.com%2Fnote.php%3Fnote_id%3D24413138919%2520&sa=D&sntz=1&usg=AFQjCNG5r40eqdu7Zy0M1Syk6Wjg1TR8SA
http://www.google.com/url?q=http%3A%2F%2Fwww.facebook.com%2Fnote.php%3Fnote_id%3D454991608919%23&sa=D&sntz=1&usg=AFQjCNHaFcszQkwiHVZg7oU_E6hZsdK7Gw
http://labs.google.com/papers/bigtable.html
http://www.google.com/url?q=http%3A%2F%2Fwww.10gen.com%2Fvideo%2Fmongosv2010%2Fintuit&sa=D&sntz=1&usg=AFQjCNFk27PdZmCMk_jNqrGMyFDszBSHzA
http://www.google.com/url?q=http%3A%2F%2Fnosql.mypopescu.com%2Fpost%2F407159447%2Fcassandra-twitter-an-interview-with-ryan-king&sa=D&sntz=1&usg=AFQjCNG2AVkWNYxVROsFdNtJe5bvEkgNdA
http://www.readwriteweb.com/cloud/2011/01/how-twitter-uses-nosql.php


Figure #2: High level overview of the demo application architecture

 

Virtual Machines 
We chose to use Amazon EC2 as the virtual machine platform for our application. Some 
alternatives were considered, such as managing virtual machines ourselves with VMWare or 
acquiring actual hardware. These were rejected due to infeasibility. It simply was not practical to 
purchase commodity hardware to support the database clusters we planned on running. In the 
end EC2 was the best solution, because of its convenient web interface, relatively inexpensive 
rates and decent documentation.
 



The web server component of the demo application lived on an EC2 Micro instance, which 
was essentially a virtual machine with 613 MB of RAM and the ability to burst up to two EC2 
compute units (virtual CPUs). This system was very cheap to operate 24/7, but could not handle 
large network or computation loads. 
 
The NoSQL database clusters were setup on EC2 as well, though they were Large or XLarge 
instances which provided significantly more RAM and CPU power. The database sections later 
on in this report describe the setup and configuration process. Also, the appendix contains a 
detailed document with instructions on how to setup HBase and Cassandra clusters using EC2.

Dataset
Since the demo application focused around the implementation of NoSQL databases, we 
needed a suitable dataset that would allow us to leverage the capabilities of the systems. 
Instances of these systems in production use often see datasets that measure into the terabytes 
or petabytes of data. For example, Twitter users generate over 12 terabytes of data per day, the 
majority of which is stored in Cassandra, HBase, and other NoSQL databases (Source).
 
As such we wanted a large dataset to use in our demo application; however, due to the great 
cost of storing terabytes of data on Amazon EC2/S3 we needed a physically small dataset. 
Another crucial factor in our choice of a dataset was the price of the data itself. Due to our small 
budget we only considered freely available open datasets.
 
We settled on the NASDAQ Exchange Daily 1970-2010 dataset available for free at Infochimps. 
The data consisted of CSV files containing the following fields:
 
stock symbol, date, open price, close price, daily high, daily low, and trade 
volume
 
The dataset, while modestly sized at around 800MB uncompressed, included over 8 million 
unique records. The large number of records proved suitable for storing in NoSQL clusters.
 
Additionally, unlike other potential datasets we investigated, the structure of the data was 
simple, which was important when had to create a data model for using Cassandra’s and 
HBase’s data model concepts. If the data had been more complicated, for example by exhibiting 
many relationships internally.
 

Implementation
Our demo application consists of three screens. The first was the landing page, a static page 
with three buttons for each database. Clicking the buttons takes you to the second screen for 
the corresponding database. The second screen contains an HTML form that allows you to 
query the dataset according to stock symbol and date range. The third screen displays the open 

http://www.readwriteweb.com/cloud/2011/01/how-twitter-uses-nosql.php
http://www.infochimps.com/datasets/nasdaq-exchange-daily-1970-2010-open-close-high-low-and-volume


and close price for every date in the selected range.
 
Below are screenshots of the demo application. Other than the web service call the Javascript 
makes to fetch the data, the client side implementation for each database page is identical. As 
such the form and results page is only depicted once, as there are no visual differences aside 
from the title text.
 

Figure #3: Screenshot of the landing screen.

 



Figure #4: Screenshot of the query input screen.

 

Query Types
Having chosen the NASDAQ dataset it was obvious that our demo application should allow us 
to query the data in different ways. When developing a data model for a NoSQL solution it is 
important to know in advance how you want to query your data. Unlike a traditional relational 
data model, where you can simple define relationships among the various elements in the data 
and then query based off of those relationships, in a NoSQL environment (particularly with 
Cassandra and HBase) the types of queries you will perform on the data will affect how you 
want to structure the data. Knowing this, we structured the demo application so that there were 
three distinct types of queries each database interface layer implemented. The three query 
types are discussed below.
 

Partial Match Query
The partial match query was used in the “Symbol” form field to perform as-you-type lookup of 
stock symbols. The user in the screenshot depicted below has typed “GO” into the Symbol input 
field, and the AJAX client has made a request to the URI:
http://www.nosqldemo.com/mysql/symbol/search/?term=GOO
(Note: the ‘mysql’ in the URL above could be changed to ‘cassandra’ or ‘hbase’ in order to 
change the database the query will be run against)
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http://www.nosqldemo.com/mysql/symbol/search/?term=GOO
http://www.nosqldemo.com/mysql/symbol/search/?term=GOO


The results of this query are a JSON list containing every stock symbol that starts with the 
string “GO”.
Example: ["GOLD”, "GOLF", "GOOD", "GOODO", "GOODP", "GOOG", "GORX"]
 

 

Figure #5: Screenshot of the partial match query

 
This query is significant because it tests the ability of the underlying database to query a non-
numerical range of records. The Cassandra, HBase, and MySQL sections below will elaborate 
on how this query was implemented for each respective database.

Date Range Query
After the user has selected a stock symbol he/she is interested in viewing, the date range for the 
selected symbol must be determined. This is necessary because not every symbol has records 
for the period our dataset spans (1970 - 2010). Google is a good example, as they were first 
publicly traded on NASDAQ on August 19 2004. Therefore, it does not make sense to allow the 
user to select a date outside the range in which the company is listed.
 
The date range query happens automatically once the user has selected a symbol. An AJAX 
request is made to the url:
http://www.nosqldemo.com/mysql/symbol/daterange/?term=GOOG
(Note: Again, the ‘mysql’ portion indicates which database is queried)
 
A JSON map is returned containing the minimum and maximum dates the selected symbol is 

http://www.nosqldemo.com/mysql/symbol/daterange/?term=GOOG
http://www.nosqldemo.com/mysql/symbol/daterange/?term=GOOG
http://www.nosqldemo.com/mysql/symbol/daterange/?term=GOOG
http://www.nosqldemo.com/mysql/symbol/daterange/?term=GOOG
http://www.nosqldemo.com/mysql/symbol/daterange/?term=GOOG
http://www.nosqldemo.com/mysql/symbol/daterange/?term=GOOG
http://www.nosqldemo.com/mysql/symbol/daterange/?term=GOOG
http://www.nosqldemo.com/mysql/symbol/daterange/?term=GOOG
http://www.nosqldemo.com/mysql/symbol/daterange/?term=GOOG
http://www.nosqldemo.com/mysql/symbol/daterange/?term=GOOG
http://www.nosqldemo.com/mysql/symbol/daterange/?term=GOOG
http://www.nosqldemo.com/mysql/symbol/daterange/?term=GOOG
http://www.nosqldemo.com/mysql/symbol/daterange/?term=GOOG
http://www.nosqldemo.com/mysql/symbol/daterange/?term=GOOG
http://www.nosqldemo.com/mysql/symbol/daterange/?term=GOOG
http://www.nosqldemo.com/mysql/symbol/daterange/?term=GOOG
http://www.nosqldemo.com/mysql/symbol/daterange/?term=GOOG


available for.
Example: {"max": "2010-02-08", "min": "2004-08-19"}
 
After the date range is received, Javascript is used to constrain the available dates in the date 
picker widget. As depicted below the available dates for the GOOG symbol range from August 
19 2004 to 2010. Naturally, other symbols will have different date ranges.
 
This query tested the database’s ability to traverse a record set and determine the minimum and 
maximum value.
 

 
Figure #6: Screenshot of the effects of the date range 

query.

 

Date and Symbol Query
Once the user has selected the stock symbol and a valid date range and clicks the submit 
button, a database query is made to retrieve the data for said symbol and range. The results are 
formatted into a table as well as graphed (using Google’s free Graph API). 
 
This query requires the database to locate a subset of records for a particular symbol.



 
 

Figure #7: Screenshot of the query results page

 

Cassandra
Cassandra is a distributed key-value store written in Java, originally developed by Facebook 
and released as an open source Apache project.  Unlike many NoSQL solutions which take 
after either Google’s BigTable or Amazon’s Dynamo, Cassandra’s architecture borrows ideas 
from both: while it partitions, replicates, and locates data in a similar way to Dynamo (Amazon’s 
distributed key-value store), its column family-oriented, log-based data model is distinctly 
BigTable-esque.
 



Tunable Consistency
 
Generally, Cassandra is located at the intersection of partition-tolerant and available in the CAP 
theorem, though one of its most touted features is its tunable consistency.  Tunable consistency 
refers to the ability to configure the number of nodes that must agree on a given read or write 
for it to be considered successful.  Possible settings for this are that a write only has to be 
successfully written to one node responsible for the chunk to be considered successful (it 
is then silently propagated to the rest in the background, which means there’s a window of 
database inconsistency), by a quorum of nodes responsible for the chunk (e.g. 3 out of 5), or all 
nodes responsible for the chunk.  Reads can be tuned in a similar manner, meaning either one 
node, a quorum of nodes, or all nodes must agree on a chunk value for it to be returned.  This 
broad range of consistency values allows Cassandra to run the entire gamut of partition-tolerant 
and available (requiring agreement from one node) to partition-tolerant and consistent (requiring 
agreement across all nodes).
 
Obviously, performance will be greatly impacted by which of these consistency settings is 
used.  In the case where consistency isn’t tuned to available and partition-tolerant, writes will 
block until the requisite number of nodes have successfully completed their writes.  Necessary 
consistency will vary based on specific application and consistency requirements.  For our 
performance testing, we used the default consistency of ONE, meaning reads and writes only 
have to hit one node responsible for the chunk.
 

Other Benefits
 

Homogenous Clusters
Some of the other major benefits of Cassandra include the homogenous nature of the cluster 
and the lack of existence of a single point of failure.  In a Cassandra cluster, all nodes are 
considered equal.  Queries and writes can hit any node in the cluster, and the operation will 
automatically propagate to one of the responsible nodes in the cluster.  If any node is taken out 
(or goes down), the chunks of data it was responsible for will silently be distributed across the 
rest of the nodes in the cluster.  This feature also leads to the nice result that there’s no single 
point of failure in a Cassandra cluster (though depending on the consistency settings, a node 
going down could result in the loss of unpropagated writes).
 

Cross data center replication
Facebook’s original use case for Cassandra involved locating, replicating, and receiving 
requests for data across multiple datacenters, and even across the continent.  Making sure 



this was as performant as possible was one of the main criterion of Cassandra’s success, and 
it’s been claimed to be one of Cassandra’s most battle tested features.  Of course, tunable 
consistency takes on a large role here: if writes or reads have to query nodes across data 
before completion, end users will see horrible request latency.  Cassandra’s big win in this 
area is silently and efficiently propagating deltas between data centers in the background, 
asynchronously with actual queries.

Understanding the Data Model
 
As mentioned in the overview, Cassandra’s data model takes after the row/column family/
column paradigm of BigTable.  A brief overview of the major organizational units of the data 
model are as follow:
 

● Keyspaces are collections of column families.  In traditional RDBMS  speak, these are 
roughly equivalent in granularity to a database.

● Column Families are collections of rows.  Depending on the partitioner used, these 
rows will be stored ‘randomly’ throughout the cluster (RandomPartitioner), or in order 
(OrderPreservingPartitioner).

● Rows are collections of columns.  A row is retrieved from a column family by querying 
against a given row key.  A given row can have an almost arbitrary number of columns, 
and these columns do NOT need to match with the columns of other rows in the 
containing column family (therefore, it’s a mistake to think of column families like 
traditional tables or rows as traditional rows in an RDBMS).

● Columns, finally, refer to a key/value/timestamp tuple within a single row.  Columns 
within a given row are stored contiguously on a node, and can be sorted for range 
queries or indexed for fast, random lookups.

 
Combining this all together, getting data out of Cassandra can be considered indexing into a 
multi-layered map (i.e. map[keyspace][column-family][row-key][column-name]).  As 
briefly mentioned above, Cassandra allows the organization of rows within a column family and 
columns within a row to be separately specified in the data model.
 
The figure below depicts the setup of a single column family in our stock simulation keyspace:
 



Figure #8: Depicting the Cassandra data model used in the demo application

 
Notice that the columns within individual rows are not necessarily the same.

Super Columns
 
We have one more part of the general Cassandra data model to cover before we delve into 
the actual data model we used for the stock application.  Super columns simply replace the 
normal ‘scalar’ value of a column with another map layer.  So instead of map[keyspace]
[column-family][row-key][column-name] retrieving a single value, it retrieves yet another 
map to be indexed into.  It is actually easier than it appears at first glance. We’ve established 
that a column is a name and a name+value pair:
 

column = (“name”, “value”)

 
A super columns is exactly the same, but instead of the “value” being a string  it is another map! 
The keys in this map are column names, and the values in this map are columns.
 

super_column = (“name”,  # this is the super column  name

                { column1 : (“name, “value”), # the first column  

                  column2 : (“name, “value”)  # the second column



                } )

 
So to make a super column, we take a collection of columns (their names plus their name+value 
pairs) and put them into a map, then put that map in a standard column with a new name.
 

Designing a Data Model for a NoSQL Database
 
Developing data models for NoSQL databases requires a significant shift in thinking from 
developing for an RDBMS.  Storage is cheap, and there is a major shift from valuing data 
normalization within the database (i.e. minimizing redundancy) to figuring out how to make all 
queries as fast as possible.  Because of this, a column family within a Cassandra cluster can 
really be thought of as a single view into a set of data.  Other views, or column families, will 
likely duplicate the data stored but organize it in a different way to optimize for a different query.  
It is common practice to have a column family per type of query one expects to perform.
 
An obvious downside to this is if additional queries, and thus views/column families, are added 
after data is already in the database.  These column families will have to be back-populated, 
which can take considerable time and incur load on network and cluster.  Cassandra specifically 
is working on a partial solution to this via ‘secondary indices’.  A secondary index creates these 
additional views of data automatically by specifying other columns to index on in the schema 
definition.  For the sake of time and relevance, we won’t delve into it in this paper, but currently 
there are limitations to this method that the Cassandra wiki can further enlighten about.
 

Stocks Data Model
As mentioned in the Query Types section, we had three queries we were optimizing for.  Since 
two were very similar (existence vs. actual data retrieval), we only needed two column families.

Partial Match Query
The column family for partial match queries stored only symbol names.  We needed to optimize 
for figuring out all symbols that began with a given string:
 

● Row keys: Each row key is a letter of the alphabet, meaning there were 26 rows
● Column names: The column names for a row were just the stock symbols beginning 

with the the row key letter.  Within each row, these column names were stored in 
alphabetical order to allow for alphabetical range queries.

● Column values: The column values were the company name of the stock.  While we 
didn’t end up using this data in our autocompleter, it could be a helpful addition.

 
Example Use



Query for ‘GO’: symbols[‘G’][‘GO’:’GP’] => [(‘GOAL’, ‘Soccer Mutual’), …, 
(‘GOOG’, ‘Google’), …, (‘GOYA’, ‘Goya Inc.’)]
 

Date Range Query and Symbol/Date Query
The symbol/date column family stored the actual stock data by stock and date:
 

● Row keys: Each symbol has its own row, meaning each symbol is a row key.
● Column names: The column names for a row were the dates for which we had data for 

that stock.  Obviously, these column names were not consistent across distinct rows.
● Column values: The column value for a given date was a super column containing a 

map for stock data to values (i.e. {‘price_open’: 1.23, ‘price_close’: 2.34, …}.
 
Example Use
To determine the date range for a given stock, retrieve all the column names for that stock.  An 
example query for GOOG: stocks[‘GOOG’].column_names
 
To get the data for an individual date: stocks[‘GOOG’][‘1/1/2006’][‘price_open’] => 
1.23
 

Notes on Development

Ease of Setup and Implementation
Cassandra is very easy to setup. The downloadable package contains pre-compiled Jars that 
and a capable default configuration. If you use the default configuration, setup simply consists 
of starting the Cassandra service (see the Appendix for details). Additionally, the Cassandra 
project hosts APT and YUM repositories on their site, which facilitates maintaining the latest 
stable version.
 
Setting up a Cassandra cluster is also relatively simple. Cassandra uses a peer-to-peer model 
that nodes use to locate and communicate with each other. Each Cassandra cluster must have 
a set of at least one nodes designated as “seeds”. Every potential Cassandra node must know 
the IP address of at least one seed in the cluster. Once a node has started up it contacts a seed 
and the cluster negotiates the place of the new node in the ring of nodes.
 

API / Library
 
Cassandra is written in Java, but has bindings for many languages via its Thrift interface.Thrift is 
a software framework for scalable cross-language services development (Source). 

http://thrift.apache.org/


 
Since we used Python for development of the demo application, we utilized a Python client 
library for Cassandra called PyCassa. PyCassa wraps the calls to Cassandra’s Thrift interface 
and exposes a simple API.
 
Overall we were very pleased with the PyCassa. The API was well designed and seamlessly 
supported Python’s builtin data-structures (lists and dicts). 
 
The most significant problems we encountered when implementing the Cassandra interface 
for the demo application were understanding the data model and coming up with a workable 
schema (see above), and debugging throughput issues when inserting large numbers (8 
million plus) of items. We were expecting to achieve about 10,000 inserts per second, but in 
practice were achieving barely 100 per second. As it turns out the throughput issues were 
caused by underpowered EC2 instances. Initially we were performing the insertion process on 
micro instances, which do not have a dedicated “compute unit”, Amazon terms for CPU power. 
Migrating the insertion process to a medium instance solved the throughput issue.

 
HBase
 
HBase is an open source, non-relational distributed database directly modeled after Google’s 
BigTable. It is developed by the Apache Foundation, and runs on top of HDFS, the Hadoop 
Distributed Filesystem and an open source analogue to GFS, providing a fault-tolerant way of 
storing large quantities of data. In terms of the CAP Theorem, it fulfills partition tolerance and 
consistency while sacrificing availability.
 
HBase has two main selling points.  In guaranteeing consistency, all clients can be assured 
that once they commit data, all other clients will see the updated data on subsequent reads (i.e. 
multiple clients can retrieve two different versions of a piece of data because changes haven’t 
propagated across the cluster, as can be the case with Cassandra).  Second, since HBase is 
built on top of Hadoop and HDFS, it has native Hadoop MapReduce support to perform data 
analysis on its stored data.  Indeed, by anecdotal evidence, this seems to be one of the top 
reasons for deploying an HBase cluster.
 
Unfortunately, HBase also has two major downsides.  First, the name node is a single point 
of failure of HDFS, and therefore HBase itself.  If the master instance goes down, no data will 
be lost, but the cluster will be unusable until it is brought back online and it completes a replay 
process.  As per [https://issues.apache.org/jira/browse/HDFS-976], Facebook has developed 
a highly available name node implementation that incorporates a “hot standby” (see http://
hadoopblog.blogspot.com/2010/02/hadoop-namenode-high-availability.html), but the solution 
seems suboptimal and hasn’t made its way into the HBase codebase.
 

https://github.com/pycassa/pycassa
http://www.google.com/url?q=https%3A%2F%2Fissues.apache.org%2Fjira%2Fbrowse%2FHDFS-976&sa=D&sntz=1&usg=AFQjCNF4IO0SBVudGMtac318Hl9rnbooXw
http://www.google.com/url?q=https%3A%2F%2Fissues.apache.org%2Fjira%2Fbrowse%2FHDFS-976&sa=D&sntz=1&usg=AFQjCNF4IO0SBVudGMtac318Hl9rnbooXw
http://www.google.com/url?q=https%3A%2F%2Fissues.apache.org%2Fjira%2Fbrowse%2FHDFS-976&sa=D&sntz=1&usg=AFQjCNF4IO0SBVudGMtac318Hl9rnbooXw
http://www.google.com/url?q=https%3A%2F%2Fissues.apache.org%2Fjira%2Fbrowse%2FHDFS-976&sa=D&sntz=1&usg=AFQjCNF4IO0SBVudGMtac318Hl9rnbooXw
http://www.google.com/url?q=https%3A%2F%2Fissues.apache.org%2Fjira%2Fbrowse%2FHDFS-976&sa=D&sntz=1&usg=AFQjCNF4IO0SBVudGMtac318Hl9rnbooXw
http://www.google.com/url?q=https%3A%2F%2Fissues.apache.org%2Fjira%2Fbrowse%2FHDFS-976&sa=D&sntz=1&usg=AFQjCNF4IO0SBVudGMtac318Hl9rnbooXw
http://www.google.com/url?q=https%3A%2F%2Fissues.apache.org%2Fjira%2Fbrowse%2FHDFS-976&sa=D&sntz=1&usg=AFQjCNF4IO0SBVudGMtac318Hl9rnbooXw
http://www.google.com/url?q=https%3A%2F%2Fissues.apache.org%2Fjira%2Fbrowse%2FHDFS-976&sa=D&sntz=1&usg=AFQjCNF4IO0SBVudGMtac318Hl9rnbooXw
http://www.google.com/url?q=https%3A%2F%2Fissues.apache.org%2Fjira%2Fbrowse%2FHDFS-976&sa=D&sntz=1&usg=AFQjCNF4IO0SBVudGMtac318Hl9rnbooXw
http://www.google.com/url?q=https%3A%2F%2Fissues.apache.org%2Fjira%2Fbrowse%2FHDFS-976&sa=D&sntz=1&usg=AFQjCNF4IO0SBVudGMtac318Hl9rnbooXw
http://www.google.com/url?q=https%3A%2F%2Fissues.apache.org%2Fjira%2Fbrowse%2FHDFS-976&sa=D&sntz=1&usg=AFQjCNF4IO0SBVudGMtac318Hl9rnbooXw
http://www.google.com/url?q=https%3A%2F%2Fissues.apache.org%2Fjira%2Fbrowse%2FHDFS-976&sa=D&sntz=1&usg=AFQjCNF4IO0SBVudGMtac318Hl9rnbooXw
http://www.google.com/url?q=https%3A%2F%2Fissues.apache.org%2Fjira%2Fbrowse%2FHDFS-976&sa=D&sntz=1&usg=AFQjCNF4IO0SBVudGMtac318Hl9rnbooXw
http://www.google.com/url?q=https%3A%2F%2Fissues.apache.org%2Fjira%2Fbrowse%2FHDFS-976&sa=D&sntz=1&usg=AFQjCNF4IO0SBVudGMtac318Hl9rnbooXw
http://hadoopblog.blogspot.com/2010/02/hadoop-namenode-high-availability.html
http://hadoopblog.blogspot.com/2010/02/hadoop-namenode-high-availability.html
http://hadoopblog.blogspot.com/2010/02/hadoop-namenode-high-availability.html
http://hadoopblog.blogspot.com/2010/02/hadoop-namenode-high-availability.html
http://hadoopblog.blogspot.com/2010/02/hadoop-namenode-high-availability.html
http://hadoopblog.blogspot.com/2010/02/hadoop-namenode-high-availability.html
http://hadoopblog.blogspot.com/2010/02/hadoop-namenode-high-availability.html
http://hadoopblog.blogspot.com/2010/02/hadoop-namenode-high-availability.html
http://hadoopblog.blogspot.com/2010/02/hadoop-namenode-high-availability.html
http://hadoopblog.blogspot.com/2010/02/hadoop-namenode-high-availability.html
http://hadoopblog.blogspot.com/2010/02/hadoop-namenode-high-availability.html
http://hadoopblog.blogspot.com/2010/02/hadoop-namenode-high-availability.html
http://hadoopblog.blogspot.com/2010/02/hadoop-namenode-high-availability.html
http://hadoopblog.blogspot.com/2010/02/hadoop-namenode-high-availability.html
http://hadoopblog.blogspot.com/2010/02/hadoop-namenode-high-availability.html
http://hadoopblog.blogspot.com/2010/02/hadoop-namenode-high-availability.html
http://hadoopblog.blogspot.com/2010/02/hadoop-namenode-high-availability.html
http://hadoopblog.blogspot.com/2010/02/hadoop-namenode-high-availability.html


Second, in maintaining consistency across all data nodes, writes to the database are much less 
performant than with a semi-consistent solution such as Cassandra.  A write is not considered 
complete until it has been logged and all versions of the piece of data across the cluster are 
consistent.  By default, HBase locates two copies of any given piece of data on the same 
rack for faster network transfer, while a third is located on a different rack.  While we don’t 
have direct experience with this, trying to store copies of data across multiple datacenters 
will likely incur a major performance hit (compare this to Cassandra, which touts multiple 
datacenter support as one of its most battle tested features: http://spyced.blogspot.com/2010/
04/cassandra-fact-vs-fiction.html).  See our YCSB results section for more information about 
HBase performance.

Overview of Data Model
HBase stores data as a table, consisting of rows and columns. All columns in a table belong to 
a particular column family. Each individual cell, an intersection of row and column coordinates, 
contains the last 3 versions of that cell by default. Each cell’s value is stored as an uninterpreted 
array of bytes. Inn addition, table row keys are also bytes arrays, allowing almost anything 
from binary representation of longs to even entire data structures to serve as the keys. All table 
access starts with a values row key, and then proceeds down the various column families and 
individual columns.
 
The schema we used for our application  consisted of three tables labeled Stocks, Dates, and 
Symbols. The Stocks and Dates tables each contain the same data, with the rows sorted in 
symbol order and date order, respectively. This allows us to perform much quicker lookups 
depending on what kind of range query were are performing. The third table, Symbols, is used 
for partial symbol lookup. It consists of 26 rows, one for each letter, and has the values of all the 
stock symbols starting with that letter stored. 
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Figure #9: HBase Data Model used in the demo application

 

Notes on Development

API / Library
Pybase, the library we used, is a Python library for HBase based off of Pycassa, the Python 
library we used for the Cassandra version of our application. We chose it because of the 
similarity to Pycassa, and because of the lack of having to directly issue Thrift commands. 
While it suited our purposes well, it is a private project developed by a single person for their 
own personal use. The extreme lack of documentation proved to be somewhat of a hassle 
as we developed our project, as many of the difficulties we faced were due to this lack of 
documentation. 
 
Once we had cut our teeth developing the Cassandra version, development of the HBase 
version was relatively simple. The library we used was very similar, allowing us to simply 
rewrite the functions from our Cassandra implementation. However, this was easier said than 
done. The insertion method changed completely, because HBase stores the data in an entirely 
different fashion. The other methods were changed to function using the scanner-based data 
extraction methods of Pybase. 



 
One difficulty in particular we encountered was the use of custom Thrift data structures 
by Pybase. With our Cassandra model, the data was accessed using normal Python data 
structures. However, the scanner from Pybase returned Python data structures wrapped 
in “TCells”, a Thrift data structure. This led to some initial confusion when our methods 
appeared to be returning nonsense data even when we knew the insertion methods were 
working correctly.
 
Another problem we encountered was a problem with Pybase’s scanner argument syntax. 
Under our initial schema, a symbol that was a subset of another symbol would pick up the 
entries of both symbols from the database. While it was a relatively simple fix once we realized 
what the problem was, figuring it out took some time.  

Ease of setting up a cluster
We performed our initial testing of HBase on a single local node running locally. It was 
relatively simple to start up the server, access the shell, and create the tables manually using 
Thrift commands. We then accessed the server over local ports. This served well enough for 
performing testing on our application. 
 
However, when it came time to setup an HBase cluster, the effort to set up a full cluster on EC2 
was significantly more complex than that required for Cassandra clusters. The primary difficulty 
with administering an HBase cluster is the depth of the technology stack involved.  HBase sits 
on top of HDFS (Hadoop Distributed File System) and requires Apache ZooKeeper for locking 
and name resolution.  If data analysis via Hadoop or Apache Hive is also being performed, 
administrators are looking at maintaining and administrating 4-5 pieces of software (Java, 
Hadoop, HBase, ZooKeeper, and Hive).  This is compared to only 2 for Cassandra (Java and 
Cassandra).
 
Additionally, server provisioning is not as simple as the more homogeneous Cassandra.  Server 
roles include name node, secondary name node, and data node, in addition to the introduction 
of master/slave dichotomies.  While servers can take on multiple roles, and much of the role 
provisioning seemed to be done automatically during our set up, larger deployments may have 
to take the heterogeneous nature of HBase clusters into account.

Performance
As expected, HBase had significantly worse performance than Cassandra in our benchmarking 
tests. This is to be expected because HBase is consistent and partition-resistant, but sacrifices 
availability. This translates to lower throughput and higher response times. However, it is 
important to note that in a hypothetical situation with lots of concurrent reads and writes, you are 
not always guaranteed the most recent data with Cassandra, but you are with HBase. 
 



MySQL
MySQL has been, and continues to be the leading RDBMS on the market today. Popularized 
by the LAMP software bundle (it’s the M), it has seen vast deployments in the industry and is 
available for many different operating systems, including Linux, Mac OS, and Windows. For 
these reasons, it’s popularity and ubiquity, MySQL was chosen to be the control group in our 
performance testing evaluation of various NoSQL technologies. 

Overview of Data Model
The data set chosen for the experimentation is the NASDAQ market scores from 1970 to 2009. 
The date comes in a series of 26 CSV files, each corresponding to a letter of the alphabet, 
containing data on stock symbols starting with that letter. The fields specified in the header file 
are as follows:
 
exchange,stock_symbol,date,stock_price_open,stock_price_high,stock_price_low,stock
_price_close,stock_volume,stock_price_adj_close
 
The exchange field is easy, it will always be “NASDAQ”. Stock symbol refers to the unique 
company identifier for which the record is represented. All other fields represent the stock data 
as well as the date for the record. Logically, it follows that once the data set has been defined, 
we identify how it will be accessed in order to properly and efficiently build the data model for 
the database. There are three queries that are required to be implemented for the webapp to 
work:

1. Symbol Existence: Given a string representing a symbol, is it valid?
2. Symbol Search: Given a partial string for a symbol, return all symbols that match the 

partial string (if any)
3. Full record search, bounded by symbol and two dates: Given a complete symbol 

(existance guaranteed), and two dates (start and end), return all records from the 
database matching the criteria.

 
From this, it can be concluded that we will need at least a separate table used specifically for 
queries 1 and 2. The column layout and data types are as follows:

Symbols:
Id: Primary Key, Integer, Auto Increment
Name: symbol_name, char(10)

 
This aspect of the data model allows for fast completion of the first two queries. The third query 
is a little bit trickier. First, matching on symbol_name has to be done, then specifying a range 
for the dates. Given the structure of the date field, it is perfectly acceptable to leave it’s type as 
string. The date formatted like this: yyyy-mm-dd. So the schema for the table will be unmodified 
from it’s CSV state:



Daily_Stocks_Table:
exchange: char(50)
stock_symbol: char(10)
date: char(12)
stock_price_open: char(10)
stock_price_high: char(10)
stock_price_low: char(10)
stock_price_close: char(10)
stock_volume: char(10)
stock_price_adj_close: char(10)
 

So, the process so far: define the dataset, identify the types of queries that will be performed, 
and from this information, create an initial design for the database system. It looks good on 
paper, but changes will have to be made down the line, especially in the efficiency department.

Notes on Development

Ease of setting up a cluster
Unfortunately, due to the CAP theorem discussed earlier, as MySQL follows both Consistency 
and Availability, but sacrifices Partition Tolerance, it isn’t very scalable. So for the 
experimentation and demo phases, we used one instance of MySQL running on a custom 
crafted Ubuntu AMI on Amazon’s EC2. There are some solutions that can be implemented to 
allow MySQL to scale to some extent, the most notable being MySQL Cluster, and lesser ones 
being sharding, memcached overlaying, and mirroring. Despite this, the following section will 
describe how the testing instance of MySQL server was set up and configured for this project. 
For reference, these instructions apply to Ubuntu 10.10 Server install.
 
Starting with a vanilla Ubuntu 10.10 AMI from Amazon EC2, the following command was run:

sudo apt-get install mysql-server
 
It will prompt for a root password, it is highly suggested that a strong password is picked. 
Installing the base for the MySQL server is that easy. Using the operating system’s package 
manager is the recommended way of going about it.
 
Next, one must change the bind address that MySQL listens on. The default is the loopback 
interface, but should be changed to local network interface for remote access:

sudo nano /etc/mysql/my.cnf
 
The line that needs to be changed starts with bind-address, it should be the IP of the default 
LAN port.
 
Reboot the MySQL instance now:



sudo restart mysql
 
Next, user accounts and permissions have to be set up for proper access, this link does a good 
job of describing the steps needed:
http://dev.mysql.com/doc/refman/5.1/en/adding-users.html.
 
For this implementation, the user “stock_user” was added with permissions only to the “Stocks” 
database for security reasons.
 
From here, the basics of MySQL have been fully set up and database creation can begin.
 

API / Library
Considering the project is being written in python, it was necessary to pick a popular library 
for accessing the MySQL server instance. The goal was to simulate a typical development 
environment and server setup as would be used in a live workspace. After some research, 
MySQLdb was chosen as the Library of choice for the demo application.
 
According to the wiki page for MySQLdb, it’s named MySQL for Python, to avoid any confusion, 
the module name is still MySQLdb as far as easy_install is concerned. Here is a quick 
description: “MySQLdb is an thread-compatible interface to the popular MySQL database 
server that provides the Python database API.”. So MySQLdb is a module that allows access 
to MySQL instances via a low-level API. That is, there is little wrapping around underlying 
functions than necessary to conform to an object oriented approach. The goal of this was to 
make sure there was no additional overhead that could be caused by higher level libraries. In 
addition, due to the relative simplicity of the demo application and the benchmarking application, 
MySQLdb’s low level approach worked perfectly.

Performance
What good is a SQL server if it doesn’t respond fast? This section outlines the various tweaks 
and design decisions that have been implemented  to speed up the MySQL instance. The 
alterations slight, the benefits great, here is a step by step process taken to optimize the 
queries:
 

1. Looking at the most complicated query first (Symbol and Date Range), 5-6 character 
string comparisons are being performed when searching for a valid symbol, instead a 
foreign key relationship can be defined within the Symbols table.

2. The date column can be converted into the MySQL version of date, which is an integral 
type and therefore would be faster

3. Other columns can be turned into a more accurate representation of their values, instead 
of just strings, to help the search cost and reduce table size

 

http://www.google.com/url?q=http%3A%2F%2Fdev.mysql.com%2Fdoc%2Frefman%2F5.1%2Fen%2Fadding-users.html&sa=D&sntz=1&usg=AFQjCNEF6-ZIbzs-rM9dItM4--4_dbj6UQ
http://www.google.com/url?q=http%3A%2F%2Fdev.mysql.com%2Fdoc%2Frefman%2F5.1%2Fen%2Fadding-users.html&sa=D&sntz=1&usg=AFQjCNEF6-ZIbzs-rM9dItM4--4_dbj6UQ
http://www.google.com/url?q=http%3A%2F%2Fdev.mysql.com%2Fdoc%2Frefman%2F5.1%2Fen%2Fadding-users.html&sa=D&sntz=1&usg=AFQjCNEF6-ZIbzs-rM9dItM4--4_dbj6UQ
http://www.google.com/url?q=http%3A%2F%2Fdev.mysql.com%2Fdoc%2Frefman%2F5.1%2Fen%2Fadding-users.html&sa=D&sntz=1&usg=AFQjCNEF6-ZIbzs-rM9dItM4--4_dbj6UQ
http://www.google.com/url?q=http%3A%2F%2Fdev.mysql.com%2Fdoc%2Frefman%2F5.1%2Fen%2Fadding-users.html&sa=D&sntz=1&usg=AFQjCNEF6-ZIbzs-rM9dItM4--4_dbj6UQ
http://www.google.com/url?q=http%3A%2F%2Fdev.mysql.com%2Fdoc%2Frefman%2F5.1%2Fen%2Fadding-users.html&sa=D&sntz=1&usg=AFQjCNEF6-ZIbzs-rM9dItM4--4_dbj6UQ
http://www.google.com/url?q=http%3A%2F%2Fdev.mysql.com%2Fdoc%2Frefman%2F5.1%2Fen%2Fadding-users.html&sa=D&sntz=1&usg=AFQjCNEF6-ZIbzs-rM9dItM4--4_dbj6UQ
http://www.google.com/url?q=http%3A%2F%2Fdev.mysql.com%2Fdoc%2Frefman%2F5.1%2Fen%2Fadding-users.html&sa=D&sntz=1&usg=AFQjCNEF6-ZIbzs-rM9dItM4--4_dbj6UQ
http://www.google.com/url?q=http%3A%2F%2Fdev.mysql.com%2Fdoc%2Frefman%2F5.1%2Fen%2Fadding-users.html&sa=D&sntz=1&usg=AFQjCNEF6-ZIbzs-rM9dItM4--4_dbj6UQ
http://www.google.com/url?q=http%3A%2F%2Fdev.mysql.com%2Fdoc%2Frefman%2F5.1%2Fen%2Fadding-users.html&sa=D&sntz=1&usg=AFQjCNEF6-ZIbzs-rM9dItM4--4_dbj6UQ
http://www.google.com/url?q=http%3A%2F%2Fdev.mysql.com%2Fdoc%2Frefman%2F5.1%2Fen%2Fadding-users.html&sa=D&sntz=1&usg=AFQjCNEF6-ZIbzs-rM9dItM4--4_dbj6UQ
http://www.google.com/url?q=http%3A%2F%2Fdev.mysql.com%2Fdoc%2Frefman%2F5.1%2Fen%2Fadding-users.html&sa=D&sntz=1&usg=AFQjCNEF6-ZIbzs-rM9dItM4--4_dbj6UQ
http://www.google.com/url?q=http%3A%2F%2Fdev.mysql.com%2Fdoc%2Frefman%2F5.1%2Fen%2Fadding-users.html&sa=D&sntz=1&usg=AFQjCNEF6-ZIbzs-rM9dItM4--4_dbj6UQ
http://www.google.com/url?q=http%3A%2F%2Fdev.mysql.com%2Fdoc%2Frefman%2F5.1%2Fen%2Fadding-users.html&sa=D&sntz=1&usg=AFQjCNEF6-ZIbzs-rM9dItM4--4_dbj6UQ
http://www.google.com/url?q=http%3A%2F%2Fdev.mysql.com%2Fdoc%2Frefman%2F5.1%2Fen%2Fadding-users.html&sa=D&sntz=1&usg=AFQjCNEF6-ZIbzs-rM9dItM4--4_dbj6UQ
http://www.google.com/url?q=http%3A%2F%2Fdev.mysql.com%2Fdoc%2Frefman%2F5.1%2Fen%2Fadding-users.html&sa=D&sntz=1&usg=AFQjCNEF6-ZIbzs-rM9dItM4--4_dbj6UQ
http://www.google.com/url?q=http%3A%2F%2Fdev.mysql.com%2Fdoc%2Frefman%2F5.1%2Fen%2Fadding-users.html&sa=D&sntz=1&usg=AFQjCNEF6-ZIbzs-rM9dItM4--4_dbj6UQ
http://www.google.com/url?q=http%3A%2F%2Fdev.mysql.com%2Fdoc%2Frefman%2F5.1%2Fen%2Fadding-users.html&sa=D&sntz=1&usg=AFQjCNEF6-ZIbzs-rM9dItM4--4_dbj6UQ
http://www.google.com/url?q=http%3A%2F%2Fdev.mysql.com%2Fdoc%2Frefman%2F5.1%2Fen%2Fadding-users.html&sa=D&sntz=1&usg=AFQjCNEF6-ZIbzs-rM9dItM4--4_dbj6UQ


But...
 
As it turns out, none of the steps above were necessary, MySQL comes with a very handy 
statement one can execute, queue CREATE INDEX. It creates a system-wide backed index 
on the most frequently accessed columns, with the options you specify, allowing one to 
maintain the wanted types, and keep from complicating the overall schema. The CREATE 
INDEX command was run on the date and symbol_name columns of the stocks table and 
yielded performance that was just as good as with having taken the steps above. For a point of 
reference, a simple query:
 

SELECT * FROM Stocks.Daily WHERE symbol=’GOOG’;
 
Before optimization took place, it would take ~46 seconds to execute, yielding ~3500 records 
from a list of ~8,500,000. After the optimization steps were taken, execution time dropped to 
~0.02 seconds. A vast improvement.
 

Benchmarking
To evaluate the applicative strengths and weaknesses of HBase and Cassandra, the two 
NoSQL databases we used in our application, we used the Yahoo Cloud-Serving Benchmark 
(YCSB). This tool runs a scripted proportion of operations using 1 KB records in a key-value 
storage system, and we used the six workload scripts bundled with the YCSB repository. 
We ran our benchmarks on a six-node cluster of extra-large Amazon EC2 instances, and 
set the number of operations in each workload to 20 million. Amazon Web Services uses 
heterogeneous processor architectures on its back-end, which can be verified by looking at the /
proc/cpuinfo of EC2 instances. Therefore, to keep the tests comparable, we ran the benchmarks 
sequentially upon the same EC2 instances.
 
Running the benchmarks against HBase version 0.90.2 and Cassandra 0.7.4, we recorded the 
results for workload throughput and the latency of each operation within each workload.
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Figure #10: This figure shows throughput for each workload.
 

Figure #11: This figure shows latency, broken down by the individual operations from each 
workload.

 
While the initial goal was to see if any of these scenarios showed a workload performance 



strength for HBase or Cassandra, it became apparent that Cassandra had better throughput 
and latency. This is because it sacrifices Consistency from the CAP theorem for Availability 
and Performance, while HBase sacrifices Availability (its data is eventually-consistent) for 
Consistency and Performance.
 
We did not benchmark MySQL using these tests because the overall goal of this project was 
to compare NoSQL cloud-storage solutions, and because the key-value operations in this 
benchmark can not always directly map to traditional SQL commands, such as the Scan 
operation used in the Read-Modify-Write workload. In future work, we would like to run these 
benchmarks against a wider range of NoSQL data stores.

Conclusion
While we were unable to comprehensively test, benchmark, and evaluate many NoSQL 
solutions, we did learn several valuable facts when it comes to setting up and implementing 
them in a practical application. In this section we will share the lessons learned, often with 
comparison to the SQL-way of doing things, as most readers will be familiar with these 
systems. That said, it should be noted that NoSQL is a radical shift from the relational database 
paradigm, and attempting to understand NoSQL concepts in terms of relational terms will only 
lead to confusion and headache.
 
The most important takeaway from this project is to know your data. That is, determine how 
you want to query it, what sorts of questions you want to ask of it, and what sort of results you 
expect. Unlike SQL databases, where the data model is determined by relationships among 
elements, data models for NoSQL systems--at least Cassandra and HBase, but probably all 
key-value type stores--are are determined by what you are going to access. In SQL systems 
you use indices and JOINs to perform complex queries, whereas in NoSQL systems you have 
to have your data in a format that supports the types of queries you plan to perform.
 
The second lesson learned is to understand your NoSQL product’s data model. Most RDBM 
systems support the query language known as SQL and use the same modeling concepts 
across the board. Of course various the SQL implementations differ slightly in syntax from 
product to product, but generally speaking they are identical. This is not the case when it comes 
to NoSQL databases. They employ their own concepts to express their data models. It does 
not help the matter any that many of the terms they use to describe their concepts are shared 
between NoSQL and SQL systems alike, though to assume the terms mean the same things 
across the board is a huge mistake. Likewise, it does no good to attempt to understand one 
data model in terms of another. This definitely is a disadvantage for NoSQL systems, because, 
again unlike SQL products, being an expert in one does not carry over well to another. This 
state of affairs is probably due to the relative infancy of the NoSQL movement. Even though 
NoSQL systems like Berkley DB have been around for decades, large scale, distributed 
systems that attempt to provide more structure than a bare one-to-one key-value interface 
are still developing. Perhaps as they mature the lexicon and concepts will unify; however, 



such unification will come at the cost of obscuring the relevant and underlying theoretical and 
implementation details.
 
None of these NoSQL solutions are drop in replacements for MySQL, nor are they drop-in 
replacements for each other.  They have important strengths and weaknesses, meaning the 
individual application and circumstance will be the most important factor in deciding which 
solution to use.  NoSQL is not replacing traditional RDBMS’s in the same way that instant 
messaging and Facebook haven’t replaced email.  We have covered many of the places where 
these data management systems shine brightly (and not so brightly), and we hope making a 
decision on how to organize data in the future has been made more clear.
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix

Amazon EC2 Instructions
 
This appendix contains simple instructions for setting up Cassandra and HBase clusters on 
Amazon EC2.
 

Getting started
1. Register for Amazon AWS if you have not yet, and make sure you’ve signed up for both 

EC2 and S3.
2. Download the Amazon EC2 API Tools
3. Follow the guide to set up your EC2 environment.

 

Setting up EC2
● Create a new security group for Cassandra gateways and nodes

○ ec2addgrp cassandra-control -d 'Cassandra controller group'

○ ec2addgrp cassandra-node -d 'Cassandra node group'

● Open port 22 for both groups
○ ec2auth cassandra-control --port-range 22 --protocol tcp

○ ec2auth cassandra-node --port-range 22 --protocol tcp

● Open Gossip, Thrift, and JMX ports between the nodes.
○ ec2auth cassandra-node --port-range 7000 --protocol tcp -o 

cassandra-node

○ ec2auth cassandra-node --port-range 9160 --protocol tcp -o 

cassandra-node

○ ec2auth cassandra-node --port-range 8080 --protocol tcp -o 

cassandra-node

● Open Thrift and JMX ports between the nodes and controllers
○ ec2auth cassandra-node --port-range 7000 --protocol tcp -o 

cassandra-control

○ ec2auth cassandra-node --port-range 8080 --protocol tcp -o 

cassandra-control

● Confirm the security group settings
○ ec2dgrp cassandra-node

● Create a keypair.
○ ec2addkey cassandra-keypair

○ Save the lines from BEGIN RSA PRIVATE KEY to END RSA PRIVATE KEY 
somewhere like ~/.ec2/pk-cassandra.pem

○ export $CASSANDRA_KEY=~/.ec2/pk-cassandra.pem
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Launching a node
● Start a node/seed instance.

○ ec2run --region us-east-1 ami-cef405a7 -t m1.large -g cassandra-

node -k cassandra-keypair

○ Note the instance id. It will look like i-90127833
● Log into the instance

○ Get the instance public address
■ ec2din instanceid

○ ssh -i $CASSANDRA_KEY ubuntu@nodeaddress.compute-1.amazonaws.com

 

Installing Web Server
● Upgrade ubuntu

○ sudo apt-get update

○ sudo apt-get upgrade

● Install git

○ sudo apt-get install git

● Use ssh-keygen to generate a key and add it to your github profile

● Checkout the git repo (from the home dir) with:

○ git clone git@github.com:Ramblurr/CapstonePython.git

● Install dependencies for the project:

○ sudo apt-get install python-dev libmysqlclient-dev

● Change to the git repo dir and install the python dependencies

○ cd CapstonePython

○ sudo pip install -r requirements.txt

● Launch the webservice

○ cd ~/CapstonePython/src

○ screen sudo python index.py 80

○ Note: sudo is required to bind to port 80

 

Installing Cassandra
● Add the Cassandra APT repository lines

○ deb http://www.apache.org/dist/cassandra/debian sid main 

deb-src http://www.apache.org/dist/cassandra/debian sid main

● Install the Cassandra package
○ gpg --keyserver pgp.mit.edu --recv-keys F758CE318D77295D

○ gpg --export --armor F758CE318D77295D | sudo apt-key add -

○ sudo apt-get update

○ sudo apt-get upgrade

○ sudo apt-get install cassandra

● Edit the Cassandra configuration files appropriately.
● Restart Cassandra (it auto-starts immediately following installation)

○ sudo service cassandra restart

● Confirm the node status
○ nodetool  -h localhost ring



 

Installing HBase
● Download the hbase-ec2 scripts.
● Create a new keypair called root:

○ ec2addkey root
○ Save the generated private key and chmod 600

● Edit bin/hbase-ec2-env.sh
○ Fill in the five key variables
○ Remove the ‘-q’ flag from SSH_OPTS
○ Set JAVA_VERSION
○ Set HBASE_VERSION=0.89.20100726

● Edit bin/launch-hbase-zookeeper
○ remove $TOOL_OPTS from the two calls to ‘ec2-describe-instances’

● Launch the cluster!
○  ./bin/hbase-ec2 launch-cluster <name> <slaves> <zoos>
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