
Yes or NoSQL
Andy Street, Casey Link,

David Mazary, Jonathan Berkhahn,
Val Komarov

In partnership with

Problem
Modern applications have

lots of data
lots of users

Need for highly performant, scalable database

Traditional RDMs cannot scale (easily)
Why?

Background
CAP Theorem - Pick Two

Consistency - do you get the same results?
Availability - can you talk to it?
Partition Tolerance - does it scale?

Main issue: Partitioning (i.e., scalability)

Tradeoff - which to sacrifice?
Consistency or Availability

Venn diagram of the CAP Theorem

NoSQL
DB

NoSQL
Blanket term for any type of structured
data storage
Goal: Create DBMS that are scalable
Many different implementations exist, each
with strengths and weaknesses

Key-value (Dynamo, Cassandra)
Tabular (BigTable, HBase)
Document (MongoDB)
Graph, Object, Multivalue ... and more

Motivation
Of our sponsor (BAH)

Worthwhile investment?
Implementations
Developer experience

Academic motivation
Growing technology
Benchmarking

NoSqlDemo.com
NASDAQ Stock Data

NASDAQ Exchange Daily 1970-2010 Open, Close, High,
Low and Volume

Query 3 Different Data Sources
Compare implementations

Try it out

http://nosqldemo.com/

NoSqlDemo.com

NoSqlDemo.com

NoSqlDemo.com

Cassandra
Distributed Key-Value Store
Eventually Consistent
Easy to setup

DHT - Peers find each other
Many language bindings

Thrift - Python, Java, PHP, Ruby, etc
Tunable Consistency

Cassandra Schema
Symbol {
 Date 1 {
 open:
 close:
 ...
 }
 ...
}

Date {
 Symbol 1 {
 open:
 close:
 ...
 }
 ...
}

GOOG {
 2005/01/01 {
 open: 500,
 close: 501
 }
 2005/01/02 {
 open: 501,
 close: 502
 }
}
2005/01/01 {
 GOOG{
 open: 501,
 close: 502
 }
 AAPL {
 open: 501,
 close: 502
 }
}

HBase
Modeled after Google's BigTable
Runs on HDFS
Consistent and Partition-tolerant:

Single writer
NameNode is single PoF

Can MapReduce run natively

Development
PyBase, an API based on Pycassa
Converted our CassandraModel to HBaseModel
Adjusted for the differences in HBase's structure

Scanner instead of Get
Configure the Scanner correctly, parse through the
results

Difficulties with proprietary data types
Very little documentation of PyBase

HBase Schema

Table Row Column Families

Price Volume

Columns
Stocks <symbol><date> price: open

price: close
price: high

price: low

Dates <date><symbol> price: open

price: close
price: high

price: low

Column Family

Symbols

Column
Symbols <first letter< Symbol: <symbol>

MySQL
Consistent and Available

"Traditional"
Easy Setup (sudo apt-get install mysql-server)
Simple Schema

Direct import from CSV
Flat table

Unparalleled Support
High and Low level API support for many languages
Doesn't scale well
Further improvements through caching (memcached) and
mirroring (Linux-HA project)

YCSB

YCSB

YCSB

Conclusions
Know your data

What queries do you want to make?

Understand your solution's Data Model

Watch out for EC2

MySQL Setup
1. Install from repo (sudo apt-get install mysql-server)
2. Configure binding addr and port
3. Create Database
4. Import stocks data from CSV files (via..LOAD DATA INFILE)
5. Create internal hash indexes (via..CREATE INDEX)
6. Use MySQLdb and Python to marshall DB data
7. Write webapp

Questions?

