
Implementing Enterprise-Level Quality of Service Using Variable
Resource Allocation in the Xen 4 Hypervisor

Kyle Morgan
knmorgan@vt.edu

Conor Scott
conscott@vt.edu

James Cook
jcook908@vt.edu

Michael Lowman
mdlowman@vt.edu

Introduction Implementation

Future Work

Sponsored by Rackspace US, Inc.
Special Thanks to Gabe Westmaas

0

20

40

60

80

100

120

140

0 100 200 300 400 500 600 700 800

IO
PS

Time (s)

Figure 2: Read IOPS with Staggered Benchmarks

Total
Alpha
Beta
Gamma

0

100

200

300

400

500

600

0 100 200 300 400 500 600

IO
PS

Time (s)

Figure 1: Total IOPS

Alpha
Beta
Gamma

•  Monitor I/O by polling sysfs data structures and parsing
relevant data

•  Ran suite of benchmarks to find scheduling cases with
poor performance

•  Used Flexible File System Benchmark (ffsb) to
create I/O workloads with varying characteristics

•  Sequential read/writes
•  Random read/writes
•  Small file workload (mail server)
•  Large file workload (database)

•  Increasing popularity of cloud offerings
•  Infrastructure-as-a-Service provides an

abstract concept of computing
resources

•  CPU, disk, memory, etc.
•  Single server should handle many VMs
•  Currently no means to guarantee

resources allocated to VMs running on
a hypervisor

•  Major customers are given dedicated
servers for important VMs

•  Guarantees availability
•  Inefficient, expensive

overprovisioning
•  Acceptable means for CPU and

memory QoS currently available
•  Core → CPU mappings
•  Memory ballooning

•  No acceptable means for disk
monitoring

Xen I/O Path
•  Scheduler provides no QoS guarantees:

nondeterministic
•  DomU creates virtual I/O requests to

blkback driver
•  blkback driver sends requests to ring

buffer in Dom0
•  Dom0 services request via physical disk

driver
•  DomU is notified when request

completes

•  Counter-based hard limiting
•  In a given timeslice, only allow N I/O

operations
•  After N operations in timeslice are

performed, pretend ring buffer is full
•  DomU-based daemon inserts tagged

requests
•  Variable based on current I/O load and

priority policy
•  Fills ring buffer if approaching

maximum allowed throughput
•  Dom0 discards tagged requests

Motivation

•  Cloud service providers would benefit
greatly from enhanced QoS in the I/O
path

•  Saving money by consolidating servers
•  Doesn’t degrade VM performance

•  In-place mechanisms not sufficient
•  Many workarounds; no

comprehensive solutions
•  Missing element to

compartmentalize performance

CS4284 Systems & Networking Capstone. Spring 2011. Faculty advisor: Ali R. Butt

•  Xen is open source: modifiable
•  Enterprise-class standard solution
•  Used by major cloud providers
•  Test platform of Debian server

•  Three Debian VMs (alpha, beta, and gamma)
•  Linux 2.6.32 with Debian Xen pvops patchset
•  AMD Sempron™ Processor 3800+
•  2 GB memory

•  Figure 1 depicts a machine with a variety of workloads
running in different VMs

•  Database workloads on Alpha and Beta
•  Backup workload on Gamma

•  Figure 2 depicts a 10-minute random-reads workload
run on each VM

•  Each benchmark staggered by two minutes
•  Figure 3 depicts a dynamic workload

•  All VMs initially run database benchmark
•  Gamma changes workload to backup after five

minutes

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600

IO
PS

Time (s)

Figure 3: Dynamic Workloads

Alpha
Beta
Gamma

Hardware

Xen Hypervisor

Dom0 DomU DomU DomU

Backend Device
Driver

Frontend Device
Driver

Frontend Device
Driver

Frontend Device
Driver

