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Abstract—Massively parallel scientific applications, running on
extreme-scale supercomputers, produce hundreds of terabytes of
data per run, driving the need for storage solutions to improve
their I/O performance. Traditional parallel file systems (PFS) in
high performance computing (HPC) systems are unable to keep
up with such high data rates, creating a storage wall. In this work,
we present a novel multi-tiered storage architecture comprising
hybrid node-local resources to construct a dynamic data staging
area for extreme-scale machines. Such a staging ground serves
as an impedance matching device between applications and the
PFS. Our solution combines diverse resources (e.g., DRAM, SSD)
in such a way as to approach the performance of the fastest
component technology and the cost of the least expensive one.
We have developed an automated provisioning algorithm that
aids in meeting the checkpointing performance requirement of
HPC applications, by using a least-cost storage configuration.
We evaluate our approach using both an implementation on a
large scale cluster and a simulation driven by six-years worth of
Jaguar supercomputer job-logs, and show that our approach, by
choosing an appropriate storage configuration, achieves 41.5%
cost savings with only negligible impact on performance.

I. INTRODUCTION

More than ever before, scientific discovery is dependent on

the availability of computational power. Designing and devel-

oping software systems for emerging massive-scale High Per-

formance Computing (HPC) machines, especially for achiev-

ing performance beyond the petascale, is a daunting task.

In such post-petascale era, the imbalance between storage

system performance and other system components, such as

memory and compute, can significantly hinder critical scien-

tific HPC applications. Emerging applications run on hundreds

of thousands of cores for hours on end and conduct intense

I/O, producing terabytes of data. An integral part of the

application run is checkpointing, the process of saving a

snapshot of the system state (application’s in-memory data

structures) to the parallel file system (PFS) periodically to

protect against failure (as well as for inspection of application

progress). Mean time to failure (MTTF), which is a week

to a day in today’s petascale systems will exacerbate to a

day to an hour at exascale [20]. Thus, checkpointing is an

indispensable I/O activity in HPC applications. For instance,

one checkpoint timestep for a 100,000-core run of GTS [31]

(a fusion simulation) on the Jaguar supercomputer [1] at Oak

Ridge National Laboratory (No. 2 in Top500 [29]), produces

22 TB of data. To put this in perspective, consider that simply

writing ten such checkpoints (one every hour) to storage at

current I/O rates can consume up to 30% of the runtime. This

is despite the fact that the PFS on such supercomputers can

offer tens of GB/s of I/O throughput. Exascale projections [20]

indicate that the many-cores and the data they can produce will

expose the storage performance gap dramatically, suggesting

that “storage wall”, rather than memory wall, will be the

limiting factor in such systems.

To mitigate the I/O bottleneck in checkpointing to a PFS,

in-memory checkpointing techniques are often used. Solutions

that checkpoint to a peer’s node-local memory have been

studied as a means to expedite checkpoint time and to return

the application to conducting useful work [23]. Our own

prior work used a percentage of the application’s allocation

(cores and their memory) to create an aggregate staging area,

which can absorb checkpoint data [15]. The aggregate space

is essentially a distributed memory buffer or a distributed

ramdisk-based storage that intercepts checkpoint data and

eventually drains it to PFS. While these approaches can reduce

the checkpoint overhead, they use extra memory resources.

DRAM is an expensive resource in the HPC landscape for

the following reasons. (i) Main memory provisioning is a

significant portion of the multi-million dollar supercomputer

budget. (ii) While it may seem that large-scale machines have

a lot of memory, often to the tune of hundreds of TBs (e.g.,

Jaguar has 360TB of memory), modern HPC applications are

equally memory hungry. This is because, such applications

typically perform “in-core” computations, loading entire input

datasets into main memory to avoid going to the disk often.

The memory-to-FLOP ratio has been steadily declining, from

0.85 for the No. 1 machine on Top500 in 1997 to 0.01
for the projected exaflop machine in 2018 [29]. The exaflop

machine is projected to host 60 petabytes of main memory.

Even so, memory will be scarce. (iii) DRAM is a significant

contributor to the power budget of the machine. Consequently,

it is desirable to minimize the impact due to using memory for

purposes other than computation. With reference to the staging

approach outlined above, the traditional thinking has been to

leave it to the application user to determine how much memory

and cores to allocate in order to alleviate checkpointing I/O

pressure. Thus, a dedicated center-wide partition of a memory-

based staging area for checkpointing, while desirable, is not

economically viable.

The advent of non-volatile memory devices (e.g., solid state

devices SSDs) offers a tremendous opportunity in such a



setting. It is widely believed that SSDs or flash technology will

serve to bridge the I/O performance gap between DRAM and

disk [18], [25], [13], offering several desirable properties. First,

SSDs provide superior throughput and lower access latency

when compared to disks. Second, due to the lack of mechanical

moving parts, SSDs are less failure prone so as to be adopted

as node-local devices within supercomputer compute nodes.

And finally, SSDs consume less power when compared to

DRAM, albeit at the cost of an order of magnitude higher

latency.

The logical question that arises in this context is how to use

these storage and memory technologies in concert and bring

them to bear on the urgent problem of HPC checkpointing.

In this paper, we propose a multi-layered storage system

for the HPC I/O hierarchy, using memory, SSD and disk.

We envision an environment in future extreme-scale systems

where a partition of compute nodes, along with their node-

local main memory and any potential non-volatile memory,

is dedicated to alleviating the I/O bandwidth bottleneck in

checkpointing and writing output data. Such a storage system

could be HPC center-wide, servicing all in-coming jobs or

could be built from a percentage of a job’s own core-allocation

as mentioned earlier. The conjoined use of memory technolo-

gies makes it feasible to have a dedicated data staging area.

SSD technologies offer larger capacity (hundreds of GBs) at a

much cheaper price when compared to DRAM. For instance,

the No. 4 machine in Top500 (Tsubame2 [30]) has around

173 TB of total node-local SSD storage. Currently, a high-end

Fusion I/O PCIe MLC SSD card (io Drive Duo) at 640 GB is

priced around $15K. Much like disk storage, SSD storage is

increasing in capacity and decreasing in cost. Thus, growth

in SSD space is currently outpacing memory increases. A

concerted use of these layers can help provide larger capacity

than what memory-alone can offer, while also reducing the

cost required to provision such a staging storage system.

A. Contributions

Staging Area:We have proposed, built and evaluated several

scenarios for an intermediate data staging device for extreme-

scale machines. Our work illustrates how such a device can be

positioned in the HPC center as a center-wide or as a per-job

dedicated resource and absorb intense checkpoint data.

Multi-Tiered, Hybrid Architecture from Node-local Re-

sources: We have put forth a novel multi-tiered storage archi-

tecture for the staging area, using node-local resources such as

DRAM and SSD. Our solution is able to seamlessly use these

devices under different resource contribution constraints and

offer excellent I/O throughput to checkpointing applications.

We particularly shed light on the utility of the emerging SSDs

in the HPC I/O landscape.

Provisioning and Cost/Performance Model: We have pro-

posed a cost-aware provisioning algorithm that chooses the

best (least-cost) storage configuration from a set of candidate

configurations that meets the checkpointing performance re-

quirement. Our model illustrates how using a combination of

DRAM and SSD contributions can help optimize the total cost

of provisioning of the staging area for a given performance

goal.

Evaluation: Our evaluation was performed using both a

large-scale (2400-core) machine and a simulation based on

six years worth of Jaguar supercomputer job logs. The exper-

imental results show that the multi-tiered hybrid staging area

is able to scale to thousands of client application processes.

Our simulation study shows that up to 41.5% and 36.3%

cost savings can be achieved by constructing the staging area

using our scheme, compared to memory-based and disk-based

checkpointing, respectively, while incurring negligible impact

on performance. Furthermore, using SSDs in the center-wide

staging area results in 59.25% higher I/O throughput, com-

pared to disk-based checkpointing without SSDs without any

additional costs.

II. DESIGN AND IMPLEMENTATION

In this section, we first present the motivation and rationale

behind our system design. Then, we describe the system

architecture, followed by a discussion on how we have realized

the system through a practical implementation.

A. Rationale

Our target systems are extreme-scale multi-petaflop ma-

chines. Current petascale machines comprise of thousands

of compute nodes (e.g., Jaguar [1] with 18,000+ nodes and

Kraken [2] with 8,000+ nodes), amounting to O(100,000)

cores. The international exascale roadmap projects that by

2015, a 100-300 petaflop machine will host O(100,000) nodes

with O(1M) cores and a tenfold increase for the exaflop

machine by 2018 [20]. System memory size, which is at

0.3 PB in the 2+ petaflop Jaguar machine (No. 2 in Top500),

will rise to 5 PB and 60 PB in the 100-300 petaflop and

exaflop machine by 2015 and 2018 [20]. Fault tolerance

techniques such as checkpointing will be a major challenge

in such systems. A critical question facing the community

is: How to take a snapshot of the entire application memory

within a matter of minutes? Such questions form the basis for

designing the storage subsystem: how long it takes to drain

the system memory of the entire machine is a key factor

in deciding how much I/O throughput the storage subsystem

should provide. For example, if 5 PB of memory in the 100-

300 petaflop is to be drained to the PFS in 10 minutes,

then the storage system needs to support an I/O throughput

of approximately 8-10 TB/s. The research challenge lies in

answering whether a PFS alone can support such extreme

speeds, specifically, whether an entirely disk-based network-

attached storage substrate can offer such throughput.

Addressing the above challenge requires investigating the

impact of several factors, including the usual suspects of cost,

power, etc. To this end, one technology that is expected to

play a significant role in extreme-scale machines in helping

to alleviate the checkpoint overhead, is non-volatile memory

devices or SSDs. SSDs posses several desirable qualities in

terms of capacity, cost, performance, persistence and power

consumption. However, given that HPC systems are only



barely beginning to scratch the surface on the utility of SSDs in

the I/O hierarchy, it is not always clear where one would place

such a device. Similarly, it is not clear whether SSDs would

be local to the compute nodes, be on a separate partition,

or on dedicated I/O nodes. While these aspects still need to

be explored thoroughly, it is increasingly becoming clear that

future multi-petaflop and exaflop systems will be essentially

required to exploit such devices in an intelligent fashion to

deliver the needed high I/O rates. The combination of memory,

SSD and disk promises to be a highly potent solution, if

used in a concerted fashion. Therefore, our goal of studying

these technologies in a multi-tiered storage architecture for the

HPC I/O hierarchy is very timely and can provide formative

feedback to HPC system designers.

B. Resource Aggregation Scenarios

We envision two primary candidate target scenarios for the

multi-tiered storage architecture (Figure 1). These present us

with different resource aggregation use-cases.

1) Dedicated Center-wide Partition: In this scenario, a set

of “fat”, system nodes are dedicated as an HPC center-wide

resource to address the I/O bandwidth bottleneck problem.

These fat nodes are essentially no different than the compute

nodes, but for perhaps having more DRAM (when possible)

and non-volatile memory devices. Given the provisioning bud-

get, only a subset of nodes may be equipped with SSDs. Thus,

the nodes are likely to be a mix of resources that contribute

memory-only, memory and SSD, or both. We also envision that

such a partition would be well connected to the main compute

nodes. As such separate center-wide staging resource pools

gain popularity, one can even imagine scheduling its usage

in the future. For instance, users could request for nodes in

the staging pool, much like how compute nodes are requested

through a scheduler (e.g., 100,000 nodes for compute and 500

nodes from the staging pool.) The advantage with the center-

wide pool is that the resource can be scheduled and optimized

across all jobs. However, a significant challenge would be to

deliver the desired throughput on a per-application/job basis

as it is now a shared resource. Finally, the I/O nodes in an

HPC machine can even potentially double as a staging pool

when equipped with SSDs.

2) Partition of Job Allocation: Alternatively, a percentage

of the user’s job allocation (e.g., 1% of 200,000 cores re-

quested by the application) can be dedicated for the applica-

tion’s own I/O activities. This in-job staging pool would be

dedicated to the application and, consequently, there will be

no interference with other jobs. Several resource contribution

models are feasible here, for example: (i) the staging pool

is from dedicated compute nodes within the job allocation;

and (ii) the staging pool is built from one or more cores and

their memories (DRAM as well as non-volatile) spread across

the compute nodes. The disadvantage of the in-job staging

approach is that it potentially takes cores and memory away

from computation. However, we argue that the application user

should consider the entire application turnaround (and not just

the computation time), and checkpointing time is a significant

Fig. 1. High-level view of the multi-tiered staging area that is built by
aggregating node-local resources such as memory and SSD. The figure depicts
different resource aggregation scenarios such as center-wide staging area
and in-job staging area. In addition, the figure depicts different benefactor
contribution usecases.

factor therein. Dedicating a staging pool only expedites the

user’s own application turnaround time.

C. Usage Models

The multi-tiered storage built using the aforementioned

resource aggregation scenarios can be potentially used for both

reading and writing large input and output data.

1) Checkpointing and Result Data Outputs: The primary

usage model for the multi-layered storage is absorbing large,

intensive checkpoint I/O. The storage tiers will be used to

buffer the data as it flows down the I/O hierarchy from memory

and SSD layers to the PFS. The checkpoint data is written

once and read only in the case of failure. Thus, a key goal

for this usage model is to optimize the multi-layered system

for performance, in order to quickly digest the data emanating

from the multicore compute nodes.

2) Reads and Prefetching: Another potential use of the

tiered storage is to use it to perform prefetching or read-ahead

caching from the PFS to the SSD and memory tiers so data

can be brought closer to the application processes. While a

potential usage scenario, this is beyond the scope of this paper.

D. Hybrid Storage Architecture

In this section, we describe the different components of the

proposed heterogeneous staging storage architecture for the

HPC I/O hierarchy in Figure 1. Our architecture is derived

from our prior work [15] that amasses node-local disk or

SSD contributions. In this work, we significantly extend the

prior work to seamlessly aggregate both DRAM buffers (not

ramdisks) as well as SSD contributions and build a tiered

architecture. Our design comprises of benefactor processes,



contributing node-local resources, i.e., memory buffers, SSD

or both, to a manager process that aggregates these contribu-

tions and presents a collective front to client applications. In

the case of a center-wide partition resource aggregation model,

several compute nodes, in their entirety, can be dedicated to

the staging pool. Here, the entire memory and SSD per node

is contributed to the aggregate store. Alternatively, in the job-

allocation partition model, a core within each compute node

runs the benefactor process and contributes a portion of the

memory and a partition of the SSD to the manager.

The manager process keeps track of different classes of

benefactors: those that contribute (i) DRAM only (m-benefs);

(ii) SSD only (s-benefs); and (iii) DRAM and SSD (ms-

benefs). ms-benefs are more likely to be found in the center-

wide staging pool model, while s-benefs can result primarily

from the in-job partition model, wherein compute nodes only

contribute a portion of their SSDs and are unwilling to part

with any available memory. The manager uses these lists of

benefactors and their available storage to satisfy different in-

coming client requests to store checkpoint data. In addition to

keeping track of available space, the manager also maintains

the status of the benefactors and the datasets stored in them.

Thus, the manager serves to maintain the metadata information

about the benefactor storage nodes and also maintains a

mapping of benefactor to datasets. Further, it runs key provi-

sioning and striping algorithms to determine which classes of

benefactors to store datasets on, so as to maximize application

perceived performance and also optimize the storage system

cost.

Clients are typically application processes running on the

thousands of cores of the job’s compute node allocation.

Each process of a parallel job is a client to the hybrid

store, checkpointing its memory/core. Thus, the hybrid storage

system will need to cater to thousands of requests at the same

time, even if it is setup as an in-job staging area. This is

because, parallel applications typically involve the processes

invoking a barrier and then checkpointing. Clients contact the

manager to obtain a plan (benefactor list) for their checkpoint

data. The dataset is chunked (chunk size of 1 MB) and striped

across the benefactors. Clients contact the benefactors directly,

in parallel, to store the chunks, achieving high aggregate

throughput. The benefactors are responsible for storing the

chunks on their respective storage media (DRAM or SSD.)

The aggregate memory or SSD store itself can be accessed

through a FUSE [8] mount point so that client accesses can

follow regular POSIX semantics.

E. Hybrid Storage as Multiple Tiers

The manager organizes the benefactor resources into an

aggregate memory buffer and an aggregate SSD pool and

further positions them into hierarchal layers, with memory

as the top tier, followed by the aggregate SSD layer. These

two tiers are followed by the HPC center’s PFS. The stacked

approach allows us to efficiently exploit the available resources

in a concerted fashion with the checkpoint data trickling down

from the aggregate memory to aggregate SSD and eventually

to the PFS for stable storage. The entire process of the

checkpoint data flowing through the tiered storage system is

transparent to the client, with it being hidden behind an elegant

file system interface.

Upon a client request to store the checkpoint data, the

manager provides a set of benefactor storage nodes based on

a provisioning algorithm (discussed in the next section.) The

striping plan may contain a combination of benefactors from

the m-benefs, s-benefs or ms-benefs, depending on availability

and whether a desired performance criteria can be met. Data

is written to the memory buffers of the benefactors in the

aggregate memory pool, if such nodes from the m-benefs

list have been allocated as part of the striping plan. DRAM

is likely limited in the staging area, and one of our key

goals is to study if having SSDs can help substitute for

more nodes needing to contribute memory, and therefore,

reduce the provisioning budget. To this end, the multi-tiered

architecture seamlessly drains the data to the SSD tier, if one

such has been allocated. If there are no memory benefactors,

then checkpointing automatically begins at the SSD tier and

gets drained to PFS. While the aggregate SSD tier likely

has more capacity, it might still not be sufficient to hold

the snapshot data from O(100,000) cores, each with say

2 GB/core. Consequently, draining the data to the PFS is a

desirable feature for persistence. The key is to perform these

operations asynchronously, in a way that does not impact

application perceived throughput. Thus, the multi-tiered hybrid

store should be viewed as an intermediate device to absorb

checkpoint data and is primarily an impedance matching

mechanism between the application and the PFS.

In cases where the SSD tier can hold the checkpointing

data in its entirety, the draining to PFS can even be conducted

in an out-of-band fashion, between two checkpoint timesteps.

Leaving the checkpoint data stored in the aggregate SSD tier

(if space is not an object) may also have certain other benefits

in terms of faster access to restart files and input data for

dependant jobs.

To ensure faster performance and reduce stalls, each bene-

factor uses a triple-buffer design to store and transfer the

checkpoint data from memory to SSD or to stable storage.

SSD layers tend be larger and, therefore, draining can easily

be achieved without application perceived performance hit.

Draining from memory in a timely fashion is critical due to

its potentially limited size. Upon start-up of the benefactor

component, a pre-specified amount of memory is allocated

for managing the checkpoints. The memory is further divided

into three equally sized buffers that are managed using the

state diagram shown in Figure 2. This ensures that while a

buffer is being drained by the draining agent, another buffer

is used to write the next checkpoint chunk. The goal is to

completely overlap the writing of buffers in the local memory

and draining them to SSDs or to the PFS. Each benefactor

runs an asynchronous dedicated thread, the draining agent,

which writes the checkpoint data to the SSD tier or to PFS.

In our design, we have employed one dedicated queue for

each of the three buffers to ensure storing metadata such as
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Fig. 2. State machine for managing benefactor memory buffers.

addresses and sizes of the checkpoint data chunks. However,

each benefactor has only one draining agent that monitors the

queues by continuously polling them to check if another buffer

has become full for draining, which is then written to the next

tier. After the data has been successfully drained, the buffer is

released for handling the next set of chunks.

An interesting aspect here is the interaction between the

memory and SSD tiers. While we view the memory and SSD

layers as two aggregate storage systems, draining from the

memory tier to the SSD tier does not necessarily mean always

writing to an aggregate SSD abstraction. For instance, since

a given striping map can potentially have nodes from the ms-

benefs list, it makes sense for the draining operations to occur

locally when feasible. Therefore, for benefactor nodes that

contribute both memory and SSD, draining data is a local

operation. However, when a node only contributes memory,

draining involves writing from the benefactor memory to

another benefactor’s SSD. In the provisioning discussion, we

will highlight how storage provisioning enables the selection

of these nodes.

Another factor to consider in the multi-tier model is if a

strict trickle-down approach always makes sense. For instance,

given the availability of the benefactors or due to budget

provisioning, there may be a disproportionate number of

m-benefs, compared to s-benefs. Or, simply the amount of

memory may be limited. In such cases, it does not make

sense to throttle the checkpointing and have it all flow through

the aggregate memory tier, which will be narrow. Instead, we

should be able to stripe widely enough, across m-benefs and s-

benefs, so as to maximize throughput. Such a scenario implies

that client writes are performed in parallel to both memory as

well as SSD benefactors. Within a single ms-benef, however,

preference is always given to a memory write.

III. PROVISIONING THE MEMORY AND SSD TIERS

In this section, we discuss the allocation of available

memory and SSD resources to different jobs, and present

an algorithm for provisioning the resources with the goal to

improve end-to-end application performance.

A. A Motivating Example

Consider the following example usage scenario that moti-

vates the need for efficient provisioning of the hybrid storage

tiers. We conducted a simple experiment to perform cost-

performance analysis for different configurations of aggregate

memory and SSD allocations. We use an MPI application
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Fig. 3. Cost-performance analysis of different configurations of hybrid
storage hierarchy. X-axis denotes storage capacities (GB) of each layer in
the hierarchy formed of memory(m), SSD(s) and disk(d) in order.

running on 8 nodes, which checkpoints 2 GB per node to the

multi-tiered storage. Figure 3 plots the variation in execution

time and corresponding cost (in dollars) for provisioning a

combination of memory and SSD resources for the application.

We used the cost numbers from [26] for memory, SSD and

disk. Comparing the two configurations, one with 8 GB

memory and 8 GB disk (msd− 8− 0− 8) and the other with
3 GB memory, 8 GB SSD, and 5 GB disk (msd−3−8−5), we
see that there is a 40.9% drop in cost for only a 2.5% increase

in execution time. Different configurations have their corre-

sponding cost-performance tradeoff points, thereby motivating

the use of SSDs in the storage hierarchy to achieve similar

application performance at a lower provisioning cost. Also,

between the configurationsmsd−2−6−8 andmsd−4−0−12,
we see that msd−2−6−8 achieves higher performance at a
lower cost. This is because, in msd−4−0−12 configuration,
the cost of 4 GB memory dominates, while the application per-

formance degrades because of draining the remaining 12 GB

of data to disk in the critical path of execution. Both cost and

execution time overheads are amortized in msd − 2 − 6 − 8
configuration due to the introduction of 6 GB of SSD and

associated reduction in memory provisioning. This motivates

the need for effective provisioning techniques to achieve the

target performance from a cost-effective configuration.

B. Overview of the Provisioning Algorithm

The primary goal of the provisioning algorithm is to find

the capacity to be provisioned for each tier (memory and

SSD) in the hierarchical hybrid storage architecture to meet

the checkpointing performance requirement with a least cost

configuration. To this end, the algorithm strives to provide the

following capabilities:

• It provides a guideline for system administrators to

statically provision the staging area–either at the acquisition

phase or during its instantiation–based on a prior history of

jobs’ checkpointing needs. The guideline helps decide the

number of staging nodes and their memory, and SSD capacities

to be provisioned, under given budget constraints, while still

achieving a specified performance target (e.g., checkpoint in



10 minutes, etc.)

• The algorithm also aids the manager process in further

optimizing the hybrid store’s performance by guiding how the

provisioned resources (available memory and SSD capacities)

are to be distributed across the nodes allocated to applications.

The cost-performance analysis performed in the proposed

algorithm is based on the requirement for every application

individually. It is assumed that system administrators have

access to a potential target workload for which they are trying

to provision the storage.

1) Terminology: Let Tapp be the performance require-

ment of the application. For example, the performance re-

quirement can be specified using I/O throughput (GB/s).

Let Benefmem = m1,m2, ...,mi be the theoretical set of

memory contributing benefactors with sizes m1,m2, ...,mi.

Similarly, let Benefssd = s1, s2, ..., sj be the theoretical

set of SSD contributing benefactors with sizes s1, s2, ..., sj .

These represent the granularity of control for determining the

resources required to meet the specified performance target.

Recall that a hierarchical storage system can be viewed as

two sets of memory and SSD contributing nodes. We refer to a

benefactor as the process executing on a resource contributing

node, which donates the specified amount of resources for the

purposes of checkpointing. Benefactors can donate different

amounts of memory and SSD resources. The number of all

possible combinations of these benefactors for a hybrid staging

area (All Config) is the cross product of the sets Benefmem

and Benefssd, i.e., All Config = Benefmem × Benefssd.

Each element in All Config is denoted by Hybrid(i, j). For
example, Hybrid(16, 32) denotes a configuration with 16 GB
memory and 32 GB SSD. The configurations in All Config

can also denote only-memory or only-SSD configurations,

where the other element in the tuple is zero.

2) Provisioning Procedures: The provisioning algorithm

(Figure 4) is composed of the following five steps:

Step 1: For each combination of any two benefactors

(Hybrid(i, j)), we determine its average throughput denoted
by THybrid(i,j).

Step 2: We compute the number of instances of

Hybrid(i, j) required to meet the performance requirement
of application Tapp. The number of instances NHybrid(i,j) of

Hybrid(i, j) can be modeled as:

NHybrid(i,j) =
Tapp

(THybrid(i,j) −
(N−1)
Dlink

)
, (1)

where Dlink is the loss in I/O throughput of every link

access. The above model is for an in-job staging area. The

model for a center-wide staging area would be N instead of

N − 1 in the right operand of the denominator, denoting that
all nodes in the staging area are remote to the clients. At the

end of this step, we would have the aggregate memory and

SSD resources required to meet target performance Tapp. For

example, if we deduce that we need four instances of 2 GB

memory and 4 GB SSD, it translates to an aggregate memory

of 8 GB and an aggregate SSD of 16 GB to be provisioned

Input :

Tapp: Target checkpointing I/O throughput (GB/s)
M ′ represents set of theoretical memory sizes,
M ′:{m1, m2, ..., mi},
S′ represents set of theoretical SSD sizes,
S′:{s1, s2, ..., sj}

Output :

Best Config(K, M, S): A set of K nodes configured with
a total of memory (M) and SSD (S) capacities → Tapp

Additionally, Best Config(K, M, S) minimizes cost

Algorithm :

System Initialization :

Determine the set of all possible hybrid configurations
All Config : M ′ × S′ = {(m1, s1), (m1, s2), ..., (mi, sj)}.

while (true)
Iterative Performance Annotation:

∀j ∈ All Config,
Compute Tj ← maximum achievable I/O throughput
for instance j.

Determining Instance Set:

∀j ∈ All Config,
Compute Numj ← (Num) number of instances of j
required to achieve Tapp using,

Numj =
Tapp

(Tj−
(Num−1)

Dlink
)
,

where Dlink is the loss in I/O bandwidth for every link
Add (Num,j) to instance set.

Selecting Least-cost Configuration :

∀(Num, j) ∈ instanceset,
Compute cost([Num,j]) = installation + operation cost
Select the least-cost configuration.

Performance Optimization:

The least-cost configuration with (Num) instances of j is
provisioned from the resource contributing nodes allocated
to applications by prioritizing nodes in the order of nodes
contributing both memory and SSD, followed by
only memory nodes, and then only SSD nodes.

Fig. 4. Details of our provisioning algorithm for data staging area.

to achieve the application specified checkpoint throughput.

Step 3: Next, we determine the associated costs of provi-

sioning resources. Here, the cost function of each resource

can be defined as a function of resource installation cost

(Costinstallation), and its operational cost (Costoperation).

The installation cost is a function of the device unit cost,

and the operational cost is a function of the power consumed

followed by the cooling cost. Since the resource installa-

tion cost is much higher than its operational cost under

the current memory market prices, we mainly consider the

device installation cost in our provisioning model. That is,

cost of Hybrid(i, j) is a function of the purchasing cost of
memory and SSD of sizes i and j, respectively. The total

cost of provisioning is therefore, NHybrid(i,j)×(Hybrid(i, j).
We use the cost numbers from [26] for memory, SSD and

disk. At the end of this step, of the different configurations

that meet the target performance, we choose the least-cost

configuration. It is important to note that our primary objective

is to provision resources to meet applications’ performance

goals. Our algorithm chooses the least-cost configuration only

when there is more than one configuration yielding the same

performance benefits. Another important decision to be made

is to determine how the aggregate memory and SSD resources,

determined in the previous steps, are allocated at individual

nodes so that applications derive maximum performance ben-

efits.



TABLE I
EXPERIMENTAL SETUP.

Parameter Value

Number of Processing Nodes 300
Storage per Node 320GB
Network Interconnect Infiniband QD 40 Gb/s
HDD Model WD3200AAJS-41VWA0
Cores per Node 8
Memory per Node 8GB

Maximum Available Cores 2400

TABLE II
INTEL X25-E SSD SPECIFICATIONS [11].

Parameter Value

Model Intel X25-E Extreme
Features SATA-II SLC Flash Technology
Capacity 32GB

Sequential Read Bandwidth 250MB/s
Sequential Write Bandwidth 175MB/s
Random 4KB reads 35K IOPS
Random 4KB writes 3.3K IOPS

Step 4: In order to maximize parallel access to mem-

ory and SSD resources for checkpointing, it is important

that the determined aggregated memory and SSD capacity

is allocated across multiple nodes. However, the number of

nodes across which the resources are allocated should not

exceed NHybrid(i,j), determined in Step 2. This is because the

memory and SSD capacity to be provisioned to meet the target

performance was determined factoring the link delay, Dlink.

Therefore, distributing resources to more than NHybrid(i,j)

may not yield the specified performance. Although, it appears

that minimizing the number of nodes, where memory and

SSD resources are allocated, is always beneficial because of

reduced link delays, the performance benefits obtained by

allocating resources across multiple nodes due of parallel

access, amortizes the loss in I/O throughput due to extra link

accesses.

Step 5: In order to further optimize performance when

allocating memory and SSD resources, the type of benefactors

(m − benef , s − benef , ms − benef ) used for allocation is

chosen carefully. Of these three types of nodes, in order to

derive maximum performance, when available, it is beneficial

to allocate nodes that contribute both memory and SSD

(ms − benef .) This is because, such nodes have access to

local SSD resources to which data can be drained without

incurring network access latency. Our proposed provisioning

algorithm performs this optimization, whenever feasible, after

choosing a least-cost configuration.

IV. EXPERIMENTAL SETUP AND EVALUATION

We have evaluated our multi-tiered hybrid store along with

the provisioning algorithm using both trace-driven simulations

and an implementation running on a large-scale machine

comprising 2400 cores. We first present the experimental setup

and evaluation based on our implementation, and then describe

the simulation-based results.

A. Evaluation at Scale Using the SystemG Machine

1) Setup: For our experiments, we used the 2400-core

systemG machine at Virginia Tech. Table I shows the detailed

configuration of the testbed. Each node is also equipped

with an SSD in our evaluation setting, using an emulated

SSD device driver that has been validated against a real

product (specifications shown in Table II) for sequential I/O

throughputs within an error margin of 0.57%. The emulated

device uses DRAM for storage and emulates a real SSD

by introducing artificial delays, based on our previous work

on simulating SSDs [14]. In our testbed, we use node-local

disks as the last level in the storage hierarchy to provide

data persistence. We use a synthetic checkpointing application

that generates a uniform dataset as checkpoint data on every

time step. Specifically, we created an MPI program that has a

configurable number of processes, with each process writing

0.25 GB of data per checkpoint.

2) Large-scale System Results: In our first set of experi-

ments, we evaluated the impact of varying memory, SSD and

disk allocations to the checkpointing application. We consider

the following three cases. The first two depict a center-wide

staging scenario, wherein each node contributes both memory

as well as SSD. The latter depicts an in-job staging area with

non-uniform contributions.

Aggregate Memory and Disk Tiers: The experiments were

run with 1800 and 1200 parallel application client processes

that checkpoint 450 GB and 290 GB of data, respectively, to

an aggregate memory device in each time step, with the data

drained to disk storage. The total memory contributions range

from 50 GB to 400 GB, coming equally from all 300 nodes

i.e., memory contribution per node ranges from 0.16 GB to

1.33 GB. Figure 5 shows the I/O throughput obtained under

this test. As expected, the checkpointing throughput of the

applications are highly sensitive to memory allocation with

the throughput ranging from 31.0 GB/s to 51.8 GB/s on 1800

processes, and varying from 16.2 GB/s to 43.7 GB/s on 1200

processes.

Aggregate Memory, SSD and Disk Tiers: In this test, appli-

cation processes checkpoint (450 GB of data) to the aggregate

memory, aggregate SSD and disk tiers. Data is drained to SSDs

(with aggregate SSD contributions ranging from 150 GB to

250 GB, coming equally from all nodes i.e., SSD contribution

per node ranges from 0.5 GB to 0.8 GB). Any overflow

data is also drained to disks. We used 1800 parallel appli-

cation client processes. Figure 6 shows the I/O throughput

obtained when both memory and SSD contributions are varied.

Comparing Figure 5 and Figure 6 reveals some interesting

cost/performance trade-offs in provisioning storage systems.

For instance, if the cost is fixed as that of provisioning 150 GB

of memory, then adopting a mix of 100 GB memory and

250 GB SSD can provide an I/O throughput improvement of

5.2 GB/s. Conversely, if the desired I/O throughput is fixed

as that obtained using 250 GB of aggregate memory, then
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adopting a 100 GB memory contribution along with a 200 GB

SSD contribution can yield a cost reduction of more than

44%. This suggests that a multi-tiered staging area with careful

allocation of DRAM and SSD tiers can help amortize the cost

of provisioning, while also achieving high I/O throughput.

Non-Uniform Contributions: In this test, the application

checkpoints (290 GB of data) to the aggregate memory/SSD

and disk tiers. We used non-uniform resource contributions,

with nodes contributing different amounts of memory and SSD

storage. The nodes are divided into 4 sets with 50 nodes (400

cores) in each set. All the nodes in a particular set contribute

equally, but the contributions of the sets are non-uniform. Any

overflow data is also drained to disks. Figure 7 shows the I/O

throughput in this heterogeneous resource donation case. The

x-axis in Figure 7 represents three cases, where the notation

(s1−s2−s3−s4) represents the total SSD contribution of the
nodes in each of the 4 sets, with si GB SSD contribution from

each set i (e.g., each of the 50 nodes together contribute si GB

of SSD.) Similarly, three types of memory configurations are

studied, with each line in the graph representing a case with

different memory contributions by different sets. A notation

(m1 −m2 −m3 −m4) is used to represent the total memory
contribution of the nodes in each of the 4 sets, with mi

GB memory contribution from each set i. This heterogeneous

scenario tests an in-job staging area scenario, wherein all

compute nodes may not be able to contribute equal amounts

of memory or SSD. All nodes in the job allocation may not

be equipped with an SSD unlike the center-wide staging area

usecase. The key observations from these results are that the

available parallelism in checkpointing data is critical to the

I/O throughput obtained. For example, when all 4 sets (of 50

nodes each) contribute both memory (total of 100 GB) and

SSD (a total of 200 GB), the throughput is observed to be

higher than when some of the sets contribute either memory

only or SSD only, although the overall contributions remain

the same. This is because, such nodes have access to local

SSD resources to which data can be drained without incurring

network access latency.

Using these evaluations at scale from a real-world machine,

we have described key insights learned on the design parame-

ters that influence provisioning. Further, we were able to obtain

realistic values for parameters that we then used in our job-

TABLE III
JAGUAR JOB LOGS STATISTICS.

Parameter Value

Duration 443,803 Hrs
Number of jobs 304,361
Job execution time 30 s to 7,394.08 hrs, average 1.45 hrs
Data size 2.28 MB to 291.27 TB, average 2.8 TB

logs based simulations.

B. Simulation

We now describe the large-scale job traces used in the sim-

ulation, the simulator setup and our analysis of the proposed

provisioning algorithm using the job traces.

1) Traces: The simulations were driven using six-year job

traces from the Jaguar supercomputer at Oak Ridge National

Lab. The job traces provide the following information for each

job: arrival time, start time, total job execution time, total

amount of memory and compute resources used. Since the

logs are devoid of output data sizes, we used the product

of the memory requested per core and the number of cores

requested as an approximation of the checkpoint data size. For

example, if the job used 1,000 cores and 2 GB of memory

per core, we assume its output data size to be 2000 GB.

This is a very reasonable assumption given that many data-

intensive applications’ checkpoint or restart output datasets

cannot be larger than their total memory usage. The output

data of real applications can run in the hundreds of GBs and

TBs for leadership simulations on Jaguar. Each job in the trace

corresponds to a job executing in our simulator. The output

from the simulator contains the overall resource usage in terms

of memory, SSD and disk space used, and the time taken to

write the required data for a given job. This information is used

for computing the cost for provisioning those resources and

the job’s I/O throughput. We used cost estimates for memory,

SSD and disk from the rates presented in [26].

Table III shows some relevant characteristics of the logs.

Also, note the large variance in both the duration of the jobs

(from a few seconds to over a day) and the amount of data

they access (from a few MBs to several TBs). Clearly, a single

provisioning method to accommodate such a large variety of



Fig. 8. Distribution of the number of nodes used
by different jobs.
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Fig. 9. Number of disks required in disk-based
checkpointing to achieve target performance.
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jobs on HPC systems is not efficient. Understanding the cost-

performance tradeoffs with these job logs from real execution,

enables better system-wide provisioning decisions.

2) Simulator Details: We performed a detailed cost-

performance analysis of our provisioning algorithm using six-

years of Jaguar job logs with 304,361 jobs. An overview of a

representative set of 32,000 jobs1 in terms of the number of

nodes used by each job is shown in Figure 8. Each node in

this case (in Jaguar) has dual-hex cores (12 cores) and 16 GB

memory. The number of nodes used among the jobs varies

all the way from 1 node to more than 18,000 (representing

225,000+ cores.) With these jobs, and some “hero runs”

(applications that use large number of cores and have large

datasets) we selected from the same, we now report the results

of the analysis. The simulator faithfully models the impact

of both checkpoint staging area model and in-job allocation

model by providing the flexibility to change both memory

and SSD provisioning in either of these models. It takes as

parameters, the fraction of cores allocated for in-job allocation

in addition to memory and SSD sizes used for staging area.

Simulation of draining between memory and SSD tiers is

also validated against our real system emulation results by

capturing the draining rates from each tier in an equivalent

real system and using them in simulations.

3) Comparing Disk-based and Staging-Area-based Check-

pointing: In provisioning disks to typical HPC workloads, we

are often constrained not by disk drive capacity, but by the

ability to sustain throughput (IOPS or GB/s). Since capacity

per device is increasing exponentially and I/O throughput per

device is increasing linearly (sublinearly), storage provisioning

for HPC systems will have to start purchasing performance

rather than capacity (if not already). Keeping this in mind, we

analyzed the number of parallel disks our system would need,

in order to provide a sustained I/O throughput to all the jobs on

the Jaguar logs, such that their checkpointing requirements can

be met within 5 minutes per hour of execution. The number of

parallel disks required to be provisioned are shown in Figure

9. We can see that the maximum value is 11,696 disks in

1Although we analyzed the logs using all 304,361 jobs, we present a
representative set of 32,000 jobs due to limitations in the plotting tool we
used to show more than 32,000 data points

parallel to sustain the I/O throughput requirements. However,

by introducing node-local SSDs into slightly more than 10%

of the nodes in the system, the staging area can not only meet

the sustained throughput requirements of all applications, but

also minimize the overall cost of provisioning the system. For

example, the reduced number of disks required when SSDs

are introduced is shown in Figure 10. We can see that the

maximum number of disks required reduces to 6550 disks (a

reduction of 5,196 Disks, i.e., 44%). Therefore, it is extremely

beneficial to introduce SSDs in the I/O stack, to improve cost

per unit performance of the system.

4) Deploying SSDs in Center-Wide Staging Model: We

now evaluate the benefits of deploying SSDs in a center-wide

staging model and show the benefits of using our provision-

ing algorithm to strike the right balance between cost and

performance in provisioning systems. We provide a detailed

cost-performance analysis for the “hero applications” selected

from Jaguar job logs. There are 515 such hero applications in

the logs. However, we present data for 5 representative applica-

tions (DS199TB, DS41TB, DS109TB, DS298TB, DS260TB)

with data set sizes ranging from 41 TB to 298 TB, that exhibit

varying characteristics in the range of number of nodes used

and the amount of checkpointing performed. Figure 11 shows

the cost savings achieved as analyzed by our provisioning

algorithm to minimize the cost of provisioning the system for a

sustained throughput of checkpointing within 5 mins for every

hour. The results are shown for three scenarios in the center-

wide staging model where the ratio between the number of

computing nodes to nodes in the staging area varies between

(64:1), (128:1) and (256:1) (much like compute nodes to I/O

nodes ratios in HPC centers). The bars for cost without SSD

represent a scenario where memory in all nodes of the center-

wide staging area is used for checkpointing purposes as well.

The bars for cost with SSD show the cost of the minimum cost

configuration with the introduction of SSD as analyzed by our

provisioning algorithm. We observe up to a 41.5% reduction

in cost that can be captured by our provisioning algorithm.

Similarly, Figure 12 shows the maximum throughput for a

given cost of $90,000 that can be achieved as pointed out

by our provisioning algorithm when using SSDs. We can see

that up to 59.3% improvement in throughput can be obtained

without incurring any additional costs by using SSDs in the
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center-wide staging area. These are the two extreme cases of

provisioning in the center-wide staging model. However, if the

system is willing to tolerate a trade-off in performance, ranging

from 2 to 10% (corresponding to an increase in checkpointing

time by 6 to 30 seconds), we can discover opportunities for

significant reductions in cost. Figure 13 shows these trade-offs.

We can find up to 52.1% reduction in cost for a 30 sec (10%)

increase in checkpointing time.

5) Sensitivity to In-Job Staging Area: Finally, we also

evaluated the trade-offs involved in using an in-job staging

area model. In the in-job staging area, we used a fraction

of the computing cores to execute the benefactors, thereby

contributing their memory and associated SSD space for

checkpointing. We show the analysis for a “hero application”

that uses all the cores (more than 224,000) on Jaguar and

executes for 14,440 seconds (as indicated by the dotted line).

The increase in execution time of this application when it

parts with 1% to 2% of the cores is shown in the first bar

of Figure 14. However, using these 1% to 2% of the cores for

an in-job staging area and utilizing both memory and SSDs

available on it, not only contributes to an improvement in

the checkpointing performance, but also improves the overall

application execution time by up to 3%. This experiment

illustrates the benefit of the in-job staging area model. We

also experimented with the case when only SSD resources are

utilized from the in-job staging area. In such a scenario, in

order to achieve the performance target of 14,440 seconds,

we would need more than 4% of the cores and associated

resource allocation. Hence, to keep comparisons uniform,

we report results with memory-disk and memory-SSD-disk

configurations.

In summary, our simulation results suggest that the in-

troduction of SSDs into the data staging area can not only

reduce the cost of provisioning the tiered storage system, but

also improve throughput and checkpointing time. Our analysis

further suggests that the tiered staging area is a viable approach

in both a center-wide as well as an in-job resource aggregation

scenario. Finally, the results also indicate that the provisioning

algorithm can help discover and highlight potential tradeoffs

in cost and performance.
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Fig. 14. Sensitivity to fraction of in-job checkpoint node allocation.

V. RELATED WORK AND DISCUSSION

In this section, we discuss related efforts that explore the

use of SSDs in the storage hierarchy. We also discuss the state-

of-the-art in storage system provisioning and explain their

shortcomings when applied to situations that require provision-

ing heterogeneous resources (memory, SSD and disks) from

several storage nodes in a distributed storage system.

A. SSDs in the Storage Hierarchy

There has been considerable amount of work on using SSDs

as part of the storage hierarchy in the traditional operating

systems community. Some of these efforts focus on integrating

flash as a persistent storage in file systems, either by replacing

hard disks or by augmenting it with existing disk drives.

In [18], the authors show that for large server-side workloads,

replacing disks with SSDs is not a cost effective option at

today’s prices. Depending on the workload, the capacity/dollar

of SSDs needs to improve by a factor of 3 to 3000 for SSDs

to replace disks. However, they do acknowledge the benefits

of using SSDs as an intermediate caching tier, alongside disks.

Several efforts [17], [7], [21] employ SSDs as a cache atop

hard disk to improve read performance. For example, Intel’s

Turbo Memory [17] uses NAND-based non-volatile memory

as an HDD cache. Operating system technologies such as

Windows ReadyBoost [7] uses flash memory, for example in

the form of USB drives, to cache data that would normally

be paged out to an HDD. Windows Ready-Drive [21] works

on hybrid ATA drives with integrated flash memory, which

allow reads and writes even when the HDD is spun down.



Several other efforts [25], [12] show how Flash can be used in

today’s server platforms as a disk cache. Combo Drive [24] is

a heterogeneous storage device in which sectors from the SSD

and the HDD are concatenated to form a continuous address

range, where data is placed based on heuristics. In [27], the

authors propose to use hard disks as a write-cache to SSDs to

increase SSD lifetime. In [16], the authors have designed and

developed a hybrid device driver to use SSD as an I/O cache.

In [13], the authors provided capacity planning techniques to

administrators with the overall goal of operating within cost-

budgets and performance/lifetime guarantees during episodes

of deviations from expected workloads. However, their work

is limited by focusing on building back-end storage systems

and by not considering the HPC domain.

B. SSDs in HPC Systems

The adoption of Flash in HPC systems, however, has

been slow and is only now gaining momentum. Recently,

several NSF and DOE supercomputers are being equipped with

SSDs on each of the compute nodes, offering the application

processes a very desirable node-local storage alternative to

the ever-crowded PFS. For instance, the No. 4 machine in

Top500 (Tsubame2 [30]) has around 173 TB of total node-

local SSD storage. NSF’s 64-node DASH machine [10] at

SDSC (precursor to Gordon [19], a 1024 node cluster) has

4 TB of flash memory compared to its 3 TB of DRAM. It is

widely expected that flash devices will be used in some form—

either as a bleed-down buffer or as a memory extension—for

future extreme-scale machines. HPC I/O operations such as

reading and writing of large input and output datasets and

checkpointing intermediate snapshots of data are extremely

I/O intensive. These operations can benefit immensely by

smart placement of SSDs in the data path (e.g., on the compute

nodes, staging nodes, I/O nodes or on the PFS). While we

are beginning to see studies that evaluate scientific application

data accesses on SSDs [22], there is not much work exploring

the various ways in which such devices can be used for HPC

I/O. Even the aforementioned machines that are equipped with

SSDs leave it upto the applications to use them as simply a

node-local resource, without any coherent solution. Our own

prior work [15] in this area explored the construction of an

aggregate store of SSD devices as an intermediary between

applications and the PFS. In this paper, however, we extend

this work to position SSDs as the second tier in a multi-tiered

staging storage system.

C. Staging Storage in HPC Systems

Using a set of staging nodes, from within a job allocation to

conduct in-situ execution is gaining popularity in HPC [32].

Staging areas serve dual purposes: accelerating periodic I/O

and performing data analysis/reduction on-the-fly, while the

job is running. PreDatA [32] showed that with a rather small

extra set of staging nodes (1.5% of the original allocation),

important yet relatively unscalable common data processing

tasks such as sorting can be carried out on these nodes while

the normal compute nodes proceed with their computation.

Our own prior work explored the in-job staging approach to

dedicate entire compute nodes (up to 1% of the allocation) to

perform checkpointing therein [3]. All of the above solutions

simply use the DRAM available to the compute node to build a

staging area. PreDatA does not aggregate memory like our ap-

proach either. The fundamental drawback of these techniques

is their reliance on DRAM for the staging area. While the

staging ground can offer excellent performance, DRAM (as

discussed earlier) is an expensive resource in HPC systems.

Memory is only becoming much more scarce in extreme-

scale machines. In this paper, however, we explore different

scenarios for the staging ground (including a center-wide

staging storage) and build it using a hierarchical model with

hybrid resources. Our hybrid approach preserves the desired

performance of the staging area, while also reducing the cost

of provisioning such a staging storage in HPC systems. Cost of

provisioning is a key factor as the staging storage is proposed

as a resource in addition to the traditional PFS, which itself

is a substantial fraction of the HPC center’s acquisition and

operations budget.

D. Storage System Provisioning

Storage systems can be complex to manage. Management

consists, among many other tasks, allocating resources for

each storage node, and mapping application workloads to

these nodes. Unfortunately, the state-of-the-art in storage man-

agement requires much of this to be done manually. Often,

storage administrators use rules-of-thumb to determine the

appropriate sizes, and workload-device mappings. This can

lead to suboptimal performance and wasted resources.

Storage provisioning and configuration tools, including

Minerva [4], Ergastulum [6], and the Disk Array Designer [5],

are targeted at creating minimum cost designs that satisfy

some fixed level of performance and data protection. Meis-

ner et. al. [9] argue that with the increasing heterogeneity

in storage systems, intelligent provisioning of resources is

difficult without end-to-end performance specification. In [28],

the authors propose the use of utility functions to enable cost-

benefit structure to be conveyed to an automated provisioning

tool, enabling the tool to make appropriate trade-off decisions.

However, the various system models for performance, power

and availability mentioned in [28] are devised considering only

hard-disks as storage system resources. To the best of our

knowledge, none of the previous storage provisioning research

considers heterogeneity in distributed storage systems while

modeling their system parameters. It is therefore important

to explore the storage system provisioning techniques in the

context of heterogeneous distributed storage systems.

VI. CONCLUSION

This paper presents a novel multi-tiered data staging area

for large-scale machines, which acts as an intermediate storage

device between applications and the PFS. The staging device

absorbs application checkpoint data and seamlessly drains it

through its tiers to the PFS. Our approach exploits diverse

node-local resources (e.g., DRAM, SSD) to provision a hybrid



storage that is less expensive than an entirely memory-based

staging ground and yet is able to meet application check-

pointing performance needs. We argue that reconciling these

tradeoffs between different system metrics is crucial in future

extreme-scale machines. Such staging device also alleviates

the pressure on the PFS. Our evaluation, based on a large-scale

testbed and Jaguar job-log simulation, suggests our approach is

viable, and is promising in mitigating the storage wall faced in

emerging large-scale machines. Our future work is exploring

the design of efficient caching and prefetching strategies to

utilize the aggregated staging area more effectively.
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