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Related works in text-to-image generation

4 Stacked - GAN: Uses a series of G-D networks to generate images of different

scale
d  AttnGAN - Uses cross-modal attention mechanism

d  SD-GAN: Uses siamese structure to distill the semantic commons from texts
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AttnGAN (Cross-Modal Attn Mechanism)
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SD-GAN (Siamese structure for contrastive loss)
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Challenges with previous work
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Challenges with previous work

A Use of multiple G-D networks to generate

images of different scale

A Costly to generate images this way

H

Images generated by later stage generators
heavily depend on the initial G-D networks

(a) StackGAN
Stage-1
64x64
images

(b) StackGAN
Stage-I1
256x256
images
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surrounding a ring
of short yellow
filaments
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Challenges with previous work

(A Concatenation: Simple concatenation of text and image features -

inefficient

A Cross modal attention: As image size grows, the computation cost

grows too.

4 Tries to find relation between each pixel and textual information.



Deep Fusion GAN
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Simplified Text-to-Image backbone
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Matching aware zero centered Gradient Penalty

D(image)

fake
images

(A Pushes the real data points towards
minimum of loss curve

» image
1
. real
. images
1
e With gradient penalty == s == without gradient penalty

@



Matching aware zero centered Gradient Penalty

D(image)

(A Pushes the real data points towards
minimum of loss curve

+1

A Smoothens the surface for real data of
points - better convergence

» image

e With gradient penalty == s == without gradient penalty
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(A Pushthe real image-text pair to the
minimum of the loss function
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Use of one way Discriminator
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Use of one way Discriminator
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Deep - Fusion Block
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found using additional network

(4 In DF Block, normalization of feature maps is
skipped rather Affine transformations are used

[  Affine + ReLU blocks are stacked together to
form DF Block

4 Helpstointroduce Non linearity \

(b) DFBlock



Affine transformation

A Affine transformation
A Condition: Sentence vector passed through MLP
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Experiments and Results

COCO

e Contains 80k images for training
and 40k images for testing

e Eachimage has 5 language descriptions
e Multiple objects in single image

e Evaluation metric used:
o  Frechet Inception distance

CUB - 200

Contains 12k images belonging to 200 bird
species

Each bird image has 10 language descriptions

150 bird species with 9k images as training
set and 50 species with 3k images as the test
set.

Evaluation metric used:
o Inception score
o  Frechet Inception distance



Experiments and Results

e Optimizer used: Adam
e Learningrate:

o  Generator: 0.0001

o  Discriminator: 0.0004
e Epochs:

o CUB-200: 600

o COCO:120



Experiments and Results

e CUB

@)

DF GAN performs outperforms previous
methods in IS metric

Table 1. The results of IS, FID and NoP compared with the state-
of-the-art methods on the test set of CUB and COCO.

—_— CUB COCO
IST [FID| | FID] | NoP
StackGAN [] 3.70 - . -
StackGAN++ [ 7] | 3.84 = =
AttnGAN [*(] 436 | 23.98 | 3549 | 230M
MirrorGAN [*7] | 4.56 | 18.34 | 34.71 .
SD-GAN [ ] 4.67 - - .
DM-GAN [(] 475 | 16.09 | 32.64 | 46M
CPGAN [ ] - - 55.80 | 318M
XMC-GAN 7] . . 9.30 | 166M
DAE-GAN [ 7] 442 | 15.19 | 28.12 | 98M
TIME [ (] 491 | 1430 | 31.14 | 120M
DF-GAN (Ours) (5.10) 14.81 | 1932 | 19M




Experiments and Results

e CUB

o DF GAN performs outperforms previous
methods in IS metric

e COCO

o  DF-GAN performs decent enough in FID
score

o Uses significantly least parameters

Table 1. The results of IS, FID and NoP compared with the state-
of-the-art methods on the test set of CUB and COCO.

CUB COoCo
IST | FID] | FID| | NoPJ

Model

StackGAN [] 3.70 : = =
StackGAN++ [~ 7] | 3.84 : g

AttnGAN [] 436 | 23.98 | 3549 | 230M
MirrorGAN [ ] 456 | 18.34 | 34.71 -
SD-GAN [ ] 4.67 - - .
DM-GAN [] 475 | 16.09 | 32.64 | 46M
CPGAN [ ] - - 55.80 | 318M
XMC-GAN [7] . - 9.30 | 166M
DAE-GAN [ 7] 442 | 15.19 | 28.12 | 98M
TIME [ 7] 491 | 1430 | 3114 | 120M
DF-GAN (Ours) 5.10 | 14.81 1932) 19M




Qualitative Results
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Qualitative Results

A family standing in A train being Three boys playing Two people in a A bird with abrown  This is a white and ~ This bird has a yellow This bird has a white
front of a sign while  operated onatrain  a soccer game on a speed boat on a and black wings,red  grey bird with black throat, belly, abdomen belly and breast,with
wearing skis and track. green soccer field. body of water. crown and throat wings and a black  and sides with lots of  a blue crown and
holding ski poles. and the bill is short stripe by its eyes. brown streaks on nape.
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Ablation studies
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Ablation studies

e Baseline: Stacked text-to-image GAN which
employs two way discriminator

e One-Stage text-to-image Backbone (OSB)

e Matching-Aware Gradient Penalty (MA-GP)

Table 2. The performance of different components of our model

on the test set of CUB.
Architecture | ISt | FID} | SCt
Baseline 3.96 | 51.34 -
0OS-B 411 | 4345 | 1.46
OS-B w/ DAMSM 428 | 36.72 | 1.79
0OS-B w/ MA-GP 446 | 32.52 | 3.55

OS-B w/ MA-GP w/ OW-O

4.57 | 23.16 | 4.61
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Strengths

a Uses single G-D network - final image generation does »
not depend on initial images - prevents the generated I '
image from getting trapped within previous context.

pm——————
|

This small bird

L J
I has a light yellow | Y ‘
(@) I breast and brown | -

l wings. /l Go Gl

-

[ Deep Text-Image Fusion Block ]

{ This small bird |

(b) I has a light yellow
! breast and brown |
wings. I G




Strengths

a Uses single G-D network - final image generation does

not depend on initial images - prevents the generated 45
image from getting trapped within previous context.
4.0 4
| Adding MA-GP and OB-B improves the performance 3.5 -
consistently over the epochs - supports the hypothesis §
made in the paper £
Bos
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Strengths

a Uses single G-D network, so the final image —e— MA-GP GAN
. e . 4.8 1 —*— (MA-GP GAN)+ (CBNBIock)
generation does not degend oninitial |mage?. This L i P Ao
prevents the generated image from not getting —e— (MA-GP GAN)+ (CCBlock)
trapped within previous context. T (MA-GPGAN) ¢ (DFRIGCK)
4.6
o
o
@  Adding MA-GP and OB-B improves the performance a
consistently over the epochs - supports the hypothesis ‘:91 4.4
made in the paper E
a Normalization is computationally expensive. This 4.2
paper proves that even slightly removing
normalization increases performance.
4.0

200 250 300 350 400 450 500 550 600
a DFBlock consistently outperforms other modules like epoch
Concat, CBN, AFFBLK, etc throughout the epochs
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Weakness

d  Theapproachistrained on limited specific dataset i.e COCO and
bird species. Difficult to have conclusive evidence on robustness of
the model.

| Inconsistencies in results. TIME has better FID score for CUB
dataset. XMC-GAN has better FID score for COCO

a Can be difficult to interpret and identify how the model generates
specific outputs and the edge cases where it fails.

Table 1. The results of IS, FID and NoP compared with the state-
of-the-art methods on the test set of CUB and COCO.

Model CUB COCO

IS 1 | FID| | FID | |NoP,L
StackGAN [57] 3.70 - - -
StackGAN++[57] | 3.84 - -
AttnGAN [20] 436 | 23.98 | 3549 | 230M
MirrorGAN [ 7] 456 | 18.34 | 34.71 -
SD-GAN [ 1] 4.67 - - -
DM-GAN [50] 475 | 16.09 | 32.64 | 46M
CPGAN [77] - - 55.80 | 318M
XMC-GAN [57] - - 9.30 166M
DAE-GAN [7] 442 | 15.19 | 28.12 | 98M
TIME [2¢] 491 | 1430 | 31.14 | 120M
DF-GAN (Ours) 5.10 | 14.81 | 19.32 19M




Future Work

J Evaluating the method for different domain specific text-to-image datasets.

d DF-GAN currently uses significantly lower parameters (19M) compared to other state-of-the-art methods.
(>100M)

Can the model further improve performance by simply scaling up the architecture ?



Discussion / Questions ?

Feel free to connect on LinkedIn!



