OSCAR: Object-Semantics Aligned Pre-training for Vision-Language Tasks

Presentation by Amun Kharel CS 6804: Multimodal Vision Spring 2023 Instructor: Dr. Chris Thomas

Attention Mechanisms

https://www.youtube.com/watch?v=yGTUuEx3GkA&ab_channel=Rasa

Self-Attention

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All You Need. CoRR abs/1706.03762, (2017). Retrieved from <u>http://arxiv.org/abs/1706.03762</u>

Self-Attention

$$W_{11}V_{1} + W_{12}V_{2} + W_{13}V_{3} + W_{14}V_{4} = Y_{1}$$

$$W_{21}V_{1} + W_{22}V + W_{23}V_{3} + W_{24}V_{4} = Y_{2}$$

$$W_{31}V_{1} + W_{32}V_{2} + W_{33}V_{3} + W_{34}V_{4} = Y_{3}$$

$$W_{41}V_{1} + W_{42}V_{2} + W_{43}V_{3} + W_{44}V_{4} = Y_{4}$$

https://www.youtube.com/watch?v=yGTUuEx3GkA&ab_channel=Rasa

Application of BERT

- Text Encoding
- Response Selection
- Text Summarization
- Question Answering
- Similarity Retrieval
- And More...

High-Level Overview of BERT

	[CLS]	everybody	dance	now		[SEP]			
([CLS]	everybody	dance	now	[SEP]
				0	0.115728	-0.150873	0.076831	-0.661984	0.834172
				1	0.223339	0.269943	0.009255	-0.858786	0.279408
			BERT	2	0.394565	0.411511	1.518060	0.053227	0.127079
				3	0.021645	-0.369215	-0.217087	-0.251777	0.270489
				4	-0.569364	-0.537542	-0.033147	0.340954	-0.452304
				763	0.454554	0.539476	0.672731	0.648410	-0.864230
				764	-0.177935	-0.192709	-0.515615	-0.102858	0.159125
				765	-0.570071	0.058834	-0.369875	0.195014	-0.065941
				766	-0.257792	0.029307	-0.338636	-0.121347	-0.979295
				767	0.380097	0.632699	0.124689	-0.666084	-0.147284
				768 rd	ows × 5 colu	mns			

High-Level Overview of BERT

Simple Search Engine Using BERT

Simple Search Engine Using BERT

J,

Simple Search Engine Using BERT

Similarity scores

Use Cases of BERT

1 - Semi-supervised training on large amounts of text (books, wikipedia..etc).

2 - Supervised training on a specific task with a labeled dataset.

BERT architecture

BERT architecture

BERT

BERT Classifier

BERT: Masked Language Model

BERT: Next Sentence Prediction

Super_Bowl_50 The Stanford Question Answering Dataset

Super Bowl 50 was an American football game to determine the champion of the National Football League (NFL) for the 2015 season. The American Football Conference (AFC) champion Denver Broncos defeated the National Football Conference (NFC) champion Carolina Panthers 24–10 to earn their third Super Bowl title. The game was played on February 7, 2016, at Levi's Stadium in the San Francisco Bay Area at Santa Clara, California. As this was the 50th Super Bowl, the league emphasized the "golden anniversary" with various gold-themed initiatives, as well as temporarily suspending the tradition of naming each Super Bowl game with Roman numerals (under which the game would have been known as "Super Bowl L"), so that the logo could prominently feature the Arabic numerals 50.

Which NFL team represented the AFC at Super Bowl 50? Ground Truth Answers: Denver Broncos Denver Broncos Denver Broncos Prediction: Denver Broncos

Input Preparation

Question:	How many parameters does BERT-large have?
Reference Text:	BERT-large is really big it has 24 layers and an embedding size of 1,024, for a total of 340M parameters! Altogether it is 1.34GB, so expect it to take a couple minutes to download to your Colab instance.

OSCAR: Problem Addressed by Paper

 Previous work simply concatenate image region features and text features to learn image-text semantic alignments in a brute force manner

Token Embeddings	E _(CL8)	E _{my}	Edog	E _{is}	Ecute	E _(SEP)	E _{he}	Elikes	E _{play}	Erring	E]	ſ			Rol + lin	feature ear trai	is nsform
Segment Embeddings	+ E _A	+ E _B	+ E ₈	+ E _B	+ E _B	+ E ₈]	-	11									
Position Embeddings	+ E ₀	• E ₁	• E ₂	+ E ₃	• E ₄	+ E _s	• E ₆	• [E,	+ E ₈	• E ₉	+ E ₁₀]	A.	1	-			
hidden representation																		
		_																

OSCAR: Problem Addressed by Paper (Pre-training)

OSCAR: Problem Addressed by Paper

Fig. 2: Feature visualization of baseline (no tags). For several object classes, their text and image features are largely separated (e.g., person, umbrella, zebra). The distance of image features between some objects is too small (e.g., bench, chair, couch).

OSCAR: Solution Offered

Word-Tag-Region Triplet

OSCAR: Solution Offered (Pre-training)

- Training on Modality View using Contrastive Loss
- Training on Dictionary View
 Using Masked Token Loss

OSCAR: Solution Offered (Fine-tuning)

Motivation: Pre-training

http://valser.org/webinar/slide/slides/20210908%E7%9F%AD%E6%95%99%E7%A8%8B03--%E8%A7%86%E8%A7%89%E4%B8%8E%E8 %AF%AD%E8%A8%80%E6%99%BA%E8%83%BD/Lecture2_transformer_and_vlpretraining.pdf

Motivation: Vision Language Tasks

	Text-to-Image Retrieval	lmage-to-Text Retrieval	VQA	Image Captioning	Text-to-Image Generation
Input	Query: A couple of zebra walking across a dirt road.	Query:	Image:	Image:	Text: A couple of zebra walking across a dirt road.
	A pool of images.	A pool of texts.	Q: why did the zebra cross the road?		
Output		A couple of zebra walking across a dirt road.	A: to get to the other side (Selected from a pool of 3,129 answers in VQAv2)	A couple of zebra walking across a dirt road.	
	Understanding	Understanding	Understanding	Generation	Generation

http://valser.org/webinar/slide/slides/20210908%E7%9F%AD%E6%95%99%E7%A8%8B03--%E8%A7%86%E8%A7%89%E4%B8%8E%E8 %AF%AD%E8%A8%80%E6%99%BA%E8%83%BD/Lecture1_representations_and_attentions.pdf

Related Works: Image Captioning Evolution (Traditional)

Baby Talk: Understanding and Generating Image Descriptions. Kulkarni et al., CVPR, 2011

https://yuxng.github.io/Courses/CS6384Spring2022/lecture_25_images_languages.pdf

Related Works: Image Captioning Evolution (RNNs)

Related Works: Image Captioning Evolution (Attention)

Image Captioning with Attentions

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. Xu et al., PMLR, 2015.

https://yuxng.github.io/Courses/CS6384Spring2022/lecture_25_images_languages.pdf

Related Works: Image Captioning Evolution (Current)

Problem with the Current Work

- Ambiguity
 - > Visual Region features are extracted from over-sampled regions via object detectors
 - > Overlaps among image regions at different positions
- Lack of grounding
 - > No label alignments between regions or objects in an image and words or phrase in text
 - > Solution: Salient objects in both image and its paired text (anchor points)

A dog is sitting on a couch

OSCAR's Approach

OSCAR's Approach (Generation of v and q)

Rol region features + Linear transform

OSCAR's Approach (Pre-training Objective)

OSCAR's Approach (Dictionary View)

 $\mathcal{L}_{ ext{MTL}} = -\mathbb{E}_{(oldsymbol{v},oldsymbol{h}) \sim \mathcal{D}} \log p(h_i | oldsymbol{h}_{ackslash i}, oldsymbol{v})$

OSCAR's Approach (Modality View)

$$\mathcal{L}_{\mathrm{C}} = -\mathbb{E}_{(\boldsymbol{h}',\boldsymbol{w})\sim\mathcal{D}}\log p(y|f(\boldsymbol{h}',\boldsymbol{w})).$$

a contrastive loss for the modality view, which measures the model's capability of distinguishing an original triple and its "polluted" version (that is, where an original object tag is replaced with a randomly sampled one).

OSCAR's Approach (Full Pre-training Objective)

$\mathcal{L}_{\mathrm{Pre-training}} = \mathcal{L}_{\mathrm{MTL}} + \mathcal{L}_{\mathrm{C}}.$

OSCAR's Approach (Implementation Details)

- Two model variants as OSCAR Base (H = 768) and OSCAR Large (H = 1024)
- Adam Optimizer
- OSCAR Base trained for at least 1.0 M steps with learning rate 5e⁽⁻⁵⁾ and batch size 768
- OSCAR Large trained for at least 900k steps with learning rate 1e⁽⁻⁵⁾ and batch size 512
- Sequence length of discrete token h and region features v are 35 and 50 respectively

OSCAR's Fine-tuning (Image Captioning)

OSCAR's Fine-tuning (Image Captioning Inference)

OSCAR's Fine-tuning (Image Text Retrieval)

- There are two tasks Image Retrieval and Text Retrieval
- Binary Classification problem using CLS
- Randomly pick different image-text pair and predict if they are aligned or not
- During Test, probability score is used to rank the given image-text pairs of a query

OSCAR's Fine-tuning (Visual Question Answering)

- Model needs to answer using Natural Language questions based on image
- Image and question is given to select answer from multi-choice list
- Concatenate question, object tags and region features
- CLS output is fed for linear classifier for multi-label classification
- Fine-tune model based on cross-entropy loss
- Simply use Softmax function for prediction

Task	Imag R@1	ge Ret R@5	rieval R@10	Tex R@1	t Retr R@5	rieval R@10	Im B@4	iage C M	aptioni C	ng S	NoC C	$\begin{array}{c} \operatorname{Caps} \\ \mathrm{S} \end{array}$	VQA $ $ test-std	NLVR2 test-P
$SoTA_S$	39.2	68.0	81.3	56.6	84.5	92.0	38.9	29.2	129.8	22.4	61.5	9.2	70.90	53.50
$SoTA_B$	48.4	76.7	85.9	63.3	87.0	93.1	39.5	29.3	129.3	23.2	73.1	11.2	72.54	78.87
$SoTA_L$	51.7	78.4	86.9	66.6	89.4	94.3	-		_	_		_	73.40	79.50
$OSCAR_B$	54.0	80.8	88.5	70.0	91.1	95.5	40.5	29.7	137.6	22.8	78.8	11.7	73.44	78.36
$\operatorname{Oscar}_{\operatorname{L}}$	57.5	82.8	89.8	73.5	92.2	96.0	41.7	30.6	140.0	24.5	80.9	11.3	73.82	80.37
Δ	5.8 ↑	4.4 ↑	2 .9 ↑	6.9 ↑	2.8 ↑	$1.7\uparrow$	2.2 ↑	$1.3\uparrow$	$10.7\uparrow$	$1.3\uparrow$	7.8 ↑	0.5 ↑	0.42 ↑	$0.87\uparrow$

Mathad	Size	Te	Text Retrieval			ge Ret	rieval	Tex	t Retr	rieval	Image Retrieval			
Method	Size	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10	
	I	8		1K Te	est Set		5K Test Set							
DVSA [14]	-	38.4	69.9	80.5	27.4	60.2	74.8	-		-		-		
VSE++ [7]	-	64.7	-	95.9	52.0	-	92.0	41.3	-	81.2	30.3	-	72.4	
DPC [46]	-	65.6	89.8	95.5	47.1	79.9	90.0	41.2	70.5	81.1	25.3	53.4	66.4	
CAMP [42]	-	72.3	94.8	98.3	58.5	87.9	95.0	50.1	82.1	89.7	39.0	68.9	80.2	
SCAN [18]	-	72.7	94.8	98.4	58.8	88.4	94.8	50.4	82.2	90.0	38.6	69.3	80.4	
SCG [33]	-	76.6	96.3	99.2	61.4	88.9	95.1	56.6	84.5	92.0	39.2	68.0	81.3	
PFAN [41]	-	76.5	96.3	99.0	61.6	89.6	95.2	-	-	-	-	-	-	
Unicoder-VL [19) в	84.3	97.3	99.3	69.7	93.5	97.2	62.3	87.1	92.8	46.7	76.0	85.3	
12-in-1 [24]	B		-	-	65.2	91.0	96.2	-	-	-	-	-	-	
UNITER [5]	В	-	_	-	-	-	-	63.3	87.0	93.1	48.4	76.7	85.9	
UNITER [5]	L	-	-	-	-	-	-	66.6	89.4	94.3	51.7	78.4	86.9	
	В	88.4	99.1	99.8	75.7	95.2	98.3	70.0	91.1	95.5	54.0	80.8	88.5	
USUAR	L	89.8	98.8	99.7	78.2	95.8	98.3	73.5	92.2	96.0	57.5	82.8	89.8	

(a) Image-text retrieval

Method	ethod ViLBERT VL-BERT		VisualBERT	LXMERT	' 12-in-1	UNITERB	UNITERL	$\left OSCAR_B \right $	$\operatorname{Oscar}_{\operatorname{L}}$			
Test-dev		.63	70.50	70.80	72.42	73.15	72.27	73.24	73.16	73.61 73.82		
Test-stu	rest-stu 70.92 7		10.85	71.00	12.04		72.40	73.40	13.44	13.84		
(b) VQA												
-	Metho	od MA	C VisualB	ERT LXMER	T 12-in-1	UNITE	R _B UNITE	$R_L OSCAR_B$	OSCARL			
	$\begin{array}{c c c} Dev & 50.8 & 67.40 \\ Test-P & 51.4 & 67.00 \end{array}$		0 74.90	_	77.14	78.40	78.07	79.12				
			0 74.50	78.87	77.87	79.50	78.36	80.37				
(c) NLVR2												
Method	d Test-dev		7 Test-std	Mathad	cross-	entropy	optimizatio	n CIDI	CIDEr optimiz			
LXMEBT	[39]	60.00	60.33	Method	B@4	Μ	C S	B@4	M C	S		
MMN [4	[00] []	_	60.83	BUTD [2]	36.2	27.0 1	13.5 20.3	36.3 2	27.7 120	.1 21.4		
12-in-1 [2	24]	_	60.65	VLP [47]	36.5	28.4 1	17.7 21.3	39.5 2	9.3 129	.3 23.2		
NSM [12	2]	_	63.17	AoANet [11] 37.2	28.4 1	19.8 21.3	38.9 2	9.2 129	.8 22.4		
OSCARB	:	61.19	61.23	OSCARB	36.5	30.3 1	23.7 23.1	40.5 2	9.7 137	.6 22.8		
OSCARB	*	61.58	61.62	$Oscar_{L}$	37.4	30.7 1	27.8 23.5	41.7 3	0.6 140	.0 24.5		
	(d) (GQA			(e) I	mage c	aptioning	on COCO				

Method	in-do CIDEr	omain SPICE	near-o CIDEr	lomain SPICE	out-of- CIDEr	domain SPICE	ove CIDEr	erall SPICE
UpDown [1] UpDown + CBS [1]	78.1	11.6	57.7	10.3	31.3	8.3	55.3	10.1
UpDown + ELMo + CBS [1]	79.3	12.0	73.8	11.3 11.4	71 7	9.7	74.3	11.1 11.2
	13.5	14.1	10.0	11.4	11.1	5.5	14.0	11.2
OSCARB	79.6	12.3	66.1	11.5	45.3	9.7	63.8	11.2
$OSCAR_B + CBS$	80.0	12.1	80.4	12.2	75.3	10.6	79.3	11.9
$OSCAR_B + SCST + CBS$	83.4	12.0	81.6	12.0	77.6	10.6	81.1	11.7
OSCARL	79.9	12.4	68.2	11.8	45.1	9.4	65.2	11.4
$OSCAR_L + CBS$	78.8	12.2	78.9	12.1	77.4	10.5	78.6	11.8
$OSCAR_L + SCST + CBS$	85.4	11.9	84.0	11.7	80.3	10.0	83.4	11.4

(f) Evaluation on NoCaps Val. Models are trained on COCO only without pre-training.

CBS- Constrained Beam Search SCST- Self-Critical Sequence Training

Qualitative Studies

Qualitative Studies

<u>Oscar</u>: a small <u>train</u> on a city <u>street</u> with <u>people</u> near by . <u>Baseline</u>: a <u>train</u> that is sitting on the side of the road .

<u>GT</u>: a small <u>train</u> on a city <u>street</u> with <u>people</u> near by . A black and red small <u>train</u> in shopping area. A group of <u>people</u> near a small railroad <u>train</u> in a mall .

Tags: sign, tree, sidewalk, train, woman, person, trees, street, bus, stairs, store, man, balcony, building, people

<u>Oscar</u>: a red rose and white flowers in a vase . <u>Baseline</u>: a vase filled with red and white flowers .

<u>GT</u>: A red rose in a glass vase on a table beautiful red rose and white flowers are in a vase. The bouquet has one red rose in it.

<u>Tags</u>: leaf, <mark>bouquet</mark>, <mark>flowers</mark>, stem, <mark>table</mark>, <mark>rose</mark>, flower, leaves, vase, plant

Ablation Analysis

 We can observe that the two different modalities are better aligned in the feature space visualization and OSCAR generates more detailed description of images than the baseline

Key Strengths

- We can observe that the two different modalities are better aligned in the feature space visualization and OSCAR generates more detailed description of images than the baseline
- OSCAR is highly parameter-efficient because the use of object tags as anchor points significantly eases the learning of semantic alignments between images and texts. OSCAR is pre-trained in 6.5 million pairs, which is less than 9.6 million pairs used for UNITER pre-training and 9.18 pairs for LXMERT

Key Strengths

- We can observe that the two different modalities are better aligned in the feature space visualization and OSCAR generates more detailed description of images than the baseline
- OSCAR is highly parameter-efficient because the use of object tags as anchor points significantly eases the learning of semantic alignments between images and texts. OSCAR is pre-trained in 6.5 million pairs, which is less than 9.6 million pairs used for UNITER pre-training and 9.18 pairs for LXMERT
- Techniques used in OSCAR for training and fine-tuning are similar to BERT. This makes it easier to come up with ideas to finetune for different V+L tasks. It is also easier to find documentation of BERT since it has good documentation on the internet

 In the Real-world images contain several novel objects unseen in training. Without ground-truth our model may not work well

- In the Real-world images contain several novel objects unseen in training. Without ground-truth our model may not work well
- Collecting the image-caption training pairs can be very expensive process to train our model

Key Weaknesses

- In the Real-world images contain several novel objects unseen in training. Without ground-truth our model may not work well
- Collecting the image-caption training pairs can be very expensive process to train our model
- There is still a lot of overlap between different image regions passed to the model. We can add attention mechanism to the images passed to the model for better accuracy.

Future Work/ Open Research Questions

- Design a model that is able to caption novel/unseen objects while performing VL Tasks
- Train this model while attention on the image region so that we can further minimize ambiguity of the model.