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Stable Diffusion and Imagen
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Diffusion Models
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Diffusion Models

Pure Noise
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We want to learn the reverse Process conditioned on

DDPM the forwarded process. For very small addition in
noise in forward process, the reverse prediction is
similar (also gaussian), our model predicts the
mean of this reverse process
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Figure from Prafulla Dhariwal’s Lecture at MIT



DDPM

We can directly jump to any time t directly

/ from xo in forward process

Noising process (fixed gaussian noise)
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DDPM simplified into training and test terms

Noised X,
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Noised X,

UNET
With L2

Loss :
Network £_(x, t) predicts €
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Class Guided Conditional Generation

e We take the noisy step(x:) generated by the UNET, run it through a classifier and add the
gradient of the classifier out wrt x: and add a scaled version of that to the generation step.
e Hence we “Guide” the model towards correctness
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Class Guided Conditional Generation : Issues

e Training a Classifier on noisy samples is not easy

Background
becomes
saturated
(IMAGEN solves
this)

Scales =1




Conditioned Generation (Stable Diffusion)
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Classifier Free Guidance (Imagen)
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Issues

200
e Operation in the pixel space: the sequence of denoising

autoencoders always work on the high-dimension image 150
pixel space. This is super high for high res images.,

leading to time consuming and GPU intensive training
cycles. (150-1000 of GPU(V-100) days) 50

FID

100

e |t was also observed that performing diffusion
in pixel space leads to imperceptible feature
tuning which is a extra step.

FID vs. V100 days
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V100 days
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Rate (bits/dim)

e Trade-off this extra computation in high-res pixel space for easier training still preserving

image details.




Stable Diffusion
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e Performs Diffusion in the latent space which is 5o [JJ|Semantic Compression |
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Related Work

e Autoencoders, GANS (poor in
generating high resolution images)

e 2 stage training methods: VQGAN

o Step 1:train encoder, decoder, codebook
o STEP2: train transformerin a
autoregressive manner with codebook

e Diffusion Models (DDPM)
e GLIDE : CLIP Guidance

Conditional Image
Generation

Diffusion Models:
GLIDE, Stable
Diffusion, Imagen

GAN Models:
VQGAN, DALL-E,
VQVAE etc.




Autoencoder : Perceptual Image Compression Module

e Image (HXW X 3) —-> Encoder(H/f X W/f X ¢) —--> Decoder (HXW X 3)

e Patch Perceptual Loss + GAN loss

e Regularization: KL on learned latent space like VAE or VQGAN style
codebook learning



Perceptual Loss

Instead of measuring pixelwise distance, both images(real and generated) are
projected to a feature space using a pretrained CNN like VGG-NET and the
distance between the feature space is measured.
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Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image translation with conditional adversarial networks. In CVPR, pages 5967-5976. IEEE Computer Society, 2017.




Patch-GAN aka pix2pix

1x1 16x16 70x70 286x286
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In standard GANs, the discriminator fails to capture high frequency details in image leading
to blurry outputs. For the discriminator to model high frequencies, its restricted to only
patches. This discriminator tries to classify if each NXN patch in an image is real or fake.
Authors run this discriminator convolutionally across the image, averaging all responses to

provide the ultimate output of D.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image translation with conditional adversarial networks. In CVPR, pages 5967-5976. IEEE Computer Society, 2017.



Regularization

e KL to bring the latent space to be close to a prior distribution (Normal

with 0 mean and unit variance).
e Discretization of the latent space by substituting with nearest neighbour

using a codebook.

real/fake
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Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for
high-resolution image synthesis. CoRR, abs/2012.09841, 2020.




Conditioning

e Use a domain specific encoder to encode the conditioning.
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e Cross attention calculated with time conditional UNET layers with Q
coming from the UNET and K,V coming from the encoded conditioning.




Conditioning

e Use a domain specific encoder to encode the conditioning.

e Cross attention calculated with time conditional UNET layers with Q
coming from the UNET and K,V coming from the encoded conditioning.

e The conditional encoder and UNET are jointly optimized.




Conditioning

e Use a domain specific encoder to encode the conditioning.

e Cross attention calculated with time conditional UNET layers with Q
coming from the UNET and K,V coming from the encoded conditioning.

e The conditional encoder and UNET are jointly optimized.

NO TIME
CONDITIONING?




Super Resolution - SR3 and LDM

e The low resolution image is
upsampled to the target res using
bicubic interpolation

e Thenitis concatenated to the
conditioning y in denoising steps.

e LDM Autoencoder downsamples
the high resolution into a latent
space of H/4, W/4
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Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J. Fleet, and
Mohammad Norouzi. Image super-resolution via iterative refinement. CoRR,

abs/2104.07636, 2021.



Metrics

e FID Score: We use a pretrained Inception V3 on Imagenet as an encoder
and calculate a measure of the difference between the real and generated
image's encoding vectors. (lower is better)

e Inception Score: the KL divergence between the marginal distribution and
label distribution when the image is passed through a pretrained
classifier. (higher is better)



Results - Convergence wrt Diffusion

Tractable diffusion in less time
on Imagenet data

Latent space=pixel space Too much compression

FID vs. training progress Inception Score vs. training progress
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Results - Performance vs throughput

Analysis on image metrics with sampling speed. Hyperparameter: compression ratio. LDM
4-5 achieve much better(lower) FID while simultaneously improving throughput.

FID vs sample throughput

FID vs sample throughput
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Results: Unconditional Generation

Outperform all diffusion based generation models. GAN models are worse because of low precision

and recall
CelebA-HQ 256 x 256 FFHQ 256 x 256
Method FID] Prec.T Recallt Method FID | Prec. t Recall
DC-VAE [0] 15.8 - - ImageBART [~ ] 9.57 - -
VQGAN+T. [77] (k=400) 10.2 - - U-Net GAN (+aug) [/7]  10.9 (7.6) - -
PGGAN [7] 8.0 - - UDM [+7] 5.54 - -
LSGM [77] o 1% . = StyleGAN [ 1] 4.16 0.71 0.46
UDM [47] 7.16 - - ProjectedGAN [ 0] 3.08 0.65 0.46
LDM-4 (ours, 500-sT) 511 0.72 0.49 LDM-4 (ours, 200-s) 4.98 0.73 0.50
LSUN-Churches 256 x 256 LSUN-Bedrooms 256 X 256
Method FID| Prec.t Recallt Method FID| Prec.t Recallt
DDPM [“0] 7.89 - - ImageBART [ 1] 5.51 - -
ImageBART [71] 7.32 - - DDPM [“0] 49 - -
PGGAN [9] 6.42 - - UDM [7] 4.57 - -
StyleGAN [+ 1] 421 - - StyleGAN [+ 1] 2.35 0.59 0.48
StyleGAN2 [4] 3.86 - - ADM [ 7] 1.90 0.66 0.51
ProjectedGAN [/¢] 1.59 0.61 0.44 ProjectedGAN [7¢] 1.52 0.61 0.34
LDM-8* (ours, 200-s)  4.02 0.64 0.52 LDM-4 (ours, 200-s) 2.95 0.66 0.48




Results: Conditional Generation (text)

Trained on LAION
- 400M with BERT
Similar
performance as
classifier free
guidance with
lesser parameter
count.

Text-Conditional Image Synthesis

Method FID ,l, IST N; params

CogView' [1 7] 27.10 18.20 4B self-ranking, rejection rate 0.017
LAFITE' [109] 26.94 26.02 75M

GLIDE* [59] 12.24 - 6B 277 DDIM steps, c.f.g. [7] s =3
Make-A-Scene™ [20]  11.84 - 4B c.f.g for AR models [*“] s = 5
LDM-KL-8 2331  20.032033 1.45B 250 DDIM steps
LDM-KL-8-G* 12.63  30.29-+o0.42 1.45B 250 DDIM steps, c.f.g. [17] s =1.5

Test Performance on ImageNet



Results: Conditional Generation on layout images (COCO)

Pretrained for
layouts on
Openlmages and
finetuned on
COCO




Results: Super-Resolution

Method FID | ISt PSNR1 SSIM 1t
Image Regression [77] 15.2 121.1 27.9 0.801

SR3 [72] 52 180.1 26.4 0.762

LDM-4 (ours, 100 steps) 2.87/4.8¢ 166.3 244438 0.69+014
LDM-4 (ours, 50 steps, guiding) 4.41/6.4% 153.7 25.8437  0.74+012
LDM-4 (ours, 100 steps, guiding) ~ 4.41/6.4% 154.1 25.7437  0.73+012
LDM-4 (ours, 100 steps, +15ep.)  2.67 /4.6  169.76+503  24.4138  0.69+014
Pixel-DM (100 steps, +15 ep.) 511/7.1%  163.064467 241433 0.59+012

4X Upscaling on ImageNet, trianed on

Openlmages

bicubic

OOD performance improves if
better degradation is used



Results: Image Inpainting

input result

Inference speedup
of 2.7x because of
LDMs

Figure 11. Qualitative results on object removal with our big, w/
ft inpainting model. For more results, see Fig. 22.

40-50 % masked All samples
Method FID | LPIPS | FID| LPIPS |
LDM-4 (ours, big, w/ ft) 9.39 (0.246+ 0042 1.50 0.137+ 0
LDM-4 (ours, big, w/o ft) 1289  0.257+00¢7 240 0.142+ ogss
LDM-4 (ours, w/ attn) 11.87 0.257+00n 215  0.144+ o4
LDM-4 (ours, w/o attn) 1260  0.259+ 004 237  0.145+ aou
LaMa [#5]! 1231 0243100 223 0.134: 00w
LaMa [©7] 12.0 0.24 221 0.14
CoModGAN [107] 104 0.26 1.82 0.15
RegionWise [57] 21.3 0.27 475 0.15
DeepFill v2 [104] 22.1 0.28 5.20 0.16
EdgeConnect [57] 30.5 0.28 8.37 0.16

SOTA FID performance




Pivot to Imagen

e C(lassifier - Free Guidance : High guidance weights cause image generation
out of the training bounds during test cycle. This leads to unnatural
images. Solution: Dynamic Thresholding




Imagen : Previous Work

e GLIDE : Clip product is used to guide diffusion, but insufficient image fidelity
and image text alignment

e Latent Diffusion: Needs to train an autoencoder as prior

Text
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Imagen : Introduction

e Text conditional image generation
e Uses astrong LLM's encoder as text encoder
e No need of learning a prior for latent space generation.



Imagen : Key Contributions

e Shows that scaling text encoder is more important than scaling image
diffusion model.

e Dynamic Thresholding
e Efficient UNet as underlying image model
e Drawbench : a new evaluation benchmark for text to image



Imagen Architecture Overview

Components:

1. Text Encoder

2. Image Denoiser (UNET)

3. CF Guidance : Static and Dynamic
THresholding



Imagen Architecture Overview

“A Golden Retriever dog wearing a blue

Text checkered beret and red dotted turtleneck”

Al
C O m p O n e n tS : Frozen Text Encoder
Text Embedding
1. Text Encoder _t
Diffusion Model

2. Image Denoiser (UNET)
3. CF Guidance : Static and Dynamic o

THreshol ding Difusion Model
4. Cascaded Diffusion Models

64 x 64 Image

256 x 256 Image

A

Super-Resolution
Diffusion Model

|

1024 x 1024 Image




Imagen - Text Encoder

e Scale of text encoders is VERY important, authors choose T5-XXL Encoder
e Freeze the text encoder weights

1! 1 l l
et T5-Small
l | 25 |~| =——e= T-Large -
0.28 o e - vt T5-XL
: = BT ]
3 0.26 -
: 5
= ; z 15 |- -
O 0241 :J/ Z4--- BERTBase - - - BERT Large TS Small ——— T5 Base |
'/—Tsmge —— TSXL  ——— TSXXL +eeenr cLIP 10 - B
=+ =« = Reference
0 22 / T T T T ! ! ! |
70 1 2 3 4 5 0.22 0.24 0.26 0.28
Training Steps -10° CLIP Score

Training convergence comparison between text encoders for text-to-image generation. (a) Pareto curves comparing various text encoders.




Imagen : Base UNET 64X64

Text encodings Conditioning:

e Pooled Embedding Vector with time encodings added
e C(Cross attention similar to Latent Diffusion Model



Efficient UNET for superresolution

Resnet Block Changes

e Minor resnet changes like
shifting model params from
highres to lowres blocks,
downsampling before conv and
upsampling after convs.

256-> 1024

e UNets(64X64 -> 256X256)
running on crops of 1024X1024
pixel images. No self attention



Efficient UNET for superresolution

Resnet Block Changes

e Minor resnet changes like
shifting model params from
highres to lowres blocks,
downsampling before conv and
upsampling after convs.

256-> 1024
o UNets(64X64 -> 256X256) T
running on crops of 1024X1024 are present
pixel images. No self attention cepenans on



Efficient UNET for superresolution

Previous UBlock

Resnet Block Changes - %JP
e Minor resnet changes like anttt st — S
shifting model params from B " o R

highres to lowres blocks,
downsampling before conv and
upsampling after convs.

256-> 1024
o UNets(64X64 -> 256X256) e e Unet D Block,
running on crops of 1024X1024 are present are present
. . . depending on depending on
pixel images. No self attention ecolution resolution



Thresholding of Generated Images To Avoid Instability

Static: Clip prediction to [-1,1] i.e. in bounds with training data , But leads to
oversaturated images.



Thresholding of Generated Images To Avoid Instability

Static: Clip prediction to [-1,1] i.e. in bounds with training data , But leads to
oversaturated images.

Dynamic: x - > [-s,s] where s threshold decided by a percentile of absolute

pixel values , and if s>1, it is scaled to [-1,1]. Prevent pixel saturation and leads
to photorealism.



Cascaded Diffusion Models

e During training, the low resolution images are gaussian Blurred with a
randomly selected value and then condition the super-resolution model
with this noise to denoise it i.e. superres module is aware of noise
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e During Inference, the augmentation parameter is tuned.



Cascaded Diffusion Models

e During training, the low resolution images are gaussian Blurred with a
randomly selected value and then condition the super-resolution model
with this noise to denoise it i.e. superres module is aware of noise

e During Inference, the augmentation parameter is tuned.

e Advantage 1: Robustness to handle artifacts generated by small scale
Diffusion Models

e Advantage 2: Improves sample quality and generated high fidelity images



DrawBench - A small test set for human evaluation

e (COCO has a limited set of prompts

e Drawbench is a test set of 200 prompts containing 11 categories of
prompts to test if model can render different colors, numbers of objects,
spatial relations, text in the scene, and unusual interactions between
objects.

e The prompts are also complex textually



Training Details

e Parameter Count: 2B parameters for 64X64 image gen + 600M for

256X256 +400M for 1024X1024
e Optimizer : Adam for superres and Adafactor for 64X64
e Classifier Free: Zeroed text encodings
e Training Set: Internal and Unreleased (460M Image-Text pairs) +

Laion(400M pairs)



Results: Text-to-lmage FID on COCO

Dataset: COCO Eval set

SOTA results using FID metric on
Zero Shot

Data on which Imagen
is trained is not
released. Neither is
any alignment of that
with COCO

Table 1: MS-COCO 256 x 256 FID-30K. We use a
guidance weight of 1.35 for our 64 x 64 model, and a
guidance weight of 8.0 for our super-resolution model.

Zero-shot
Model FID-30K FID-30K
AttnGAN [76] 35.49
DM-GAN [83] 32.64
DF-GAN [69] 21.42
DM-GAN -+ CL [78] 20.79
XMC-GAN [81] 9.33
LAFITE [82] 8.12
Make-A-Scene [22] 7.55
DALL-E [53] 17.89
LAFITE [82] 26.94
GLIDE [41] 12.24
DALL-E 2 [54] 10.39
Imagen (Our Work) 7.27




Results: User Study metrics on COCO

e The authors found issues
that FID is not aligned with
image quality.
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Results: User Study metrics on COCO

Table 2: COCO 256 x 256 human evalua-

e The authors found issues tion comparing model outputs and orig-
that FID is not aligned with mal-images;: ‘For the bottam pait-(uo
. . people), we filter out prompts containing
IMmage qua | Ity. one of man, men, woman, women, person,

people, child, adult, adults, boy,

e CLIP score's weakness at boys, girl, givls, Gy, Tady, Tadien,

counting object illustrating someone, toddler, (sport) player,
) ) . workers, spectators.

alignment issues with the

metric. Model Photorealism T Alignment 1
. Original

e Solution: User study to Original  50.0% 91.9 + 0.42

rank photorealistic nature magen (@O0 bh S0
. . No people

and alignment with text. (frigﬁml 50.0% 92.2 4+ 0.54

Imagen 43.9+1.01% 92.1 £0.55




Results: User Study metrics on COCO

Table 2: COCO 256 x 256 human evalua-

e The authors found issues tion comparing model outputs and orig-
that FID is not aligned with inal images. For the bottom part (no
. . people), we filter out prompts containing
IMmage qua | Ity. one of man, men, woman, women, person,

people, child, adult, adults, boy,

e CLIP score's weakness at boys, girl, givls, Gy, Tady, Tadien,

counting object illustrating someone, toddler, (sport) player,
) ) . workers, spectators.
alignment issues with the
metric. Model Photorealism T Alignment 1
. Original
e Solution: User study to Soor at Original  50.0% 91.9 + 0.42
. . oor a
rank photorealistic nature  generating ogen, (PN AAL 0
. . No people
and alignment with text. e Original  50.0% 9224 0.54

Imagen 43.9+1.01% 92.1 £0.55




Results: User Study metrics on DrawBench

D Imagen I:] DALL-E2 D Imagen D GLIDE D Imagen D VQGAN+CLIP D Imagen D Latent Diffusion

100% B =
T = £k
S =

ES | o

50% |- -1 I -1 I N = -
0%
Alignment Fidelity Alignment Fidelity Alignment Fidelity Alignment Fidelity



Ablations

s T5-Small
26 || = T-Large
—— ﬁ-x]_

0.22 0.24 0.26 0.28

CLIP Score

(a) Impact of encoder size.

Text Encoder Size is
Important (Human study
confirms this)

FID-10K

e 300M
25 || == 500M .

20-_._ 2B I

15 -

10 :

024 025 026 027 028 029
CLIP Score

(b) Impact of U-Net size.

Image Encoder Size is not
Important

FID@ 10K

25 H —:- static lhns;mldmg t
= dynamic thresholding
20 -
15
10
0.:36 0.27 0.128 0.129
CLIP Score
(c) Impact of thresholding.

Dynamic Thresholding
importance



Ablations (Cont)

e Noise Conditioning is important for superresolution and shows in CLIP,
FID scores



Ablations (Cont)

e Noise Conditioning is important for superresolution and shows in CLIP,
FID scores

e Efficient UNET causes faster inference and converges faster during
training



Strengths

e Authors find limitations in COCO dataset and introduce a new DrawBench

benchmark set to evaluate text conditional image generation models.
e SOTA FID results on COCO

e |Importance of text encoders.



Weaknesses

e The training data and model is not released (Even with a non commercial
licence)

e Bias concerns due to social and cultural exclusions in generations have
not been handled

e The training parameter count is 3B which is great, but inference cycle

cintainf T5XXL encoding which has 11 B additional parametersi.e. 14B on
inference



Discussion Points

e Extension of this from text guided to image guided can be studied.
e Why can't we learn diffusion in a latent space instead of pixel space



Thank You!



BAK : Stable Diffusion autoencoder training objective

F. Details on Autoencoder Models

We train all our autoencoder models in an adversarial manner following [~"], such that a patch-based discriminator D
is optimized to differentiate original images from reconstructions D(£(z)). To avoid arbitrarily scaled latent spaces, we
regularize the latent 2 to be zero centered and obtain small variance by introducing an regularizing loss term Ly..
We investigate two different regularization methods: (i) a low-weighted Kullback-Leibler-term between ggc(z|z) =
N (z;€,.,E,2) and a standard normal distribution A/(z;0, 1) as in a standard variational autoencoder [, 7], and, (ii) regu-
larizing the latent space with a vector quantization layer by learning a codebook of | Z| different exemplars [*7].
To obtain high-fidelity reconstructions we only use a very small regularization for both scenarios, i.e. we either weight the
KL term by a factor ~ 10~¢ or choose a high codebook dimensionality | Z|.

The full objective to train the autoencoding model (€, D) reads:

Lawocacoter = 150 8% (Lycc(@, D(E(2))) = Laao(D(E(2))) + 108 Dy(@) + Lreg(a: €, D)) @5)

DM Training in Latent Space Note that for training diffusion models on the learned latent space, we again distinguish two
cases when learning p(z) or p(z|y) (Sec. 4.3): (i) For a KL-regularized latent space, we sample z = &,,(z)+&,(z)-€ =: £(z),
where € ~ N(0,1). When rescaling the latent, we estimate the component-wise variance

1
A2 be,hw _ 42
77 behw Z e 2
b,e,h,w

from the first batch in the data, where /i = ;5 32, . 5 ,, 2™ The output of £ is scaled such that the rescaled latent has

unit standard deviation, i.e. z - Z = %2 (ii) For a VQ-regularized latent space, we extract z before the quantization layer
and absorb the quantization operation into the decoder, i.e. it can be interpreted as the first layer of D.



BAK : Stable Diff denoiser UNET and condition model

For the experiments on text-to-image and layout-to-image (Sec. 4.3.1) synthesis, we implement the conditioner 7y as an
unmasked transformer which processes a tokenized version of the input y and produces an output { := 7(y), where ¢ €
RMxd-  More specifically, the transformer is implemented from N transformer blocks consisting of global self-attention
layers, layer-normalization and position-wise MLPs as follows”:

¢ « TokEmb(y) + PosEmb(y) as)
fori=1,..., N:

¢+ LayerNorm(() (19)

{2 < MultiHeadSelfAttention() + ¢ (20)

¢s « LayerNorm((z) @n

€ MLP(Cs) + G2 22)

¢ ¢ LayerNorm(() (23)

@4

With ¢ available, the conditioning is mapped into the UNet via the cross-attention mechanism as depicted in Fig. 3. We
modify the “ablated UNet" [15] architecture and replace the self-attention layer with a shallow (unmasked) transformer
consisting of T blocks with ing layers of (i) self- ion, (ii) a position-wise MLP and (iii) a cross-attention layer;

25

see Tab. 16. Note that without (ii) and (iii), this architecture is equivalent to the “ablated UNet”.

While it would be possible to increase the representational power of 7 by additionally conditioning on the time step £, we
do not pursue this choice as it reduces the speed of inference. We leave a more detailed analysis of this modification to future
‘work.

For the text-to-image model, we rely on a publicly available® tokenizer [99]. The layout-to-image model discretizes the
spatial locations of the bounding boxes and encodes each box as a (1, b, c)-tuple, where I denotes the (discrete) top-left and b
the bottom-right position. Class information is contained in c.

See Tab. 17 for the hyperparameters of 7o and Tab. 13 for those of the UNet for both of the above tasks.

Note that the cl iti model as il in Sec. 4.1 is also implemented via cross-attention, where 7y is a single

learnable embedding layer with a dimensionality of 512, mapping classes y to ¢ & R1*512,




