
CS 6804:

Multimodal Vision

Chris Thomas

Department of Computer Science

Virginia Tech

January 23, 2023

1

Course Updates

2

• Thanks to those who submitted their topic preferences

• Office hours update: Tuesdays 12:00 – 2:00 PM

• Schedule has been updated for next couple weeks

• Please check to see if you are assigned to present as soon as
possible

• Reminder: First paper review due tomorrow, 10:00 PM on Canvas

• Cedric will be presenting VQA

Plan for Today

3

• People from varying backgrounds / familiarity with vision and deep
learning are registered for this course

• Requests to cover some basics in the topic submissions

• Thank you for being honest!

• Adjusting the schedule / topics to ease into the more complex topics to provide
adequate background for everyone

• Today we’ll be going over some basics of computer vision and deep
learning to bring everyone closer

• Plan for today:
• Introduce some basics of machine learning

• Discuss how those concepts translate to deep learning

• Motivate convolutional neural networks (CNNs)

• CNN details

Group Project

4

• Advise you to begin forming your group projects as soon as
possible

• Would a discussion board or something on Canvas help
facilitate this?

• If so, happy to create one to help match you with potential partners

• You might not know the basics yet, but just start thinking
about what ideas you want to tackle:

• Images and audio? Video and text?

• E.g. Retrieving images from text? Generating images from text?

• How to come up with new research ideas?

https://www.slideshare.net/jbhuang/how-to-come-up-with-new-research-ideas-4005840

Vision Basics

5

• Nowadays, computer vision relies on machine learning to reason
about visual content

• Most rely on a type of artificial neural network which we will discuss

• Most ML algorithms all follow the same basic formulation:

• We wish to learn a mapping from input to output: f: x → y

• x is the input (image, text, etc.)

• y is the output {cat, dog}, {1, 6, …}, etc.

• f: this is the prediction function

• Basic example: Predicting whether an e-mail is spam or not

Adapted from Adriana Kovashka

Warm-Up Machine Learning Example

6

• We wish to predict whether an e-mail is spam or not

Figures from Dhruv Batra

Not Spam Spam

Simple Strategy: Counting Word Occurrences

7

This is X This is Y

= 1 оr 0?

Adapted from Dhruv Batra, Fei Sha

C
o
u
n
ts o

f all w
o
rd

s

in
 v

o
cab

u
lary

C
o
u
n
ts o

f all w
o
rd

s

in
 v

o
cab

u
lary

Weigh Counts and Sum to Get Prediction

8Adapted from Dhruv Batra, Fei Sha, Adriana Kovashka

Where do the weights
come from?

Adapted from Dhruv Batra, Fei Sha

This is a linear classifier

Neural Net Inspiration: Neuron cells

• Neurons

• accept information from multiple inputs (dendrites)

• transmit information to other neurons (axons)

• Apply some function to the set of inputs at each node

• If output of function over threshold, neuron “fires”

Text: HKUST, figures: Andrej Karpathy

Biological analog

A biological neuron An artificial neuron

Adapted from Jia-bin Huang, Adriana Kovashka

Biological analog

Hubel and Weisel’s architecture Multi-layer neural network

Adapted from Jia-bin Huang, Adriana Kovashka

Feed-forward networks

• Cascade neurons together

• Output from one layer is the input to the next

• Each layer has its own sets of weights

HKUST, Adriana Kovashka

Feed-forward networks

• Inputs multiplied by initial set of weights

HKUST, Adriana Kovashka

Feed-forward networks

• Intermediate “predictions” computed at first hidden layer

HKUST, Adriana Kovashka

Feed-forward networks

• Intermediate predictions multiplied by second layer of weights

• Predictions are fed forward through the network to classify

HKUST, Adriana Kovashka

Feed-forward networks

• Compute second set of intermediate predictions

HKUST, Adriana Kovashka

Feed-forward networks

• Multiply by final set of weights

HKUST, Adriana Kovashka

Feed-forward networks

• Compute output (e.g. probability of a particular class being present
in the sample)

HKUST, Adriana Kovashka

Deep neural networks

• Lots of hidden layers

• Depth = power (usually)

Figure from http://neuralnetworksanddeeplearning.com/chap5.html

W
ei

g
h

ts
 t

o
 l

ea
rn

!

W
ei

g
h

ts
 t

o
 l

ea
rn

!

W
ei

g
h

ts
 t

o
 l

ea
rn

!

W
ei

g
h

ts
 t

o
 l

ea
rn

!

HKUST, Adriana Kovashka

How do we Learn the Weights?

20

• There is no feasible closed-form solution for the weights

• You can’t directly set up a system A*w = b and solve for w given the
complexity of the network

• Modern networks contain millions (or even billions) of parameters to learn

• Instead, we iteratively find a set of weights that produce the outputs
we want on a set of data used for training

• Let’s consider a basic image classification problem

What Computers “see”

21
Adapted from Amini and Soleimany (MIT)

• An image is a matrix of numbers (e.g. h x w x 3 (for an RGB image))

Classification goal

Adapted from Andrej Karpathy, Adriana Kovashka

Example dataset: CIFAR-10

10 labels

50,000 training images

each image is 32x32x3

10,000 test images.

22

Classification scores

[32x32x3]

array of numbers 0...1

(3072 numbers total)

f(x,W)

image parameters

10 numbers,

indicating class

scores

Andrej Karpathy, Adriana Kovashka

23

Linear classifier

[32x32x3]

array of numbers 0...1

10 numbers,

indicating class

scores

3072x1

10x1 10x3072

parameters, or “weights”

(+b) 10x1

24
Andrej Karpathy, Adriana Kovashka

Linear classifier

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

25
Andrej Karpathy, Adriana Kovashka

Linear classifier

Going forward: Loss function/Optimization

1. Define a loss function

that quantifies our

unhappiness with the

scores across the training

data.

2. Come up with a way of

efficiently finding the

parameters that minimize

the loss function.

(optimization)

TODO:

cat

car

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

26
Andrej Karpathy, Adriana Kovashka

Linear classifier

Suppose: 3 training examples, 3 classes.

With some W the scores are:

cat

car

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

27
Andrej Karpathy, Adriana Kovashka

Linear classifier: Hinge loss

Suppose: 3 training examples, 3 classes.

With some W the scores are:

cat

car

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Hinge loss:

Given an example

where

where

is the image and

is the (integer) label,

and using the shorthand for the

scores vector:

the loss has the form:

Want: syi
>= sj + 1

i.e. sj – syi
+ 1 <= 0

If true, loss is 0

If false, loss is magnitude of violation

28
Andrej Karpathy, Adriana Kovashka

cat

car

frog

3.2

5.1

-1.7

1.3 2.2

4.9 2.5

2.0 -3.1

Losses: 2.9

Linear classifier: Hinge loss

Suppose: 3 training examples, 3 classes.

With some W the scores are:
Hinge loss:

Given an example

where

where

is the image and

is the (integer) label,

and using the shorthand for the

scores vector:

the loss has the form:

= max(0, 5.1 - 3.2 + 1)

+max(0, -1.7 - 3.2 + 1)

= max(0, 2.9) + max(0, -3.9)

= 2.9 + 0

= 2.9

29
Andrej Karpathy, Adriana Kovashka

Linear classifier: Hinge loss

Suppose: 3 training examples, 3 classes.

With some W the scores are:
Hinge loss:

Given an example

where

where

is the image and

is the (integer) label,

and using the shorthand for the

scores vector:

the loss has the form:

= max(0, 1.3 - 4.9 + 1)

+max(0, 2.0 - 4.9 + 1)

= max(0, -2.6) + max(0, -1.9)

= 0 + 0

= 0

cat 3.2

car 5.1

frog -1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Losses: 2.9 0

30
Andrej Karpathy, Adriana Kovashka

Linear classifier: Hinge loss

Suppose: 3 training examples, 3 classes.

With some W the scores are:
Hinge loss:

Given an example

where

where

is the image and

is the (integer) label,

and using the shorthand for the

scores vector:

the loss has the form:

= max(0, 2.2 - (-3.1) + 1)

+max(0, 2.5 - (-3.1) + 1)

= max(0, 5.3 + 1)

+ max(0, 5.6 + 1)

= 6.3 + 6.6

= 12.9

cat

car

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Losses: 2.9 0 12.9

31
Andrej Karpathy, Adriana Kovashka

Linear classifier: Hinge loss

cat

car

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Suppose: 3 training examples, 3 classes.

With some W the scores are:
Hinge loss:

Given an example

where

where

is the image and

is the (integer) label,

and using the shorthand for the

scores vector:

the loss has the form:

and the full training loss is the mean

over all examples in the training data:

L = (2.9 + 0 + 12.9)/3
2.9 0 12.9Losses: = 15.8 / 3 = 5.3

Lecture 3 - 12

32
Andrej Karpathy, Adriana Kovashka

To minimize loss, use gradient descent

• Take small steps in the direction of lower loss at each time step

• Show different training sample(s) at each time step

33
Andrej Karpathy, Adriana Kovashka

To minimize loss, use gradient descent

• Take small steps in the direction of lower loss at each time step

• 𝜂 is the learning rate (controls how big of a step you take)

• is the gradient of the loss with respect to the current weights

34
Andrej Karpathy, Adriana Kovashka

• The green pattern (input) looks more like the

weights (black – on left) than the red pattern

– The green pattern is more correlated with the weights

Correlation =0.57 Correlation =0.82
1 𝑖𝑓Σ 𝑤ixi ≥ 𝑇

𝑦 = {
0 𝑒𝑙𝑠𝑒

The weights look for patterns

Adapted from Bhiksha Raj
50

• Will a NN that recognizes the left image as a flower

also recognize the one on the right as a flower?

in
p
u
t la

ye
r

o
u
tp

u
t
la

ye
r

Bhiksha Raj, Adriana Kovashka

• Need a network that will recognize the flower

regardless of its spatial location in the image

Shortcomings of What We Have Discussed

51

Real-world Images are Challenging

Illumination Object pose Clutter

ViewpointIntra-class

appearance
Occlusions

Kristen Grauman 52

Preserving Spatial Structure

53Adapted from Amini and Soleimany (MIT), Adriana Kovashka

32

3

32x32x3 image

width

height

32

depth

Convolutions: More detail

Andrej Karpathy, Adriana Kovashka

54

32

32

3

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”

Convolutions: More detail

55
Andrej Karpathy, Adriana Kovashka

32

32

3

32x32x3 image

5x5x3 filter

1 number:
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

(i.e. 5*5*3 = 75-dimensional dot product + bias)

Convolutional Layer

56
Andrej Karpathy, Adriana Kovashka

32

32

3

activation map

32x32x3 image
5x5x3 filter

1

28

28

convolve (slide) over all

spatial locations

Convolutional Layer

57
Andrej Karpathy, Adriana Kovashka

Manually Defined Filter Maps

• Effect of convolving manually handcrafted filters on an image

• In a convolutional network, these filters are automatically learned!

• The filter parameters are the weights

58
Andrej Karpathy, Adriana Kovashka

111

111

111

Slide credit: David Lowe (UBC)

],[g 

Example: box filter

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0

Credit: S. Seitz

],[],[],[
,

lnkmflkgnmh
lk

++=

[.,.]h[.,.]f

Image filtering

111

111

111

],[g 

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

Image filtering

111

111

111

],[g 

Credit: S. Seitz

],[],[],[
,

lnkmflkgnmh
lk

++=

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

Image filtering

111

111

111

],[g 

Credit: S. Seitz

],[],[],[
,

lnkmflkgnmh
lk

++=

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

Image filtering

111

111

111

],[g 

Credit: S. Seitz

],[],[],[
,

lnkmflkgnmh
lk

++=

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

Image filtering

111

111

111

],[g 

Credit: S. Seitz

],[],[],[
,

lnkmflkgnmh
lk

++=

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

Image filtering

111

111

111

],[g 

Credit: S. Seitz

?

],[],[],[
,

lnkmflkgnmh
lk

++=

0 10 20 30 30

50

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

Image filtering

111

111

111

],[g 

Credit: S. Seitz

?

],[],[],[
,

lnkmflkgnmh
lk

++=

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

[.,.]h[.,.]f

Image filtering
111

111

111],[g 

Credit: S. Seitz

],[],[],[
,

lnkmflkgnmh
lk

++=

What does it do?

• Replaces each pixel with an

average of its neighborhood

• Achieve smoothing effect

(remove sharp features)
111

111

111

Slide credit: David Lowe (UBC)

],[g 

Box Filter

Smoothing with box filter

Practice with linear filters

000

010

000

Original

?

Source: D. Lowe

Practice with linear filters

000

010

000

Original Filtered

(no change)

Source: D. Lowe

Practice with linear filters

000

100

000

Original

?

Source: D. Lowe

Practice with linear filters

000

100

000

Original Shifted left

By 1 pixel

Source: D. Lowe

Practice with linear filters

Original

111

111

111

000

020

000

- ?

(Note that filter sums to 1)

Source: D. Lowe

Practice with linear filters

Original

111

111

111

000

020

000

-

Sharpening filter

- Accentuates differences with local

average

Source: D. Lowe

Sharpening

Source: D. Lowe

Other filters

-101

-202

-101

Vertical Edge

(absolute value)

Sobel

Other filters

-1-2-1

000

121

Horizontal Edge

(absolute value)

Sobel

32

32

3

activation map

32x32x3 image
5x5x3 filter

1

28

28

convolve (slide) over all

spatial locations

Andrej Karpathy

Convolutional Layer

79

32

32

3

32x32x3 image

5x5x3 filter

activation maps

1

28

28

convolve (slide) over all

spatial locations

Andrej Karpathy

Convolutional Layer

consider a second, green filter

80

32

3 6

28

activation maps

32

28

Convolution Layer

Convolutional Layer

• For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

Andrej Karpathy

81

Convolutional Neural Network

• A convolutional neural network (CNN) is a sequence of convolution
layers, interspersed with activation functions

32

32

3

28

28

6

CONV

e.g. 6

5x5x3

filters

Andrej Karpathy

82

Convolutional Neural Network

32

32

3

CONV

e.g. 6

5x5x3

filters
28

28

6

CONV

e.g. 10

5x5x6

filters

CONV
….

10

24

24

Andrej Karpathy

• A convolutional neural network (CNN) is a sequence of convolution
layers, interspersed with activation functions

83

What is a Convolution?

• Weighted moving sum

Input Feature Activation Map

.

.

.

slide credit: S. Lazebnik

Input Image

Convolution

(Learned)

Non-linearity

Spatial pooling

Normalization

Convolutional Neural Networks

Feature maps

slide credit: S. Lazebnik

Input Image

Convolution

(Learned)

Non-linearity

Spatial pooling

Normalization

Feature maps

Input Feature Map

.

.

.

Convolutional Neural Networks

slide credit: S. Lazebnik

Input Image

Convolution

(Learned)

Non-linearity

Spatial pooling

Normalization

Feature maps

Convolutional Neural Networks

Rectified Linear Unit (ReLU)

slide credit: S. Lazebnik

Input Image

Convolution

(Learned)

Non-linearity

Spatial pooling

Normalization

Feature maps

Max pooling

Convolutional Neural Networks

slide credit: S. Lazebnik

Max-pooling: a non-linear down-sampling

Provide translation invariance

Input Image

Convolution

(Learned)

Non-linearity

Spatial pooling

Normalization

Feature maps

Feature Maps Feature Maps

After Normalization

Convolutional Neural Networks

slide credit: S. Lazebnik

State of The Art? LeNet [LeCun et al. 1998]

Gradient-based learning applied to document
recognition [LeCun, Bottou, Bengio, Haffner 1998] LeNet-1 from 1993

Adapted from Jia-Bin Huang

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

example 5x5 filters
(32 total)

We call the layer convolutional

because it is related to convolution

of two signals:

Element-wise multiplication and sum

of a filter and the signal (image)

one filter =>
one activation map

Convolutions: More detail

Adapted from Andrej Karpathy, Kristen Grauman

Putting it All Together

92

• RELU just means set any negative outputs to 0

• Pool shrinks each activation map by passing a “filter” that just takes
the max of all values at each location

Adapted from Andrej Karpathy

Layer 1

Slide credit: Jia-Bin Huang

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

Layer 2

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

Slide credit: Jia-Bin Huang

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

Layer 3

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

Slide credit: Jia-Bin Huang

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

Layer 4 and 5

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

Slide credit: Jia-Bin Huang

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

Andrej Karpathy

Visualizing the Filters CNNs Learn

97

Case Study: ResNet
[He et al., 2016]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Since deeper usually means better, why not just keep adding more and more

layers?

Q: Look at the train and test curves above. What is atypical about these learning curves?

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung, Adriana Kovashka

Case Study:

ResNet
[He et al., 2016]Since deeper usually means better, why not just keep adding more and more

layers?

56-layer model performs worse on both training and test error

-> The deeper model performs worse, but it’s not caused by overfitting!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung, Adriana Kovashka

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Hypothesis: Deeper models are harder to optimize

Theoretically, the deeper model should perform as well or better than a

shallower model – but in practice this doesn’t happen.

Why?

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung, Adriana Kovashka

Case Study: ResNet
[He et al., 2016]

relu

Solution: Learn a residual function rather than the underlying function directly

X

identity

F(x) + x

F(x)

relu

relu

X
Residual block

X
“Plain” layers

H(x)
H(x) = F(x) + x

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

“Skip connections”

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung, Adriana Kovashka

Case Study: ResNet
[He et al., 2016]

..

.

relu
X

identity

F(x) + x

F(x)

relu

X
Residual block

Full ResNet architecture:

- Stack residual blocks
- Every residual block has

two 3x3 conv layers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung, Adriana Kovashka

[no residuals] [residuals]

[Loss landscape visualization,

Li et al., 2018, on a ResNet]

Case Study: ResNet
[He et al., 2016]

https://arxiv.org/pdf/1712.09913.pdf

DenseNet

• Shorter connections (like ResNet) help

• Why not just connect them all?

Slide credit: Adapted from Jia-Bin Huang

Progress on ImageNet

Qiongyi Zhou, Changde Du, Huiguang He. Exploring the Brain-like Properties of Deep Neural Networks: A Neural Encoding
Perspective. Machine Intelligence Research, vol. 19, no. 5, pp.439-455, 2022.

Image from Jia-Bin Huang

Practical Tips for Using CNNs

105

• If you are going to be using a CNN (or later a multimodal transformer), start
with weights from a pretrained model (unless you really know what you’re
doing)

• Typically ImageNet pretrained

• Usually normalize and resize images before feeding into CNN (and
transformers)

• Note: Use the normalization parameters from train set (should come with model)
➢PyTorch may do this for you automatically, but double check to make sure it is happening

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung, Adriana Kovashka

More Practical Tips for Using CNNs

106

• Use minibatching

• Run multiple images through at once, compute loss and average across all
samples in batch

• Smooths out noise in gradient

• Data augmentation helps prevent overfitting

• Translation

• rotation

• stretching

• shearing,

• lens distortions

• Note: Data augmentations are applied during at training. During test time you
may need

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung, Adriana Kovashka; ; Image: https://github.com/aleju/imgaug

https://github.com/aleju/imgaug

Even More Practical Tips for Using CNNs

107

• Initializing the weights for new layers

• Most of the time you aren’t initializing weights and instead
initializing from a pretrained model

• But if you are adding a new layer or classifier, you need to
initialize the weights from somewhere

• What if I just initialize all weights the same as a constant?

• Usually you initialize the weights randomly

• In practice: Use Xavier initialization with defaults

➢Other options, but stick with defaults unless you know what you’re doing

• Non-linearity activation functions for networks?

• Stick with RELU or LeakyRELU (unless you know what you’re doing)

Adapted from Adriana Kovashka

And Even More Practical Tips for Using CNNs

108

• Use dropout, especially for fully connected layers

• Makes neural networks more robust

➢Subsets of neurons must independently be responsible for
performance

• Regularization

• Prevent overfitting by setting a weight decay in optimizer

• Optimizers

• Can try Adam, SGD with Momentum, RMSProp

• Learning rate – Try 1e-3 to 1e-6

• Batch normalization

• Recenters / scales intermediate layers

• Believed to address internal covariate shift

Image from Jia-Bin Huang

Combining Image + Text (Simple)

109

• It’s common to extract activations from the layers of the network,
flatten them, and use them to represent the image

• These are the image “features”

• Other types of neural networks exist for text, but they operate on the
same basic principles

• Using these networks, we can extract features for both images and text
and combine them into a multimodal model

• One simple way is just concatenate the features and feed into a NN

• Later, we’ll explore more advanced ways of doing this

Figure from Tadas Baltrusaitis, CMU

	Slide 1: CS 6804: Multimodal Vision
	Slide 2: Course Updates
	Slide 3: Plan for Today
	Slide 4: Group Project
	Slide 5: Vision Basics
	Slide 6: Warm-Up Machine Learning Example
	Slide 7: Simple Strategy: Counting Word Occurrences
	Slide 8: Weigh Counts and Sum to Get Prediction
	Slide 9: Neural Net Inspiration: Neuron cells
	Slide 10: Biological analog
	Slide 11: Biological analog
	Slide 12: Feed-forward networks
	Slide 13: Feed-forward networks
	Slide 14: Feed-forward networks
	Slide 15: Feed-forward networks
	Slide 16: Feed-forward networks
	Slide 17: Feed-forward networks
	Slide 18: Feed-forward networks
	Slide 19: Deep neural networks
	Slide 20: How do we Learn the Weights?
	Slide 21: What Computers “See”
	Slide 22: Classification goal
	Slide 23: Classification scores
	Slide 24: Linear classifier
	Slide 25: Linear classifier
	Slide 26: Linear classifier
	Slide 27: Linear classifier
	Slide 28: Linear classifier: Hinge loss
	Slide 29: Linear classifier: Hinge loss
	Slide 30: Linear classifier: Hinge loss
	Slide 31: Linear classifier: Hinge loss
	Slide 32: Linear classifier: Hinge loss
	Slide 33: To minimize loss, use gradient descent
	Slide 34: To minimize loss, use gradient descent
	Slide 50: The weights look for patterns
	Slide 51: Shortcomings of What We Have Discussed
	Slide 52: Real-world Images are Challenging
	Slide 53: Preserving Spatial Structure
	Slide 54: Convolutions: More detail
	Slide 55: Convolutions: More detail
	Slide 56: Convolutional Layer
	Slide 57: Convolutional Layer
	Slide 58: Manually Defined Filter Maps
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70: Practice with linear filters
	Slide 71: Practice with linear filters
	Slide 72: Practice with linear filters
	Slide 73: Practice with linear filters
	Slide 74: Practice with linear filters
	Slide 75: Practice with linear filters
	Slide 76: Sharpening
	Slide 77: Other filters
	Slide 78: Other filters
	Slide 79: Convolutional Layer
	Slide 80: Convolutional Layer
	Slide 81: Convolutional Layer
	Slide 82: Convolutional Neural Network
	Slide 83: Convolutional Neural Network
	Slide 84: What is a Convolution?
	Slide 85: Convolutional Neural Networks
	Slide 86: Convolutional Neural Networks
	Slide 87: Convolutional Neural Networks
	Slide 88: Convolutional Neural Networks
	Slide 89: Convolutional Neural Networks
	Slide 90: State of The Art? LeNet [LeCun et al. 1998]
	Slide 91: one filter => one activation map
	Slide 92: Putting it All Together
	Slide 93: Layer 1
	Slide 94: Layer 2
	Slide 95: Layer 3
	Slide 96: Layer 4 and 5
	Slide 97: Visualizing the Filters CNNs Learn
	Slide 98: Case Study: ResNet [He et al., 2016]
	Slide 99: Case Study: ResNet [He et al., 2016]
	Slide 100
	Slide 101
	Slide 102
	Slide 103: DenseNet
	Slide 104: Progress on ImageNet
	Slide 105: Practical Tips for Using CNNs
	Slide 106: More Practical Tips for Using CNNs
	Slide 107: Even More Practical Tips for Using CNNs
	Slide 108: And Even More Practical Tips for Using CNNs
	Slide 109: Combining Image + Text (Simple)

