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COURSE UPDATES

 Thanks to those who submitted their topic preferences

* Office hours update: Tuesdays 12:00 — 2:00 PM

 Schedule has been updated for next couple weeks

 Please check to see If you are assigned to present as soon as
possible

* Reminder: First paper review due tomorrow, 10:00 PM on Canvas
* Cedric will be presenting VQA




PLAN FOR TODAY

* People from varying backgrounds / familiarity with vision and deep
learning are registered for this course
 Requests to cover some basics in the topic submissions

« Thank you for being honest!
 Adjusting the schedule / topics to ease into the more complex topics to provide
adequate background for everyone

* Today we’ll be going over some basics of computer vision and deep
learning to bring everyone closer

* Plan for today:
* Introduce some basics of machine learning
« Discuss how those concepts translate to deep learning
« Motivate convolutional neural networks (CNNSs)

* CNN detalls



GROUP PROJECT

 Advise you to begin forming your group projects as soon as
possible

* Would a discussion board or something on Canvas help
facilitate this?

* |If so, happy to create one to help match you with potential partners

* You might not know the basics yet, but just start thinking
about what ideas you want to tackle:
* Images and audio? Video and text?
* E.g. Retrieving images from text? Generating images from text?
* How to come up with new research ideas?



https://www.slideshare.net/jbhuang/how-to-come-up-with-new-research-ideas-4005840

VISION BASICS

* Nowadays, computer vision relies on machine learning to reason
about visual content

* Most rely on a type of artificial neural network which we will discuss

* Most ML algorithms all follow the same basic formulation:
* We wish to learn a mapping from input to output: f: X 2> y
* X IS the Input (image, text, etc.)
* y 1s the output {cat, dog}, {1, 6, ...}, etc.
* f: this is the prediction function

* Basic example: Predicting whether an e-mail is spam or not

Adapted from Adriana Kovashka



WARM-UP MACHINE LEARNING EXAMPLE

* We wish to predict whether an e-mail is spam or not

Not Spam Spam

nadia bamba January 19, 2015 5:57 AM
To: undisclosed recipients: ; Hide Details
Reply-To: nadia bamba

From Miss Nadia BamBa,

From Miss Nadia BamBa,

Greeting, Permit me to inform you of my desire of going into business relationship with you. I am

Sebring, Tracy & January 21, 2015 2:53 PM Nadia BamBa the only Daughter of late Mr and Mrs James BamBa, My father was a director of
To: Batra, Dhruv Hide Details cocoa merchant in Abidjan, the economic capital of Ivory Coast before he was poisoned to death by
ECE 4424 proposal his business associates on one of their outing to discus on a business deal. When my mother died

on the 21st October 2002, my father took me very special because i am motherless.

: : . : Before the death of my father in a private hospital here in Abidjan, He secretly called me on his
CUSP has approved ECE 4424 with the following changes: Can you please provide a clean bedside and told me that he had a sum of $6, 8000.000(SIX Million EIGHT HUNDRED THOUSAND),

copy of the proposal with these items addressed? (see below) Dollars) left in a suspense account in a Bank here in Abidjan, that he used my name as his first

Thanks!!! Daughter for the next of kin in deposit of the fund.

Tracy
He also explained to me that it was because of this wealth and some huge amount of money That
his business associates supposed to balance him from the deal they had that he was poisoned by
his business associates, that I should seek for a God fearing foreign partner in a country of my
choice where [ will transfer this money and use it for investment purposes, (such as real estate Or
Hotel management).please i am honourably seeking your assistance in the following ways.

1) To provide a Bank account where this money would be transferred to.

2) To serve as the guardian of this Money since | am a girl of 19 years old.
3)Your private phone number's and your family background’ s that we can know each order more.

Figures from Dhruv Batra 6



SIMPLE STRATEGY: COUNTING WORD OCCURRENCES

This is X ThisisY

nadia bamba
To: undisclosed recipients: ; O
Reply-To: nadia bamba fre.e ]_ DO — 8
From Miss Nadia BamBa, =S S
money 2 < =
From Miss Nadia BamBa, 8 (@)
. . Q =h
Greeting, Permit me to inform you of my desire of going i . . O o
Nadia BamBa the only Daughter of late Mr and Mrs Jame cC =
cocoa merchant in Abidjan, the economic capital of Ivory account 2 9_3 E
his business associates on one of their outing to discus ¢ -
on the 21st October 2002, my father took me very specic \ . . ) < 2
. . o
Before the death of my father in a private hospital here il wm
bedside and told me that he had a sum of $6, 8000.000(S
Dollars) left in a suspense account in a Bank here in Abic
Daughter for the next of kin in deposit of the fund.
O
free 1 \ S
Sebring, Tracy & > =S
To: Batra, Dhruv mﬂney 1 < —+
ECE 4424 proposal (@) g
| | : : S =
CUSP has approved ECE 4424 with the following changes: Can* o O o
copy of the proposal with these items addressed? (see below) cC =
Thanks!! account 2 =
Tracy -3 E
< O
- - =
\ : : ) =
- - U)

Adapted from Dhruv Batra, Fei Sha 7



WEIGH COUNTS AND SUM TO GET PREDICTION

100 x 0.2
2x0.3

nadia bamba

To: undisclosed recipients: ;
Reply-To: nadia bamba
From Miss Nadia BamBa,

2x0.3

From Miss Nadia BamBa,

Greeting, Permit me to inform you of \ - )
Nadia BamBa the only Daughter of |z -

cocoa merchant in Abidjan, the econ

his business associates on one of th

on the 21st October 2002, my fathet

Before the death of my father in a p
bedside and told me that he had a st

Dollars) left in a suspense account ir
Daughter for the next of kin in depos

[ free 100 \
money 2

account 2

This is a linear classifier

Adapted from Dhruv Batra, Fei Sha
Adapted from Dhruv Batra, Fei Sha, Adriana Kovashka 8



NEURAL NET INSPIRATION: NEURON CELLS

* Neurons
* accept information from multiple inputs (dendrites)
* transmit information to other neurons (axons)

« Apply some function to the set of inputs at each node

* If output of function over threshold, neuron “fires”

: : Z( wo
impulses carried ol s
toward cell body axon from a neuron
branches . WoTo
dendrites (Y of axon
| P - @ f (Z w;T; + b)
# axon :
nucleus >terminals e > Zwimi +b|f »
: output axon
impulses carried : activation
away from cell body Wo Lo function

Text: HKUST, figures: Andrej Karpathy



BIOLOGICAL ANALOG

Input
Weights

Output: o(w-x + b)

Sigmoid function:

a(l)= -~
l+e

A biological neuron An artificial neuron

Adapted from Jia-bin Huang, Adriana Kovashka



BIOLOGICAL ANALOG

Hubel & Weisel featural hierarchy

topographical mapping ‘
hyrer—complex @ high level

]
@ mid level
O

cell
complex cells

simple cells

O low level

Hubel and Weisel’s architecture

Adapted from Jia-bin Huang, Adriana Kovashka

output layer

hidden layer 1 hidden layer 2 hidden layer 3

input layer

Multi-layer neural network




FEED-FORWARD NETWORKS

« Cascade neurons together
* QOutput from one layer Is the input to the next
 Each layer has its own sets of weights

HKUST, Adriana Kovashka



FEED-FORWARD NETWORKS

 Inputs multiplied by initial set of weights

HKUST, Adriana Kovashka



FEED-FORWARD NETWORKS

* Intermediate “predictions” computed at first hidden layer

Lo /
i S
Lp f

HKUST, Adriana Kovashka



FEED-FORWARD NETWORKS

 Intermediate predictions multiplied by second layer of weights
 Predictions are fed forward through the network to classify

s Es

HKUST, Adriana Kovashka



FEED-FORWARD NETWORKS

« Compute second set of intermediate predictions

"0 v v
i v v

HKUST, Adriana Kovashka



FEED-FORWARD NETWORKS

« Multiply by final set of weights

"0 v v
i v v

HKUST, Adriana Kovashka



FEED-FORWARD NETWORKS

« Compute output (e.g. probability of a particular class being present
In the sample)

"0 v v
i v v v

HKUST, Adriana Kovashka



DEEP NEURAL NETWORKS

« Lots of hidden layers
* Depth = power (usually)

hidden layer 1 hidden layver 2 hidden layer 3

input layer

HKUST, Adriana Kovashka Figure from http://neuralnetworksanddeeplearning.com/chap5.html



HOW DO WE LEARN THE WEIGHTS?

* There iIs no feasible closed-form solution for the weights

* You can’t directly set up a system A*w = b and solve for w given the
complexity of the network

* Modern networks contain millions (or even billions) of parameters to learn

* Instead, we Iiteratively find a set of weights that produce the outputs
we want on a set of data used for training

* Let’s consider a basic image classification problem

20



WHAT COMPUTERS “SEE”

* An image Is a matrix of numbers (e.g. h x w x 3 (for an

23 1 1 Im 2

2 24 20 M I

Adapted from Amini and Soleimany (MIT)
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CLASSIFICATION GOAL

Sl ﬁ . . % v . . . = - E())(?gl]o%lli dataset: CIFAR-10

automobile E. ?- h. 50,000 training images
e — B 7 -- each image is 32x32x3
" ﬁ;‘\ ' 10,000 test images.

cat SRl LB .

aeer [P E S T KRS

dog Dl RS [ e WA

ros i I N 1 O K L B

norse [l M 8 e ¥ [ I 1 T TR

o B il e PE A

tuck o T M 0 o o [l A [

Adapted from Andrej Karpathy, Adriana Kovashka 52



CLASSIFICATION SCORES

flz,W) =Wz
f(x,W) 10 numbers,
Indicating class
— scores

[32x 32X 3]
array of numbers 0...1
(3072 numbers total)

Andrej Karpathy, Adriana Kovashka

23



LINEAR CLASSIFIER

Fz, W) =[ 3071 [(#)] 1061

| 10x1 10x3072
\ 10 numbers,
l Indicating class
scores

[32Xx 32X 3]
array of numbers 0...1

parameters, or “weights”

Andrej Karpathy, Adriana Kovashka

24



LINEAR CLASSIFIER

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

stretch pixels into single column

02 |-05( 01| 20 56 i -96.8 | cat score

15 | 1.3 | 21| 00 | 231 | 4| 32 | .| 437.9 | gogscore

0 [025]| 02 | -0.3 -1.2 ;
input image 24 61.95 ship score

25
Andrej Karpathy, Adriana Kovashka



LINEAR CLASSIFIER

Going forward: Loss function/Optimization

TODO:

1. Define aloss function
that quantifies our
unhappiness with the
scores across the training
data.

cat 3.2 1.3
2. Come up with a way of
car
5.1 49 efficiently finding the

frog 1.7 20 3.1 parameters that minimize

the loss function.
(optimization)

Andrej Karpathy, Adriana Kovashka

26



LINEAR CLASSIFIER

Suppose: 3 training examples, 3 classes.
With some W the scores f(z,W) = Wz are:

cat 3.2 1.3 2.2
car 5.1 4.9 2.5
frog -1.7 2.0 -3.1

Andrej Karpathy, Adriana Kovashka

27



LINEAR CLASSIFIER: HINGE LOSS

Suppose: 3 training examples, 3 classes.
With some W the scores f(z,W) = Wz are:

cat 1.3 2.2
car 4.9 2.5
frog 2.0 -3.1

Andrej Karpathy, Adriana Kovashka

Hinge loss:

Given an example (CUi, yz')
where g, is the image and
where Yi Is the (integer) label,
and using the shorthand for the
scores vector: s = f(x;, W)

the loss has the form:

Want: Syi >= Sj + 1
e Sj— S, + 1<=0

If true, loss is O
If false, loss is magnitude of violation

28



LINEAR CLASSIFIER: HINGE LOSS

Suppose: 3 training examples, 3 classes.
With some W the scores f(z, W) = Wz are:

Hinge loss:

Given an example (CUi, yz')
where g, is the image and
where Yi Is the (integer) label,

and using the shorthand for the
scores vector: s = f(x;, W)

the loss has the form:

cat

car 4.9 2.5
frog 2.0 -3.1
Losses:

Andrej Karpathy, Adriana Kovashka

=max(0,5.1-3.2+1)
+max(0, -1.7-3.2+1)

= max(0, 2.9) + max(0, -3.9)

=29+0

=2.9

29



LINEAR CLASSIFIER: HINGE LOSS

Suppose: 3 training examples, 3 classes.
With some W the scores f(z, W) = Wz are:

cat 3.2
car 5.1 4.9 2.5
frog —17 2.0 '3.1

Hinge loss:

Given an example (CUi, yz')
where g, is the image and
where Yi Is the (integer) label,

and using the shorthand for the
scores vector: s = f(x;, W)

the loss has the form:

Losses: 2.9 0

Andrej Karpathy, Adriana Kovashka

=max(0, 1.3-4.9+1)
+max(0,2.0-4.9+1)

= max(0, -2.6) + max(0, -1.9)

=0+0

=0




LINEAR CLASSIFIER: HINGE LOSS

Suppose: 3 training examples, 3 classes.
With some W the scores f(z, W) = Wz are:

cat 3.2 1.3
car 5.1 4.9
frog -1.7 20 | -3.1

Hinge loss:

Given an example (CUi, yz')
where g, is the image and
where Yi Is the (integer) label,

and using the shorthand for the
scores vector: s = f(x;, W)

the loss has the form:

Losses: 2.9 0 12.9

Andrej Karpathy, Adriana Kovashka

=max(0, 2.2 - (-3.1) + 1)
+max(0, 2.5-(-3.1) + 1)
= max(0, 5.3+ 1)
+ max(0, 5.6 + 1)
=6.3+6.6
=12.9




LINEAR CLASSIFIER: HINGE LOSS

Suppose: 3 training examples, 3 classes.
With some W the scores f(z,W) = Wz are:

cat 3.2 1.3
car 5.1 4.9
frog -1.7 2.0

2.2
2.5
-3.1

Losses: 2.9 0

Andrej Karpathy, Adriana Kovashka

12.9

Hinge loss:

Given an example (CUi, yz')
where g, is the image and
where Yi Is the (integer) label,

and using the shorthand for the
scores vector: s = f(x;, W)

the loss has the form:
Ly = Zj#yi max(0, s; — sy, + 1)

and the full training loss is the mean
over all examples in the training data:

N
L= % Zizl Li

L=(2.9 + 0+ 12.9)/3
=158/3=5.3

32



TO MINIMIZE LOSS, USE GRADIENT DESCENT

 Take small steps in the direction of lower loss at each time step
« Show different training sample(s) at each time step

33
Andrej Karpathy, Adriana Kovashka



TO MINIMIZE LOSS, USE GRADIENT DESCENT

» Take small steps in the direction of lower loss at each time step
* n is the learning rate (controls how big of a step you take)
« VE(w'7) is the gradient of the loss with respect to the current weights

34
Andrej Karpathy, Adriana Kovashka



THE WEIGHTS LOOK FOR PATTERNS

- - ~
1ifS wix; 2T Correlation =0.57 Correlation =0.82 ’

0O else

y=A

* The green pattern (input) looks more like the
weights (black — on left) than the red pattern

— The green pattern is more correlated with the weights

Adapted from Bhiksha Raj

50



SHORTCOMINGS OF WHAT WE HAVE DISCUSSED

1afe| 1ndul

1ake| Indino

« Will a NN that recognizes the left image as a flower
also recognize the one on the right as a flower?

* Need a network that will recognize the flower
regardless of its spatial location in the image

51
Bhiksha Raj, Adriana Kovashka



REAL-WORLD IMAGES ARE CHALLENGING

Occlusions Intra-class V'iewpoint‘
appearance

Kristen Grauman

52



PRESERVING SPATIAL STRUCTURE

00000
000000 ¢'0ee0eee
0000000000000
L P D o o ol e e e e, el el e
OO OO

000060 (L)
99090080050y

Input: 2D image.
Array of pixel values

Idea: connect patches of input
to neurons in hidden layer.
Neuron connected to region of

> =< ’
ecaecseees
Y > \"‘

3 S
qp@@pqmmpgﬁugx\
00006 C'a'a'C a0 s
00000000 vs a0
Dot b o e D b P P Py Ay
0000000000000,
L > 3k 3l o o 3l 5l e el el o >
0000000000 eee
Patata bt oot
000000000 eeeee
P P e e e e e e e e, el el >
000000000 eeeee
0000000000000
= = > > L el e el e el e >
00 0 000'e

eX)
0000’0

Adapted from Amini and Soleimany (MIT), Adriana Kovashka



CONVOLUTIONS: MORE DETAIL

32x32x3 image

32 height

3 depth

Andrej Karpathy, Adriana Kovashka

54



CONVOLUTIONS: MORE DETAIL

32x32x3 image

5x5x3 filter
32 £/
Il Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

32

55

Andrej Karpathy, Adriana Kovashka



CONVOLUTIONAL LAYER

__— 32x32x3 Image

5x5x3 filter w
=
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

3 wiz+b

~~ 1number:

Andrej Karpathy, Adriana Kovashka

56



CONVOLUTIONAL LAYER

32

=

32

Andrej Karpathy, Adriana Kovashka

32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation map

/
Z

1

28

57



MANUALLY DEFINED FILTER MAPS

« Effect of convolving manually handcrafted filters on an image

* In a convolutional network, these filters are automatically learned!
* The filter parameters are the weights

Original Edge Detect “Strong” Edge

Detect

58
Andrej Karpathy, Adriana Kovashka



Example: box filter

1| 1|1
1
— 1] 1]1
9

1| 1|1

Slide credit: David Lowe (UBC)



IMAGE FILTERING )
ol 130

f[.,.] ., ]

h[m,n] = > g[k,1] f[m+k,n+1]

Credit: S. Seitz



IMAGE FILTERING )
ol 130

f[.,.] ., ]

h[m,n] = > g[k,1] f[m+k,n+1]

Credit: S. Seitz



IMAGE FILTERING )
ol 130

f[.,.] ., ]

h[m,n] = > g[k,1] f[m+k,n+1]

Credit: S. Seitz



IMAGE FILTERING )
ol 130

f[.,.] ., ]

h[m,n] = > g[k,1] f[m+k,n+1]

Credit: S. Seitz



IMAGE FILTERING L 10E
g " 5 111

f[.,.] ., ]

0 10 20 30 “ 30

h[m,n] = > g[k,1] f[m+k,n+1]

Credit: S. Seitz



IMAGE FILTERING

g[ 1'] é

f[.,.] ., ]

30

30

h[m,n] = > g[k,1] f[m+k,n+1]

Credit: S. Seitz



IMAGE FILTERING

g[ 1'] é

f[.,.] ., ]

30

30

50

h[m,n] = > g[k,1] f[m+k,n+1]

Credit: S. Seitz



IMAGE FILTERING . .71 @

f[.,.]

h[m,n] =" g[k,I] f[m+k,n+I]

Credit: S. Seitz



BOX FILTER

What does it do?

» Replaces each pixel with an 111 (1
average of its neighborhood 1

— 11|11

 Achieve smoothing effect 9 1 |1 | 1

(remove sharp features)

Slide credit: David Lowe (UBC)



SMOOTHING WITH BOX FILTER




PRACTICE WITH LINEAR FILTERS

0|0]0 0
0|1]0 e
0|0]0

Original

Source: D. Lowe



PRACTICE WITH LINEAR FILTERS

Original Filtered
(no change)

Source: D. Lowe



PRACTICE WITH LINEAR FILTERS

0|0]0 0
0|01 e
0|0]0

Original

Source: D. Lowe



PRACTICE WITH LINEAR FILTERS

Original Shifted left
By 1 pixel

Source: D. Lowe



PRACTICE WITH LINEAR FILTERS

0 1 111
210 mm |71 (11 ‘)
®) Y

0 0 111

(Note that filter sums to 1)

Original

Source: D. Lowe



PRACTICE WITH LINEAR FILTERS

0 1 1111

2|0 = 11|11
9

0 0 1111

Original

Sharpening filter
- Accentuates differences with local
average

Source: D. Lowe



SHARPENING

before after

Source: D. Lowe



Vertical Edge
(absolute value)



OTHER FILTERS

Horizontal Edge
(absolute value)



CONVOLUTIONAL LAYER

32

=

32

Andrej Karpathy

32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation map

/
Z

1

28

79



CONVOLUTIONAL LAYER

consider a second, green filter

— 32x32x3 image activation maps

y V 5x5x3 filter %/ 28
=0

convolve (slide) over all

spatial locations /

32 / 28

80
Andrej Karpathy



CONVOLUTIONAL LAYER

* For example, 1f we had 6 5x5 filters, we’ll get 6 separate activation maps:

activation maps

27'

ANNN]

32

28

Convolution Layer

/
32 WO 28

3 6

We stack these up to get a “new image” of size 28x28x6!

81
Andrej Karpathy



CONVOLUTIONAL NEURAL NETWORK

* A convolutional neural network (CNN) is a sequence of convolution
layers, interspersed with activation functions

32 28

CONV
e.g. 6
5x5x3

filters
32 28

Andrej Karpathy



CONVOLUTIONAL NEURAL NETWORK

* A convolutional neural network (CNN) is a sequence of convolution
layers, interspersed with activation functions

32 28 24
CONV CONV CONV
e.g. 6 e.g. 10
5x5x3 5x5x6
filters filters
32 28 24

Andrej Karpathy



WHAT IS A CONVOLUTION?

* \Weighted moving sum

slide credit: S. Lazebnik



CONVOLUTIONAL NEURAL NETWORKS

i

[ Feature maps }

-

{ Normalization J

-

[ Spatial pooling }

-

[ Non-linearity }

Convolution
(Learned)

[ InpUt Image } slide credit: S. Lazebnik

-




CONVOLUTIONAL NEURAL NETWORKS

i

[ Feature maps }

-

{ Normalization }

-

[ Spatial pooling }

-

[ Non-linearity }

Convolution
(Learned)
{} Featur Map

[ Inpm Image 1 slide credit: S. Lazebnik
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T
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CONVOLUTIONAL NEURAL NETWORKS

i

[ Feature maps }

-

_ Normalization | Rectified Linear Unit (ReLU)

-

[ Spatial pooling }

Non-linearity

Convolution
(Learned)

[ InpUt Image } slide credit: S. Lazebnik

$Il>




CONVOLUTIONAL NEURAL NETWORKS

i

[ Feature maps }

Max pooling

[ Non-linearity }

-

el Max-pooling: a non-linear down-sampling
(Learned)
{} Provide translation invariance

[ Inpm Image 1 slide credit: S. Lazebnik




CONVOLUTIONAL NEURAL NETWORKS

i

[ Feature maps }

1

1q|I‘

=
=== ] . LTI,

[ Spatial pooling } Feature Maps | Feature Maps

{} After Normalization

[ Non-linearity 1

Convolution
(Learned)

[ InpUt Image 1 slide credit: S. Lazebnik




STATE OF THE ART? LENET [LECUN ET AL. 1998])

Adapted from Jia-Bin Huang
C3: f. maps 16@10x10
INPUT C1: feature maps S4: f. maps 16@5x5

28x28

32x32 6@ S2: f. maps C5: la

- L : layer .

6@14x14 120 264 layer 01loJTPUT

Full conﬂection Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

Gradient-based learning applied to document
recognition [LeCun, Bottou, Bengio, Haffner 1998] LeNet-1 from 1993



http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

CONVOLUTIONS: MORE DETAIL

SRCINEEENNCZITAFRENESESASETISNEREERG

one filter => :
one activation map example 5x5 filters

(32 total)

Activations:

We call the layer convolutional
because it is related to convolution
of two signals:

ko k
Gli,jl= > > Hlu,v]F[i+u,j+v]

u=—kv=-—k

Element-wise multiplication and sum
of afilter and the signal (image)

Adapted from Andrej Karpathy, Kristen Grauman



PUTTING IT ALL TOGETHER

* RELU just means set any negative outputs to 0

* Pool shrinks each activation map by passing a “filter” that just takes
the max of all values at each location

RELU RELU ELU RELU RELU RELU
CONV [CONV CONVlCONVl CONVlCONVl

-

!

W 3 \;ﬁf

i
|

k]

[T

=
|
-
i
=
=

A EEERTVE RN

O T T ] ~—
AR A —

Adapted from Andrej Karpathy
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LAYER 1

Slide credit: Jia-Bin Huang
Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]



http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

LAYER 2

Layer 2

Slide credit: Jia-Bin Huang
Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]



http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

LAYER 3

Slide credit: Jia-Bin Huang
Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]



http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

Layer 4
Slide credit: Jia-Bin Huang

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]



http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

VISUALIZING THE FILTERS CNNS LEARN

Low-Level| |Mid-Level| |[High-Level|] | Trainable
Feature Feature Feature Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

97
Andrej Karpathy



CASE STUDY: RESNET
[He et al., 2016]

Since deeper usually means better, why not just keep adding more and more
layers?

56-layer
56-layer

oTl o W ald
¢U“('l Vel

Training error
Test error

20-layer

lterations lterations

Q: Look at the train and test curves above. What is atypical about these learning curves?

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung, Adriana Kovashka



CASE STUDY:
RESNET

Since de@'ﬁ%ﬁ}s@a’llgme@ns better, why not just keep adding more and more
layers?

56-layer
56-layer

IoTe ~\ fy b
QI\;‘"('I Vel

Training error
Test error

20-layer

lterations lterations

56-layer model performs worse on both training and test error
-> The deeper model performs worse, but it's not caused by overfitting!

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung, Adriana Kovashka



CASE STUDY: RESNET
[He et al., 2016]
Hypothesis: Deeper models are harder to optimize

Theoretically, the deeper model should perform as well or better than a
shallower model — but in practice this doesn’t happen.

Why?

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung, Adriana Kovashka



CASE STUDY: RESNET
[He et al., 2016]
Solution: Learn a residual function rather than the underlying function directly

+ HX) = F(X) +x ~ T relu
H(X) F(x) +x Qs S
Skip connections
X
F
relu ® relu identity
X X
“Plain” layers Residual block

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung, Adriana Kovashka



CASE STUDY: RESNET
[He et al., 2016]

Full ResNet architecture:
- Stack residual blocks
- Every residual block has

two 3x3 conv layers

T relu

F(X) + X

3x3 conv

F(x) relu

3x3 conv

X
Residual block

[no residuals] [residuals]

[Loss landscape visualization,
Li et al., 2018, on a ResNet]

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung, Adriana Kovashka

X
identity

oftrmax

@,
3x3 conv, 512

O
|___3x3conv, 512 |
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3x3 cony, 512, /2

Q
O

3x3 conv, 123

3x3 conv, 128, /2



https://arxiv.org/pdf/1712.09913.pdf
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PROGRESS ON IMAGENET
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Qiongyi Zhou, Changde Du, Huiguang He. Exploring the Brain-like Properties of Deep Neural Networks: A Neural Encoding
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PRACTICAL TIPS FOR USING CNNS

* If you are going to be using a CNN (or later a multimodal transformer), start
with weights from a pretrained model (unless you really know what you’re
doing)

 Typically ImageNet pretrained

 Usually normalize and resize images before feeding into CNN (and

transformers)
original data zero-centered data normalized data
J : 3 A -
X -= np.mean(X, axis = 0) X /= np.std(X, axis = 0)

 Note: Use the normalization parameters from train set (should come with model)
» PyTorch may do this for you automatically, but double check to make sure it is happening

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung, Adriana Kovashka 105



MORE PRACTICAL TIPS FOR USING CNNS

 Use minibatching

« Run multiple images through at once, compute loss and average across all
samples in batch

« Smooths out noise in gradient

- Data augmentation helps prevent overfitting
* Translation
* rotation
» stretching
* shearing,
* lens distortions

* Note: Data augmentations are applied during at training. During test time you
may need

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung, Adriana Kovashka; ; Image: https://github.com/aleju/imgaug 106



https://github.com/aleju/imgaug

EVEN MORE PRACTICAL TIPS FOR USING CNNS

* Initializing the weights for new layers

* Most of the time you aren’t initializing weights and instead
Initializing from a pretrained model

But if you are adding a new layer or classifier, you need to
Initialize the weights from somewhere

What if | just initialize all weights the same as a constant?
Usually you initialize the weights randomly

In practice: Use Xavier initialization with defaults
» Other options, but stick with defaults unless you know what you’re doing

 Non-linearity activation functions for networks?
» Stick with RELU or LeakyRELU (unless you know what you’re doing)

Adapted from Adriana Kovashka 107



AND EVEN MORE PRACTICAL TIPS FOR USING CNNS

 Use dropout, especially for fully connected layers

* Makes neural networks more robust

» Subsets of neurons must independently be responsible for
performance

 Regularization
* Prevent overfitting by setting a weight decay in optimizer

* Optimizers
 Can try Adam, SGD with Momentum, RMSProp
 Learning rate — Try 1le-3 to 1le-6

« Batch normalization
 Recenters / scales intermediate layers
* Believed to address internal covariate shift

Image from Jia-Bin Huang 108



COMBINING IMAGE + TEXT (SIMPLE)

* It’s common to extract activations from the layers of the network,
flatten them, and use them to represent the image

* These are the 1mage “features”

* Other types of neural networks exist for text, but they operate on the

same basic principles

* Using these networks, we can extract features for both images and text
and combine them into a multimodal model

* One simple way Is just concatenate the features and feed into a NN

* Later, we’ll explore more advanced ways of doing this

Modality 1 s

Modality 2 )

Figure from Tadas Baltrusaitis, CMU

Classifier
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