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Course Updates
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• Thanks to those who submitted their topic preferences

• Office hours update: Tuesdays 12:00 – 2:00 PM

• Schedule has been updated for next couple weeks

• Please check to see if you are assigned to present as soon as 
possible 

• Reminder: First paper review due tomorrow, 10:00 PM on Canvas

• Cedric will be presenting VQA 



Plan for Today
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• People from varying backgrounds / familiarity with vision and deep 
learning are registered for this course

• Requests to cover some basics in the topic submissions

• Thank you for being honest!

• Adjusting the schedule / topics to ease into the more complex topics to provide 
adequate background for everyone

• Today we’ll be going over some basics of computer vision and deep 
learning to bring everyone closer 

• Plan for today:
• Introduce some basics of machine learning

• Discuss how those concepts translate to deep learning

• Motivate convolutional neural networks (CNNs)

• CNN details



Group Project
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• Advise you to begin forming your group projects as soon as 
possible

• Would a discussion board or something on Canvas help 
facilitate this?

• If so, happy to create one to help match you with potential partners

• You might not know the basics yet, but just start thinking 
about what ideas you want to tackle:

• Images and audio? Video and text?

• E.g. Retrieving images from text? Generating images from text?

• How to come up with new research ideas?

https://www.slideshare.net/jbhuang/how-to-come-up-with-new-research-ideas-4005840


Vision Basics
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• Nowadays, computer vision relies on machine learning to reason 
about visual content

• Most rely on a type of artificial neural network which we will discuss

• Most ML algorithms all follow the same basic formulation:

• We wish to learn a mapping from input to output: f: x → y

• x is the input (image, text, etc.)

• y is the output {cat, dog}, {1, 6, …}, etc.

• f: this is the prediction function 

• Basic example: Predicting whether an e-mail is spam or not

Adapted from Adriana Kovashka



Warm-Up Machine Learning Example
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• We wish to predict whether an e-mail is spam or not

Figures from Dhruv Batra

Not Spam Spam



Simple Strategy: Counting Word Occurrences
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This is X This is Y

= 1 оr 0? 

Adapted from Dhruv Batra, Fei Sha
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Weigh Counts and Sum to Get Prediction

8Adapted from Dhruv Batra, Fei Sha, Adriana Kovashka

Where do the weights 
come from?

Adapted from Dhruv Batra, Fei Sha

This is a linear classifier



Neural Net Inspiration: Neuron cells

• Neurons

• accept information from multiple inputs (dendrites)

• transmit information to other neurons (axons)

• Apply some function to the set of inputs at each node

• If output of function over threshold, neuron “fires”

Text: HKUST, figures: Andrej Karpathy



Biological analog

A biological neuron An artificial neuron

Adapted from Jia-bin Huang, Adriana Kovashka



Biological analog

Hubel and Weisel’s architecture Multi-layer neural network

Adapted from Jia-bin Huang, Adriana Kovashka



Feed-forward networks

• Cascade neurons together

• Output from one layer is the input to the next

• Each layer has its own sets of weights

HKUST, Adriana Kovashka



Feed-forward networks

• Inputs multiplied by initial set of weights

HKUST, Adriana Kovashka



Feed-forward networks

• Intermediate “predictions” computed at first hidden layer

HKUST, Adriana Kovashka



Feed-forward networks

• Intermediate predictions multiplied by second layer of weights

• Predictions are fed forward through the network to classify

HKUST, Adriana Kovashka



Feed-forward networks

• Compute second set of intermediate predictions

HKUST, Adriana Kovashka



Feed-forward networks

• Multiply by final set of weights

HKUST, Adriana Kovashka



Feed-forward networks

• Compute output (e.g. probability of a particular class being present 
in the sample)

HKUST, Adriana Kovashka



Deep neural networks

• Lots of hidden layers

• Depth = power (usually)

Figure from http://neuralnetworksanddeeplearning.com/chap5.html 
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How do we Learn the Weights?
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• There is no feasible closed-form solution for the weights

• You can’t directly set up a system A*w = b and solve for w given the 
complexity of the network

• Modern networks contain millions (or even billions) of parameters to learn

• Instead, we iteratively find a set of weights that produce the outputs 
we want on a set of data used for training

• Let’s consider a basic image classification problem



What Computers “see”

21
Adapted from Amini and Soleimany (MIT)

• An image is a matrix of numbers (e.g. h x w x 3 (for an RGB image))



Classification goal

Adapted from Andrej Karpathy, Adriana Kovashka

Example dataset: CIFAR-10  

10 labels

50,000 training images  

each image is 32x32x3

10,000 test images.

22



Classification scores

[32x32x3]

array of numbers 0...1  

(3072 numbers total)

f(x,W)

image parameters

10 numbers,  

indicating class  

scores

Andrej Karpathy, Adriana Kovashka
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Linear classifier 

[32x32x3]

array of numbers 0...1

10 numbers,  

indicating class  

scores

3072x1

10x1 10x3072

parameters, or “weights”

(+b) 10x1

24
Andrej Karpathy, Adriana Kovashka



Linear classifier 

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

25
Andrej Karpathy, Adriana Kovashka



Linear classifier 

Going forward: Loss function/Optimization

1. Define a loss function  

that quantifies our  

unhappiness with the  

scores across the training  

data.

2. Come up with a way of  

efficiently finding the  

parameters that minimize  

the loss function.  

(optimization)

TODO:

cat

car

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

26
Andrej Karpathy, Adriana Kovashka



Linear classifier 

Suppose: 3 training examples, 3 classes.  

With some W the scores are:

cat

car

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

27
Andrej Karpathy, Adriana Kovashka



Linear classifier: Hinge loss 

Suppose: 3 training examples, 3 classes.  

With some W the scores are:

cat

car

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Hinge loss:

Given an example

where  

where

is the image and

is the (integer) label,

and using the shorthand for the  

scores vector:

the loss has the form:

Want: syi
>= sj + 1

i.e. sj – syi
+ 1 <= 0

If true, loss is 0

If false, loss is magnitude of violation

28
Andrej Karpathy, Adriana Kovashka



cat

car  

frog

3.2

5.1

-1.7

1.3 2.2

4.9 2.5

2.0 -3.1

Losses: 2.9

Linear classifier: Hinge loss 

Suppose: 3 training examples, 3 classes.  

With some W the scores are:
Hinge loss:

Given an example

where  

where

is the image and

is the (integer) label,

and using the shorthand for the  

scores vector:

the loss has the form:

= max(0, 5.1 - 3.2 + 1)

+max(0, -1.7 - 3.2 + 1)

= max(0, 2.9) + max(0, -3.9)

= 2.9 + 0

= 2.9

29
Andrej Karpathy, Adriana Kovashka



Linear classifier: Hinge loss 

Suppose: 3 training examples, 3 classes.  

With some W the scores are:
Hinge loss:

Given an example

where  

where

is the image and

is the (integer) label,

and using the shorthand for the  

scores vector:

the loss has the form:

= max(0, 1.3 - 4.9 + 1)

+max(0, 2.0 - 4.9 + 1)

= max(0, -2.6) + max(0, -1.9)

= 0 + 0

= 0

cat 3.2

car 5.1

frog -1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Losses: 2.9 0

30
Andrej Karpathy, Adriana Kovashka



Linear classifier: Hinge loss 

Suppose: 3 training examples, 3 classes.  

With some W the scores are:
Hinge loss:

Given an example

where  

where

is the image and

is the (integer) label,

and using the shorthand for the  

scores vector:

the loss has the form:

= max(0, 2.2 - (-3.1) + 1)

+max(0, 2.5 - (-3.1) + 1)

= max(0, 5.3 + 1) 

+ max(0, 5.6 + 1)

= 6.3 + 6.6

= 12.9

cat

car  

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Losses: 2.9 0 12.9

31
Andrej Karpathy, Adriana Kovashka



Linear classifier: Hinge loss 

cat

car

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Suppose: 3 training examples, 3 classes.  

With some W the scores are:
Hinge loss:

Given an example

where  

where

is the image and

is the (integer) label,

and using the shorthand for the  

scores vector:

the loss has the form:

and the full training loss is the mean  

over all examples in the training data:

L = (2.9 + 0 + 12.9)/3
2.9 0 12.9Losses: = 15.8 / 3 = 5.3

Lecture 3 - 12

32
Andrej Karpathy, Adriana Kovashka



To minimize loss, use gradient descent

• Take small steps in the direction of lower loss at each time step

• Show different training sample(s) at each time step

33
Andrej Karpathy, Adriana Kovashka



To minimize loss, use gradient descent

• Take small steps in the direction of lower loss at each time step

• 𝜂 is the learning rate (controls how big of a step you take)

• is the gradient of the loss with respect to the current weights

34
Andrej Karpathy, Adriana Kovashka



• The green pattern (input) looks more like the 

weights (black – on left) than the red pattern

– The green pattern is more correlated with the weights

Correlation =0.57 Correlation =0.82
1 𝑖𝑓Σ 𝑤ixi ≥ 𝑇

𝑦 = {
0 𝑒𝑙𝑠𝑒

The weights look for patterns

Adapted from Bhiksha Raj
50



• Will a NN that recognizes the left image as a flower  

also recognize the one on the right as a flower?

in
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u
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u
t
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r

Bhiksha Raj, Adriana Kovashka

• Need a network that will recognize the flower 

regardless of its spatial location in the image

Shortcomings of What We Have Discussed

51



Real-world Images are Challenging

Illumination Object pose Clutter

ViewpointIntra-class 

appearance
Occlusions

Kristen Grauman 52



Preserving Spatial Structure

53Adapted from Amini and Soleimany (MIT), Adriana Kovashka



32

3

32x32x3 image

width

height

32

depth

Convolutions: More detail

Andrej Karpathy, Adriana Kovashka
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32

32

3

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially,  

computing dot products”

Convolutions: More detail

55
Andrej Karpathy, Adriana Kovashka



32

32

3

32x32x3 image  

5x5x3 filter

1 number:
the result of taking a dot product between the  

filter and a small 5x5x3 chunk of the image

(i.e. 5*5*3 = 75-dimensional dot product + bias)

Convolutional Layer

56
Andrej Karpathy, Adriana Kovashka



32

32

3

activation map

32x32x3 image
5x5x3 filter

1

28

28

convolve (slide) over all  

spatial locations

Convolutional Layer

57
Andrej Karpathy, Adriana Kovashka



Manually Defined Filter Maps

• Effect of convolving manually handcrafted filters on an image

• In a convolutional network, these filters are automatically learned!

• The filter parameters are the weights

58
Andrej Karpathy, Adriana Kovashka
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What does it do?

• Replaces each pixel with an 

average of its neighborhood

• Achieve smoothing effect 

(remove sharp features)
111

111

111

Slide credit: David Lowe (UBC)

],[g 

Box Filter



Smoothing with box filter



Practice with linear filters

000

010

000

Original

?

Source: D. Lowe



Practice with linear filters

000

010

000

Original Filtered 

(no change)

Source: D. Lowe



Practice with linear filters

000

100

000

Original

?

Source: D. Lowe



Practice with linear filters

000

100

000

Original Shifted left

By 1 pixel

Source: D. Lowe



Practice with linear filters

Original

111

111

111

000

020

000

- ?

(Note that filter sums to 1)

Source: D. Lowe



Practice with linear filters

Original

111

111

111

000

020

000

-

Sharpening filter

- Accentuates differences with local 

average

Source: D. Lowe



Sharpening

Source: D. Lowe



Other filters

-101

-202

-101

Vertical Edge

(absolute value)

Sobel



Other filters

-1-2-1

000

121

Horizontal Edge

(absolute value)

Sobel



32

32

3

activation map

32x32x3 image
5x5x3 filter

1

28

28

convolve (slide) over all  

spatial locations

Andrej Karpathy

Convolutional Layer

79



32

32

3

32x32x3 image  

5x5x3 filter

activation maps

1

28

28

convolve (slide) over all  

spatial locations

Andrej Karpathy

Convolutional Layer

consider a second, green filter

80



32

3 6

28

activation maps

32

28

Convolution Layer

Convolutional Layer

• For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

Andrej Karpathy

81



Convolutional Neural Network

• A convolutional neural network (CNN) is a sequence of convolution 
layers, interspersed with activation functions

32

32

3

28

28

6

CONV

e.g. 6

5x5x3

filters

Andrej Karpathy

82



Convolutional Neural Network

32

32

3

CONV

e.g. 6

5x5x3

filters
28

28

6

CONV

e.g. 10  

5x5x6  

filters

CONV
….

10

24

24

Andrej Karpathy

• A convolutional neural network (CNN) is a sequence of convolution 
layers, interspersed with activation functions

83



What is a Convolution?

• Weighted moving sum

Input Feature Activation Map

.

.

.

slide credit: S. Lazebnik



Input Image

Convolution 

(Learned)

Non-linearity

Spatial pooling

Normalization

Convolutional Neural Networks

Feature maps

slide credit: S. Lazebnik



Input Image

Convolution 

(Learned)

Non-linearity

Spatial pooling

Normalization

Feature maps

Input Feature Map

.

.

.

Convolutional Neural Networks

slide credit: S. Lazebnik



Input Image

Convolution 

(Learned)

Non-linearity

Spatial pooling

Normalization

Feature maps

Convolutional Neural Networks

Rectified Linear Unit (ReLU)

slide credit: S. Lazebnik



Input Image

Convolution 

(Learned)

Non-linearity

Spatial pooling

Normalization

Feature maps

Max pooling

Convolutional Neural Networks

slide credit: S. Lazebnik

Max-pooling: a non-linear down-sampling

Provide translation invariance



Input Image

Convolution 

(Learned)

Non-linearity

Spatial pooling

Normalization

Feature maps

Feature Maps Feature Maps

After Normalization

Convolutional Neural Networks

slide credit: S. Lazebnik



State of The Art? LeNet [LeCun et al. 1998]

Gradient-based learning applied to document 
recognition [LeCun, Bottou, Bengio, Haffner 1998] LeNet-1 from 1993

Adapted from Jia-Bin Huang

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf


example 5x5 filters
(32 total)

We call the layer convolutional  

because it is related to convolution  

of two signals:

Element-wise multiplication and sum 

of  a filter and the signal (image)

one filter =>
one activation map

Convolutions: More detail

Adapted from Andrej Karpathy, Kristen Grauman



Putting it All Together

92

• RELU just means set any negative outputs to 0

• Pool shrinks each activation map by passing a “filter” that just takes 
the max of all values at each location

Adapted from Andrej Karpathy



Layer 1

Slide credit: Jia-Bin Huang

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf


Layer 2

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

Slide credit: Jia-Bin Huang

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf


Layer 3

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

Slide credit: Jia-Bin Huang

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf


Layer 4 and 5

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

Slide credit: Jia-Bin Huang

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf


Andrej Karpathy

Visualizing the Filters CNNs Learn

97



Case Study: ResNet
[He et al., 2016]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Since deeper usually means better, why not just keep adding more and more 

layers?

Q: Look at the train and test curves above. What is atypical about these learning curves?

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung, Adriana Kovashka



Case Study: 

ResNet
[He et al., 2016]Since deeper usually means better, why not just keep adding more and more 

layers?

56-layer model performs worse on both training and test error

-> The deeper model performs worse, but it’s not caused by overfitting!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung, Adriana Kovashka



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Hypothesis: Deeper models are harder to  optimize

Theoretically, the deeper model should perform as well or better than a 

shallower model – but in practice this doesn’t happen.

Why?

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung, Adriana Kovashka

Case Study: ResNet
[He et al., 2016]



relu

Solution: Learn a residual function rather than the underlying function directly

X

identity

F(x) + x

F(x)

relu

relu

X
Residual block

X
“Plain” layers

H(x)
H(x) = F(x) + x

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

“Skip connections”

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung, Adriana Kovashka

Case Study: ResNet
[He et al., 2016]



..

.

relu
X

identity

F(x) + x

F(x)

relu

X
Residual block

Full ResNet architecture:

- Stack residual blocks
- Every residual block has  

two 3x3 conv layers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung, Adriana Kovashka

[no residuals] [residuals]

[Loss landscape visualization, 

Li et al., 2018, on a ResNet]

Case Study: ResNet
[He et al., 2016]

https://arxiv.org/pdf/1712.09913.pdf


DenseNet

• Shorter connections (like ResNet) help

• Why not just connect them all?

Slide credit: Adapted from Jia-Bin Huang



Progress on ImageNet

Qiongyi Zhou, Changde Du, Huiguang He. Exploring the Brain-like Properties of Deep Neural Networks: A Neural Encoding 
Perspective. Machine Intelligence Research, vol. 19, no. 5, pp.439-455, 2022.

Image from Jia-Bin Huang



Practical Tips for Using CNNs
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• If you are going to be using a CNN (or later a multimodal transformer), start 
with weights from a pretrained model (unless you really know what you’re 
doing)

• Typically ImageNet pretrained

• Usually normalize and resize images before feeding into CNN (and 
transformers)

• Note: Use the normalization parameters from train set (should come with model)
➢PyTorch may do this for you automatically, but double check to make sure it is happening

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung, Adriana Kovashka



More Practical Tips for Using CNNs
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• Use minibatching

• Run multiple images through at once, compute loss and average across all 
samples in batch

• Smooths out noise in gradient

• Data augmentation helps prevent overfitting

• Translation

• rotation

• stretching

• shearing,

• lens distortions

• Note: Data augmentations are applied during at training. During test time you 
may need

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung, Adriana Kovashka; ; Image: https://github.com/aleju/imgaug

https://github.com/aleju/imgaug


Even More Practical Tips for Using CNNs
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• Initializing the weights for new layers

• Most of the time you aren’t initializing weights and instead
initializing from a pretrained model

• But if you are adding a new layer or classifier, you need to
initialize the weights from somewhere

• What if I just initialize all weights the same as a constant?

• Usually you initialize the weights randomly

• In practice: Use Xavier initialization with defaults

➢Other options, but stick with defaults unless you know what you’re doing

• Non-linearity activation functions for networks?

• Stick with RELU or LeakyRELU (unless you know what you’re doing)

Adapted from Adriana Kovashka



And Even More Practical Tips for Using CNNs
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• Use dropout, especially for fully connected layers

• Makes neural networks more robust 

➢Subsets of neurons must independently be responsible for
performance

• Regularization

• Prevent overfitting by setting a weight decay in optimizer

• Optimizers

• Can try Adam, SGD with Momentum, RMSProp

• Learning rate – Try 1e-3 to 1e-6

• Batch normalization

• Recenters / scales intermediate layers

• Believed to address internal covariate shift

Image from Jia-Bin Huang



Combining Image + Text (Simple)

109

• It’s common to extract activations from the layers of the network, 
flatten them, and use them to represent the image

• These are the image “features”

• Other types of neural networks exist for text, but they operate on the 
same basic principles

• Using these networks, we can extract features for both images and text 
and combine them into a multimodal model

• One simple way is just concatenate the features and feed into a NN

• Later, we’ll explore more advanced ways of doing this

Figure from Tadas Baltrusaitis, CMU
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