
# Few and zero shot learning

### Flamingo & Kosmos-1

CS 6804: Multimodal Vision | Deval Srivastava

• Few and zero shot learning can be seen as a measure of intelligence.

- Few and zero shot learning can be seen as a measure of intelligence.
- Different from how currently models learn.



- Few and zero shot learning can be seen as a measure of intelligence.
- Different from how currently models learn.
- LLMs are able to do this to some extent[1]

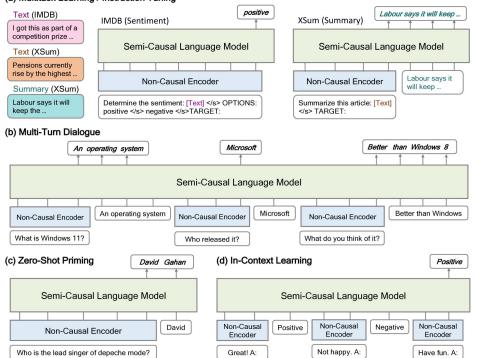
### Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.



### One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.




#### Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.



- Few and zero shot learning can be seen as a measure of intelligence.
- Different from how currently models learn.
- LLMs are able to do this to some extent[1].
- LLMs can do a number of tasks through their versatile text interface.



### (a) Multitask Learning / Instruction Tuning

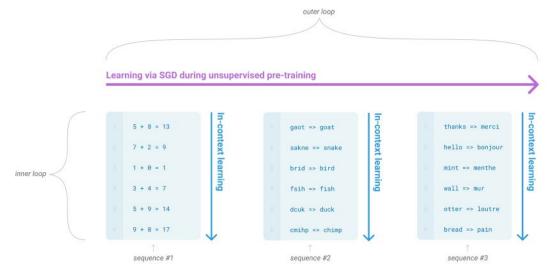
# **Motivation**

### **GOAL**:

- Design a multimodal LLM that can perform effective few shot and zero shot learning from prompts.
- This multimodal LLM would be trained on a variety of sources including interleaved images and text.

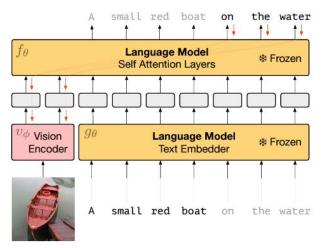
Two papers follow this methodology

- FLAMINGO[3]
- Kosmos-1[4]


# **Flamingo: a Visual Language Model for Few-Shot** Learning

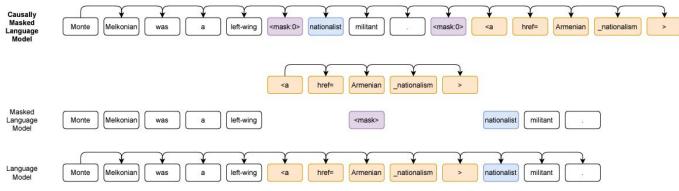
# Flamingo: Key Takeaways

- A new large VLM that can ingest a sequence of text/image or interleaved tokens then output text.
- Sets a new state of the art on a variety of V+L tasks by being prompted with few input / output samples
- Introduces a novel architecture that bridges two frozen pretrained vision and language models.


- Chinchilla[5]
  - Finetuning a LLM has become an effective strategy to use it for downstream tasks.

- Chinchilla[5]
- GPT-3[1]
  - Introduces a few shot in-context learning technique.

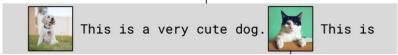


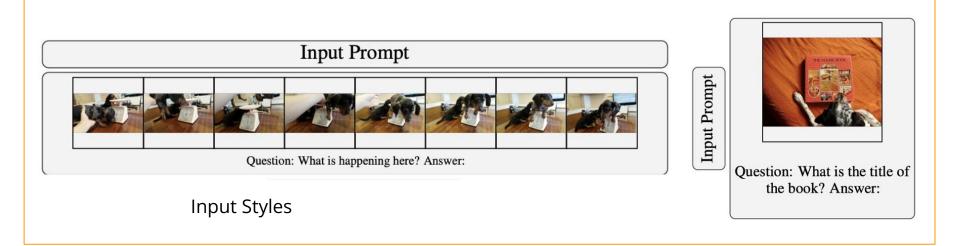

Brown, Tom, et al. "Language models are few-shot learners." Advances in neural information processing systems 33 (2020): 1877-1901.

- Chinchilla[5]
- GPT-3[1]
- Multimodal Few-Shot Learning with Frozen Language Models[6]
  - Proposes to train frozen LLMs with few learnable layers on interleaved data for V+L tasks.



Tsimpoukelli, Maria, et al. "Multimodal few-shot learning with frozen language models." Advances in Neural Information Processing Systems 34 (2021): 200-212.

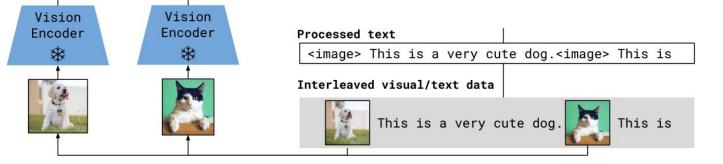

- Chinchilla[5]
- GPT-3[1]
- Multimodal Few-Shot Learning with Frozen Language Models[6]
- CM3[7]
  - $\circ$  ~ Proposes to train a masked LLM on extracted HTML data for language tasks

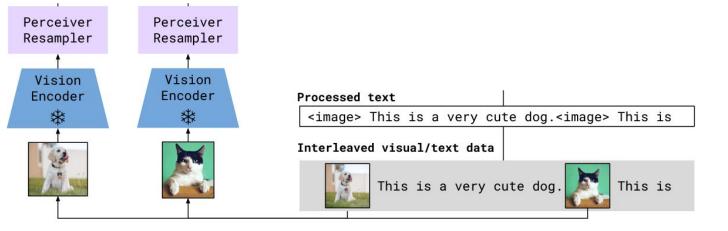


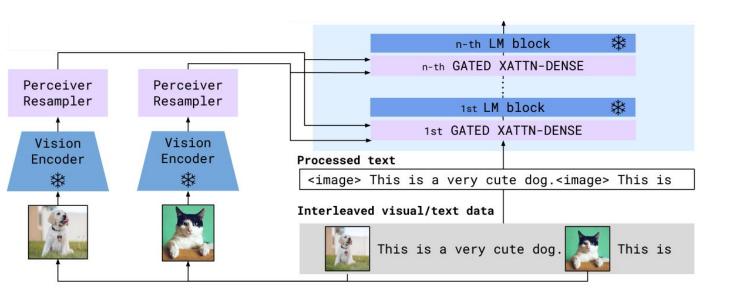

Aghajanyan, Armen, et al. "Cm3: A causal masked multimodal model of the internet." arXiv preprint arXiv:2201.07520 (2022).

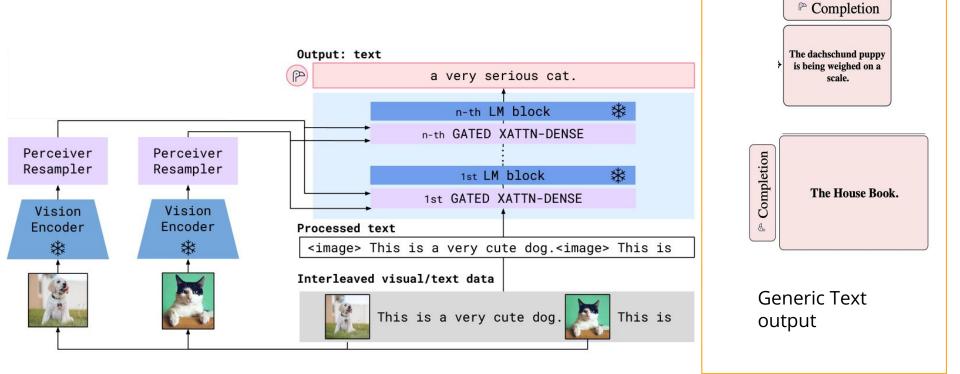
# Flamingo:

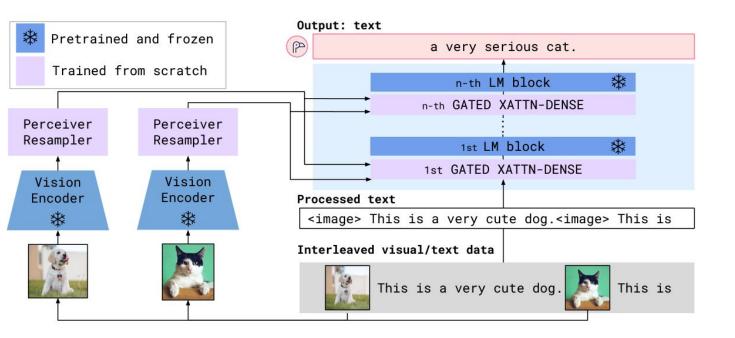
Interleaved visual/text data



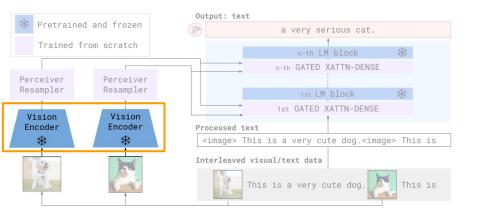





Interleaved visual/text data



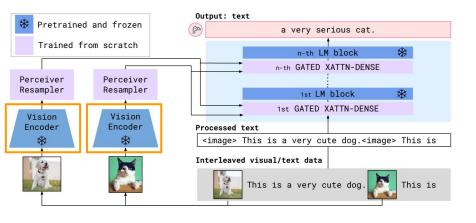


| Processed  | text   |       |        |        |        |        |      |    |
|------------|--------|-------|--------|--------|--------|--------|------|----|
| <image/>   | This   | is a  | a very | cute   | dog.<  | image> | This | is |
| Interleave | ed vis | ual/t | ext da | ta     |        |        |      |    |
|            | This   | s is  | a ver  | y cute | e dog. | X      | This | is |



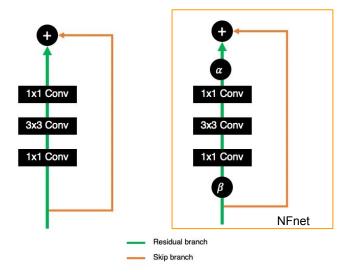






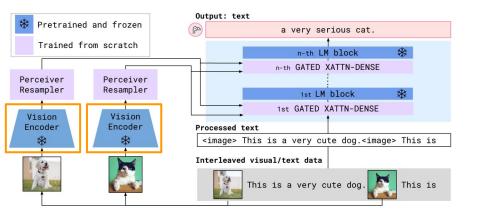




# **Vision Encoder**

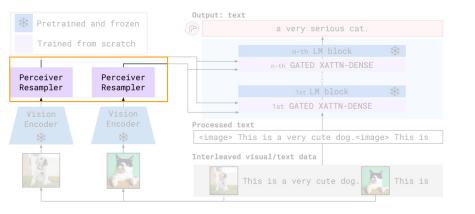



• **NFNet F6[8]** pretrained using the CLIP contrastive loss.

# **Vision Encoder**



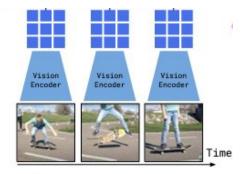

• **NFNet F6[8]** pretrained using the CLIP contrastive loss.




Alayrac, Jean-Baptiste, et al. "Flamingo: a visual language model for few-shot learning." arXiv preprint arXiv:2204.14198 (2022). https://towardsdatascience.com/nfnets-explained-deepminds-new-state-of-the-art-image-classifier-10430c8599ee

# **Vision Encoder**

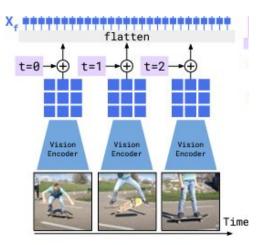



- **NFNet F6[8]** pretrained using the CLIP contrastive loss.
- Trained on ALIGN and LTIP
- Input: 288 x 288 image
- Output: 2D grid Flattened to 1D
- 1FPS sampling for Videos
- Model is Frozen After Pretraining

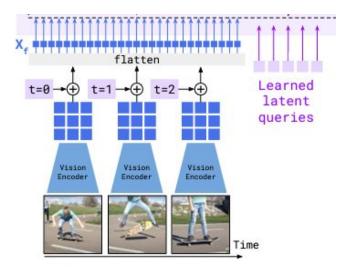



• Consumes **variable** number of input frames

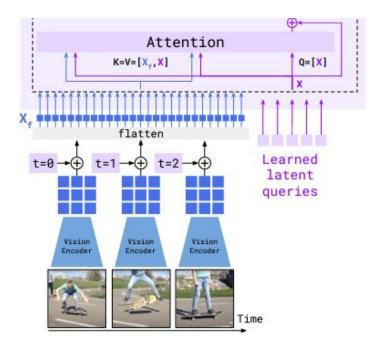



• Consumes **variable** number of input frames

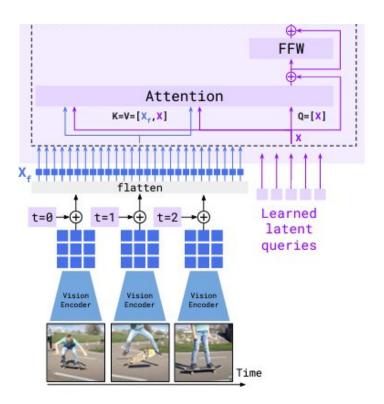



- Consumes **variable** number of input frames.
- Appends **temporal** encodings.

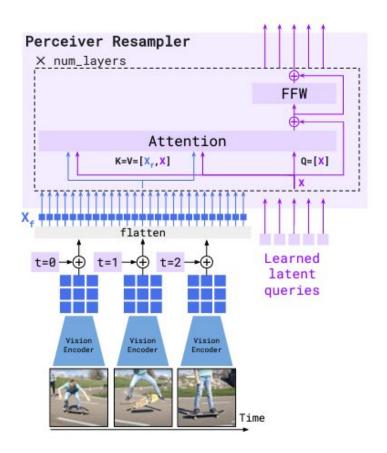



- Consumes **variable** number of input frames.
- Appends **temporal** encodings.
- Flattens the image grid.




- Consumes **variable** number of input frames.
- Appends **temporal** encodings.
- Flattens the image grid.
- Combined with **fixed number** of latent queries

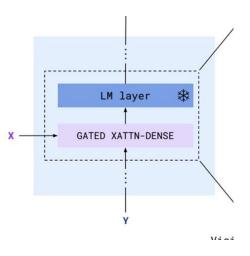



- Consumes **variable** number of input Frames.
- Appends **temporal** encodings.
- Flattens the image grid.
- Combined with **fixed number** of latent queries.
- Attention layer with Q = latent Queries, and K,V = [Image vector, latent Queries]

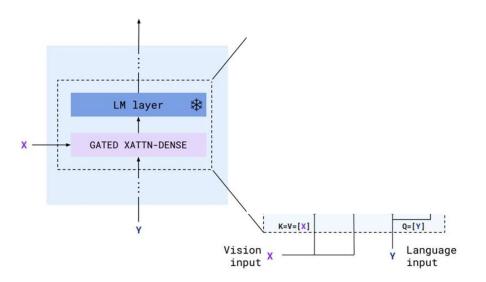


- Consumes **variable** number of input Frames.
- Appends **temporal** encodings.
- Flattens the image grid.
- Combined with **fixed number** of latent queries.
- Attention layer with Q = latent Queries, and K,V = [Image vector, latent Queries]

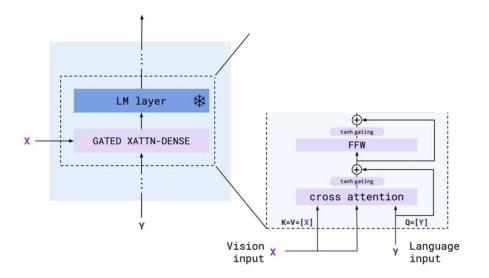



- Consumes **variable** number of input Frames.
- Appends **temporal** encodings.
- Flattens the image grid.
- Combined with **fixed number** of latent queries.
- Attention layer with Q = latent Queries, and K,V = [Image vector, latent Queries]
- Outputs a Fixed number of visual tokens



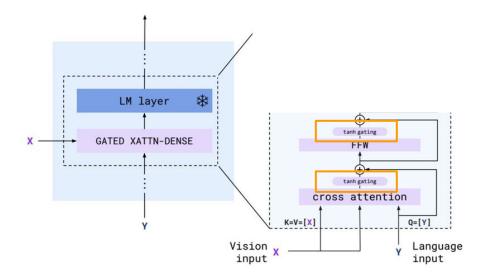



Viai


• Flamingo uses **Chinchilla** class of LLMs.

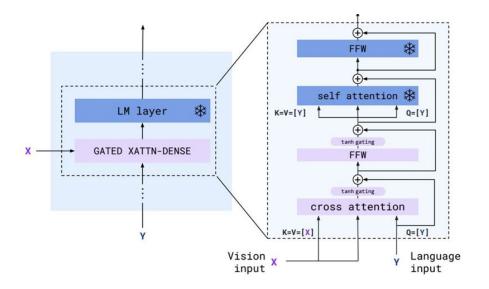


- Flamingo uses **Chinchilla** class of LLMs.
- Vision (X) and language (Y) input to a **XATTN** block



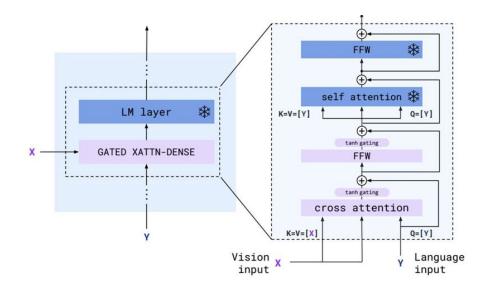

- Flamingo uses **Chinchilla** class of LLMs.
- Vision (X) and language (Y) input to a **XATTN** block



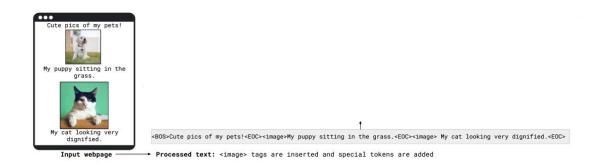

## **Conditioning the Language model**

- Flamingo uses **Chinchilla** class of LLMs.
- Vision (X) and language (Y) input to a **XATTN** block
- Uses TanH gating with layer learnable **alpha**
- Alpha initialized to 0 for stability




## **Conditioning the Language model**

- Flamingo uses **Chinchilla** class of LLMs.
- Vision (X) and language (Y) input to a **XATTN** block
- Uses TanH gating with layer learnable **alpha**
- **Alpha** initialized to 0 for stability.

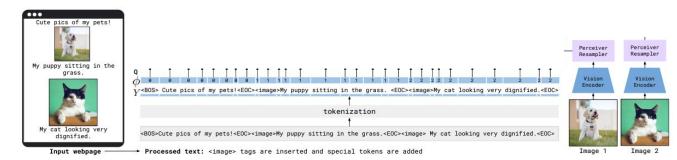



## **Conditioning the Language model**

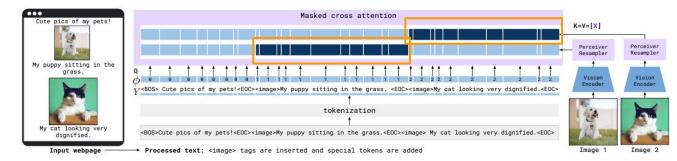
- Flamingo uses **Chinchilla** class of LLMs.
- Vision (X) and language (Y) input to a **XATTN** block
- Uses TanH gating with layer learnable **alpha**
- **Alpha** initialized to 0 for stability.
- Flamingo model variations are introduced through XATTN layers only.



• Tags are added to input text.




Alayrac, Jean-Baptiste, et al. "Flamingo: a visual language model for few-shot learning." arXiv preprint arXiv:2204.14198 (2022).


- Tags are added to input text.
- Images are processed.



- Tags are added to input text.
- Images are processed.
- Function φ that maps each text token to the last image token.



- Tags are added to input text.
- Images are processed.
- Function φ that maps each text token to the last image token.
- Each token only attends to the last seen image token



## **Training Datasets**



Image-Text Pairs dataset [N=1, T=1, H, W, C]

- ALIGN: 1.8B pairs with 12.4 tokens on average
- LTIP: 312M pairs with 20.5 tokens on average



Video-Text Pairs dataset [N=1, T>1, H, W, C]

#### **VTP Dataset:**

- 27M short Videos
- 22S duration on average



Multi-Modal Massive Web (M3W) dataset [N>1, T=1, H, W, C]

#### M3W Dataset:

- 185M Images
- 182GB of Text



$$\sum_{m=1}^{M} \lambda_m \cdot \mathbb{E}_{(x,y) \sim \mathcal{D}_m} \left[ -\sum_{\ell=1}^{L} \log p(y_\ell | y_{<\ell}, x_{\leq \ell}) \right]$$

- Flamingo is trained by minimizing log likelihood of text given the previous input (text or image)
- The loss is weighted sum of all the datasets, where Dm and  $\lambda m$  are the mth dataset and its weight.

|                  | 26    | Dataset                | DEV | Gen. | Custom<br>prompt | Task description           | Eval set        | Metric          |
|------------------|-------|------------------------|-----|------|------------------|----------------------------|-----------------|-----------------|
|                  |       | ImageNet-1k [94]       | 1   |      |                  | Object classification      | Val             | Top-1 acc.      |
|                  |       | MS-COCO [15]           | 1   | 1    |                  | Scene description          | Test            | CIDEr           |
|                  |       | VQAv2 [3]              | 1   | 1    |                  | Scene understanding QA     | Test-dev        | VQA acc. [3]    |
|                  | e     | OKVQA [69]             | 1   | 1    |                  | External knowledge QA      | Val             | VQA acc. [3]    |
|                  | Image | Flickr30k [139]        |     | 1    |                  | Scene description          | Test (Karpathy) | CIDEr           |
| PT 1 1 1         | In    | VizWiz [35]            |     | 1    |                  | Scene understanding QA     | Test-dev        | VQA acc. [3]    |
| Flamingo tasks   |       | TextVQA [100]          |     | 1    |                  | Text reading QA            | Val             | VQA acc. [3]    |
| i tainingo tasks |       | VisDial [20]           |     |      |                  | Visual Dialogue            | Val             | NDCG            |
| -                |       | HatefulMemes [54]      |     |      | ~                | Meme classification        | Seen Test       | ROC AUC         |
|                  |       | Kinetics700 2020 [102] | 1   |      |                  | Action classification      | Val             | Top-1/5 avg     |
|                  |       | VATEX [122]            | 1   | 1    |                  | Event description          | Test            | CIDEr           |
|                  |       | MSVDQA [130]           | 1   | 1    |                  | Event understanding QA     | Test            | Top-1 acc.      |
|                  |       | YouCook2 [149]         |     | ~    |                  | Event description          | Val             | CIDEr           |
|                  | 0     | MSRVTTQA [130]         |     | 1    |                  | Event understanding QA     | Test            | Top-1 acc.      |
|                  | Video | iVQA [135]             |     | 1    |                  | Event understanding QA     | Test            | iVQA acc. [135] |
|                  | >     | RareAct [73]           |     |      | 1                | Composite action retrieval | Test            | mWAP            |
|                  |       | NextQA [129]           |     | 1    |                  | Temporal/Causal QA         | Test            | WUPS            |
|                  |       | STAR [128]             |     |      |                  | Multiple-choice QA         | Test            | Top-1 acc.      |

| Method                | FT | Shot | ΟΚVQA (Ι)    | VQAv2 (I)     | COCO (])                    | MSVDQA (V)   | VATEX (V) | VizWiz (I) | Flick30K (I) | MSRVTTQA (V) | iVQA (V)               | YouCook2 (V) | STAR (V)      | VisDial (I)  | TextVQA (I) | NextQA (I)    | HatefulMemes (I)      | RareAct (V)                 |
|-----------------------|----|------|--------------|---------------|-----------------------------|--------------|-----------|------------|--------------|--------------|------------------------|--------------|---------------|--------------|-------------|---------------|-----------------------|-----------------------------|
| Zero/Few<br>shot SOTA | x  |      | [34]<br>43.3 | [114]<br>38.2 | [ <mark>124]</mark><br>32.2 | [58]<br>35.2 | 12        | 2          | -20          | [58]<br>19.2 | [ <b>135</b> ]<br>12.2 | 2            | [143]<br>39.4 | [79]<br>11.6 | 2           | ( <b>2</b> 1) | [ <b>85</b> ]<br>66.1 | [ <mark>85</mark> ]<br>40.7 |
| shot SOTA             |    | (X)  | (16)         | (4)           | (0)                         | (0)          |           |            |              | (0)          | (0)                    |              | (0)           | (0)          |             |               | (0)                   | (0)                         |
| 1-02252 823 1000-0003 | X  | 0    | 41.2         | 49.2          | 73.0                        | 27.5         | 40.1      | 28.9       | 60.6         | 11.0         | 32.7                   | 55.8         | 39.6          | 46.1         | 30.1        | 21.3          | 53.7                  | 58.4                        |
| Flamingo-3B           | ×  | 4    | 43.3         | 53.2          | 85.0                        | 33.0         | 50.0      | 34.0       | 72.0         | 14.9         | 35.7                   | 64.6         | 41.3          | 47.3         | 32.7        | 22.4          | 53.6                  | -                           |
|                       | ×  | 32   | 45.9         | 57.1          | 99.0                        | 42.6         | 59.2      | 45.5       | 71.2         | 25.6         | 37.7                   | 76.7         | 41.6          | 47.3         | 30.6        | 26.1          | 56.3                  | -                           |
|                       | ×  | 0    | 44.7         | 51.8          | 79.4                        | 30.2         | 39.5      | 28.8       | 61.5         | 13.7         | 35.2                   | 55.0         | 41.8          | 48.0         | 31.8        | 23.0          | 57.0                  | 57.9                        |
| Flamingo-9B           | ×  | 4    | 49.3         | 56.3          | 93.1                        | 36.2         | 51.7      | 34.9       | 72.6         | 18.2         | 37.7                   | 70.8         | 42.8          | 50.4         | 33.6        | 24.7          | 62.7                  | -                           |
|                       | ×  | 32   | 51.0         | 60.4          | 106.3                       | 47.2         | 57.4      | 44.0       | 72.8         | 29.4         | 40.7                   | 77.3         | 41.2          | 50.4         | 32.6        | 28.4          | 63.5                  | 12                          |
|                       | ×  | 0    | 50.6         | 56.3          | 84.3                        | 35.6         | 46.7      | 31.6       | 67.2         | 17.4         | 40.7                   | 60.1         | 39.7          | 52.0         | 35.0        | 26.7          | 46.4                  | 60.8                        |
| Flamingo              | ×  | 4    | 57.4         | 63.1          | 103.2                       | 41.7         | 56.0      | 39.6       | 75.1         | 23.9         | 44.1                   | 74.5         | 42.4          | 55.6         | 36.5        | 30.8          | 68.6                  |                             |
| riamingo              | x  | 32   | 57.8         | 67.6          | 113.8                       | 52.3         | 65.1      | 49.8       | 75.4         | 31.0         | 45.3                   | 86.8         | 42.2          | 55.6         | 37.9        | 33.5          | 70.0                  | 12                          |
| Pretrained            |    |      | 54.4         | 80.2          | 143.3                       | 47.9         | 76.3      | 57.2       | 67.4         | 46.8         | 35.4                   | 138.7        | 36.7          | 75.2         | 54.7        | 25.2          | 79.1                  |                             |
| FT SOTA               | V  |      | [34]         | [140]         | [124]                       | [28]         | [153]     | [65]       | [150]        | [51]         | [135]                  | [132]        | [128]         | [79]         | [137]       | [129]         | [62]                  | 22                          |
| L1 2014               |    | (X)  | (10K)        | (444K)        | (500K)                      | (27K)        | (500K)    | (20K)      | (30K)        | (130K)       | (6K)                   | (10K)        | (46K)         | (123K)       | (20K)       | (38K)         | (9K)                  |                             |

| Method                | FT   | Shot           | ΟΚVQA (Ι)    | VQAv2 (I)     | coco (I)      | MSVDQA (V)   | VATEX (V) | VizWiz (I) | Flick30K (I) | MSRVTTQA (V) | iVQA (V)      | YouCook2 (V) | STAR (V)      | VisDial (I)  | TextVQA (I) | NextQA (I) | HatefulMemes (I)            | RareAct (V)                 |
|-----------------------|------|----------------|--------------|---------------|---------------|--------------|-----------|------------|--------------|--------------|---------------|--------------|---------------|--------------|-------------|------------|-----------------------------|-----------------------------|
| Zero/Few<br>shot SOTA | x    |                | [34]<br>43.3 | [114]<br>38.2 | [124]<br>32.2 | [58]<br>35.2 | -         | 2          | -            | [58]<br>19.2 | [135]<br>12.2 | -            | [143]<br>39.4 | [79]<br>11.6 | -           | -          | [ <mark>85</mark> ]<br>66.1 | [ <mark>85</mark> ]<br>40.7 |
| SHOT DOTA             |      | (X)            | (16)         | (4)           | (0)           | (0)          |           |            |              | (0)          | (0)           |              | (0)           | (0)          |             |            | (0)                         | (0)                         |
|                       | X    | 0              | 41.2         | 49.2          | 73.0          | 27.5         | 40.1      | 28.9       | 60.6         | 0.11         | 32.7          | 55.8         | 39.6          | 46.I         | 30.1        | 21.3       | 53.7                        | 58.4                        |
| Flamingo-3B           | ×    | 4              | 43.3         | 53.2          | 85.0          | 33.0         | 50.0      | 34.0       | 72.0         | 14.9         | 35.7          | 64.6         | 41.3          | 47.3         | 32.7        | 22.4       | 53.6                        | -                           |
|                       | ×    | 32             | 45.9         | 57.1          | 99.0          | 42.6         | 59.2      | 45.5       | 71.2         | 25.6         | 37.7          | 76.7         | 41.6          | 47.3         | 30.6        | 26.1       | 56.3                        | _                           |
|                       | X    | 0              | 44.7         | 51.8          | 79.4          | 30.2         | 39.5      | 28.8       | 61.5         | 13.7         | 35.2          | 55.0         | 41.8          | 48.0         | 31.8        | 23.0       | 57.0                        | 57.9                        |
| Flamingo-9B           | X    | 4              | 49.3         | 56.3          | 93.1          | 36.2         | 51.7      | 34.9       | 72.6         | 18.2         | 37.7          | 70.8         | 42.8          | 50.4         | 33.6        | 24.7       | 62.7                        | -                           |
| 0                     | ×    | 32             | 51.0         | 60.4          | 106.3         | 47.2         | 57.4      | 44.0       | 72.8         | 29.4         | 40.7          | 77.3         | 41.2          | 50.4         | 32.6        | 28.4       | 63.5                        | 12                          |
|                       | X    | 0              | 50.6         | 56.3          | 84.3          | 35.6         | 46.7      | 31.6       | 67.2         | 17.4         | 40.7          | 60.1         | 39.7          | 52.0         | 35.0        | 26.7       | 46.4                        | 60.8                        |
|                       | ×    | 4              | 57.4         | 63.1          | 103.2         | 41.7         | 56.0      | 39.6       | 75.1         | 23.9         | 44.1          | 74.5         | 42.4          | 55.6         | 36.5        | 30.8       | 68.6                        | -                           |
| Flamingo              | x    | 32             | 57.8         | 67.6          | 113.8         | 52.3         | 65.1      | 49.8       | 75.4         | 31.0         | 45.3          | 86.8         | 42.2          | 55.6         | 37.9        | 33.5       | 70.0                        | 12                          |
| D ( ) 1               | 3.90 | 101725         | 54.4         | 80.2          | 143.3         | 47.9         | 76.3      | 57.2       | 67.4         | 46.8         | 35.4          | 138.7        | 36.7          | 75.2         | 54.7        | 25.2       | 79.1                        |                             |
| Pretrained            | ~    |                | [34]         | [140]         | [124]         | [28]         | [153]     | [65]       | [150]        | [51]         | [135]         | [132]        | [128]         | [79]         | [137]       | [129]      | [62]                        | -                           |
| FT SOTA               |      | $(\mathbf{X})$ | (10K)        | (444K)        | (500K)        | (27K)        | (500K)    | (20K)      | (30K)        | (130K)       | (6K)          | (10K)        | (46K)         | (123K)       | (20K)       | (38K)      | (9K)                        |                             |

Flamingo is better than current SOTA few shot/zero shot

| Method                | FT | Shot | OKVQA (I)              | VQAv2 (I)                | COCO (I)        | MSVDQA (V)             | VATEX (V)       | VizWiz (I)             | Flick30K (I)            | MSRVTTQA (V)            | iVQA (V)               | YouCook2 (V)   | STAR (V)                    | VisDial (I)             | TextVQA (I)             | NextQA (I)              | HatefulMemes (I)      | RareAct (V)           |
|-----------------------|----|------|------------------------|--------------------------|-----------------|------------------------|-----------------|------------------------|-------------------------|-------------------------|------------------------|----------------|-----------------------------|-------------------------|-------------------------|-------------------------|-----------------------|-----------------------|
| Zero/Few<br>shot SOTA | Х  |      | [34]<br>43.3           | [114]<br>38.2            | [124]<br>32.2   | [58]<br>35.2           |                 | 2                      | -                       | [58]<br>19.2            | [ <b>135</b> ]<br>12.2 | 2              | [ <mark>143]</mark><br>39.4 | [ <b>79</b> ]<br>11.6   | -                       |                         | [ <b>85</b> ]<br>66.1 | [ <b>85</b> ]<br>40.7 |
|                       |    | (X)  | (16)                   | (4)                      | (0)             | (0)                    |                 |                        |                         | (0)                     | (0)                    |                | (0)                         | (0)                     |                         |                         | (0)                   | (0)                   |
| Elemine 2D            | X  | 0    | 41.2                   | 49.2                     | 73.0            | 27.5                   | 40.1            | 28.9                   | 60.6                    | 11.0                    | 32.7                   | 55.8           | 39.6                        | 46.1                    | 30.1                    | 21.3                    | 53.7                  | 58.4                  |
| Flamingo-3B           | ~  | 4    | 43.3                   | 53.2                     | 85.0            | 33.0                   | 50.0            | 34.0                   | 72.0                    | 14.9                    | 35.7                   | 64.6           | 41.3                        | 47.3                    | 32.7                    | 22.4                    | 53.6                  | -                     |
|                       | X  | 32   | 45.9                   | 57.1                     | 99.0            | 42.6                   | 59.2            | 45.5                   | 71.2                    | 25.6                    | 37.7                   | 76.7           | 41.6                        | 47.3                    | 30.6                    | 26.1                    | 56.3                  | -                     |
| Elawines OD           | x  | 0    | 44.7                   | 51.8                     | 79.4            | 30.2                   | 39.5            | 28.8                   | 61.5                    | 13.7                    | 35.2                   | 55.0           | 41.8                        | 48.0                    | 31.8                    | 23.0                    | 57.0                  | 57.9                  |
| Flamingo-9B           |    | 4    | 49.3                   | 56.3                     | 93.1            | 36.2                   | 51.7            | 34.9                   | 72.6                    | 18.2                    | 37.7                   | 70.8           | 42.8                        | 50.4                    | 33.6                    | 24.7                    | 62.7                  | -                     |
|                       | X  | 32   | 51.0                   | 60.4                     | 106.3           | 47.2                   | 57.4            | 44.0                   | 72.8                    | 29.4                    | 40.7                   | 77.3           | 41.2                        | 50.4                    | 32.6                    | 28.4                    | 63.5                  | -                     |
|                       | 0  | 0    | 50.6                   | 56.3                     | 84.3            | 35.6                   | 46.7            | 31.6                   | 67.2                    | 17.4                    | 40.7                   | 60.1           | 39.7                        | 52.0                    | 35.0                    | 26.7                    | 46.4                  | 60.8                  |
| Flamingo              | ~  | 4    | 57.4                   | 63.1                     | 103.2           | 41.7                   | 56.0            | 39.6                   | 75.1                    | 23.9                    | 44.1                   | 74.5           | 42.4                        | 55.6                    | 36.5                    | 30.8                    | 68.6                  | -                     |
| 0                     | X  | 32   | 57.8                   | 67.6                     | 113.8           | 52.3                   | 65.1            | 49.8                   | 75.4                    | 31.0                    | 45.3                   | 86.8           | 42.2                        | 55.6                    | 37.9                    | 33.5                    | 70.0                  |                       |
| Pretrained            |    |      | 54.4                   | 80.2                     | 143.3           | 47.9                   | 76.3            | 57.2                   | 67.4                    | 46.8                    | 35.4                   | 138.7          | 36.7                        | 75.2                    | 54.7                    | 25.2                    | 79.1                  |                       |
| FT SOTA               | V  | (X)  | [ <b>34</b> ]<br>(10K) | [ <b>140</b> ]<br>(444K) | [124]<br>(500K) | [ <b>28</b> ]<br>(27K) | [153]<br>(500K) | [ <b>65</b> ]<br>(20K) | [ <b>150</b> ]<br>(30K) | [ <b>51</b> ]<br>(130K) | [135]<br>(6K)          | [132]<br>(10K) | [ <b>128</b> ]<br>(46K)     | [ <b>79</b> ]<br>(123K) | [ <b>137</b> ]<br>(20K) | [ <b>129</b> ]<br>(38K) | [62]<br>(9K)          | -                     |

#### It achieves SOTA on 6 tasks



# Performance increases generally when the number of shots are increased.

https://samuelalbanie.com/digests/2022-05-flamingo/

#### **Finetuning results**

| Method                       |          | 7 407    | сосо  | VATEX | VieWie   | 71       | MSRVTTQA |       | VisDial  | YouCook2 |       | TextVQA  | HatefulMemes |
|------------------------------|----------|----------|-------|-------|----------|----------|----------|-------|----------|----------|-------|----------|--------------|
|                              | test-dev | test-std | test  | test  | test-dev | test-std | test     | valid | test-std | valid    | valid | test-std | test seen    |
| Flamingo - 32 shots          | 67.6     | -        | 113.8 | 65.1  | 49.8     | -        | 31.0     | 56.8  | -        | 86.8     | 36.0  | -        | 70.0         |
| SimVLM [124]                 | 80.0     | 80.3     | 143.3 | -     | -        | -        | -        | -     | -        | -        | -     | -        | -            |
| OFA [119]                    | 79.9     | 80.0     | 149.6 | -     | -        | -        | -        | -     | -        | -        | -     | -        | -            |
| Florence [140]               | 80.2     | 80.4     | -     | -     | -        | -        | -        | -     | -        | -        | -     | -        | -            |
| * Flamingo Fine-tuned        | 82.0     | 82.1     | 138.1 | 84.2  | 65.7     | 65.4     | 47.4     | 61.8  | 59.7     | 118.6    | 57.1  | 54.1     | 86.6         |
| Derectored Count             | 80.2     | 80.4     | 143.3 | 76.3  | -        | -        | 46.8     | 75.2  | 74.5     | 138.7    | 54.7  | 73.7     | 79.1         |
| Restricted SotA <sup>†</sup> | [140]    | [140]    | [124] | [153] | -        | -        | [51]     | [79]  | [79]     | [132]    | [137] | [84]     | [62]         |
| Linnastriated Cat A          | 81.3     | 81.3     | 149.6 | 81.4  | 57.2     | 60.6     | -        | -     | 75.4     | -        | -     | -        | 84.6         |
| Unrestricted SotA            | [133]    | [133]    | [119] | [153] | [65]     | [65]     | -        | -     | [123]    | -        | -     | -        | [152]        |

### **Model Scaling**

| b.          | Requires       | Froze    | en     | Trainable         |           | Total |
|-------------|----------------|----------|--------|-------------------|-----------|-------|
|             | model sharding | Language | Vision | GATED XATTN-DENSE | Resampler | count |
| Flamingo-3B | ×              | 1.4B     | 435M   | 1.2B (every)      | 194M      | 3.2B  |
| Flamingo-9B | ×              | 7.1B     | 435M   | 1.6B (every 4th)  | 194M      | 9.3B  |
| Flamingo    | 1              | 70B      | 435M   | 10B (every 7th)   | 194M      | 80B   |

|               | Ablated setting              | Flamingo-3B original value | Changed value                                            | Param.<br>count ↓    | Step<br>time ↓          | COCO<br>  CIDEr↑     | OKVQA<br>top1↑       | VQAv2<br>top1↑       | MSVDQA<br>top1↑      | VATEX<br>CIDEr↑      | Overall<br>score↑    |
|---------------|------------------------------|----------------------------|----------------------------------------------------------|----------------------|-------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
|               |                              | Flamingo-31                | 3 model                                                  | 3.2B                 | 1.74s                   | 86.5                 | 42.1                 | 55.8                 | 36.3                 | 53.4                 | 70.7                 |
|               |                              |                            | w/o Video-Text pairs                                     | 3.2B                 | 1.42s                   | 84.2                 | 43.0                 | 53.9                 | 34.5                 | 46.0                 | 67.3                 |
| (i)           | Training data                | All data                   | w/o Image-Text pairs<br>Image-Text pairs→ LAION          | 3.2B<br>3.2B         | 0.95s<br>1.74s          | 66.3<br>79.5         | 39.2<br>41.4         | 51.6<br>53.5         | 32.0<br>33.9         | 41.6<br>47.6         | 60.9<br>66.4         |
|               |                              |                            | w/o M3W                                                  | 3.2B                 | 1.02s                   | 54.1                 | 36.5                 | 52.7                 | 31.4                 | 23.5                 | 53.4                 |
| ( <b>ii</b> ) | Optimisation                 | Accumulation               | Round Robin                                              | 3.2B                 | 1.68s                   | 76.1                 | 39.8                 | 52.1                 | 33.2                 | 40.8                 | 62.9                 |
| (iii)         | Tanh gating                  | 1                          | X                                                        | 3.2B                 | 1.74s                   | 78.4                 | 40.5                 | 52.9                 | 35.9                 | 47.5                 | 66.5                 |
| (iv)          | Cross-attention architecture | GATED<br>XATTN-DENSE       | VANILLA XATTN<br>GRAFTING                                | 2.4B<br>3.3B         | 1.16s<br>1.74s          | 80.6<br>79.2         | 41.5<br>36.1         | 53.4<br>50.8         | 32.9<br>32.2         | 50.7<br>47.8         | 66.9<br>63.1         |
| ( <b>v</b> )  | Cross-attention frequency    | Every                      | Single in middle<br>Every 4th<br>Every 2nd               | 2.0B<br>2.3B<br>2.6B | 0.87s<br>1.02s<br>1.24s | 71.5<br>82.3<br>83.7 | 38.1<br>42.7<br>41.0 | 50.2<br>55.1<br>55.8 | 29.1<br>34.6<br>34.5 | 42.3<br>50.8<br>49.7 | 59.8<br>68.8<br>68.2 |
| (vi)          | Resampler                    | Perceiver                  | MLP<br>Transformer                                       | 3.2B<br>3.2B         | 1.85s<br>1.81s          | 78.6<br>83.2         | 42.2<br>41.7         | 54.7<br>55.6         | 35.2<br>31.5         | 44.7<br>48.3         | 66.6<br>66.7         |
| (vii)         | Vision encoder               | NFNet-F6                   | CLIP ViT-L/14<br>NFNet-F0                                | 3.1B<br>2.9B         | 1.58s<br>1.45s          | 76.5<br>73.8         | 41.6<br>40.5         | 53.4<br>52.8         | 33.2<br>31.1         | 44.5<br>42.9         | 64.9<br>62.7         |
| viii)         | Freezing LM                  | ✓                          | <ul><li>✗ (random init)</li><li>✗ (pretrained)</li></ul> | 3.2B<br>3.2B         | 2.42s<br>2.42s          | 74.8                 | 31.5<br>33.7         | 45.6<br>47.4         | 26.9<br>31.0         | 50.1<br>53.9         | 57.8<br>62.7         |

|                | Ablated setting              | Flamingo-3B original value | Changed value                                            | Param.<br>count ↓    | Step<br>time ↓          | COCO<br>CIDEr↑       | OKVQA<br>top1↑       | VQAv2<br>top1↑       | MSVDQA<br>top1↑      | VATEX<br>CIDEr↑      | Overall<br>score↑    |
|----------------|------------------------------|----------------------------|----------------------------------------------------------|----------------------|-------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
|                |                              | Flamingo-3                 | 3 model                                                  | 3.2B                 | 1.74s                   | 86.5                 | 42.1                 | 55.8                 | 36.3                 | 53.4                 | 70.7                 |
| (i)            | Training data                | All data                   | w/o Video-Text pairs<br>w/o Image-Text pairs             | 3.2B<br>3.2B         | 1.42s<br>0.95s          | 84.2<br>66.3         | 43.0<br>39.2         | 53.9<br>51.6         | 34.5<br>32.0         | 46.0<br>41.6         | 67.3<br>60.9         |
| (1)            | Training Gata                | 7 III Gata                 | Image-Text pairs→ LAION<br>w/o M3W                       | 3.2B<br>3.2B         | 1.74s<br>1.02s          | 79.5<br>54.1         | 41.4<br>36.5         | 53.5<br>52.7         | 33.9<br>31.4         | 47.6<br>23.5         | 66.4<br>53.4         |
| ( <b>ii</b> )  | Optimisation                 | Accumulation               | Round Robin                                              | 3.2B                 | 1.68s                   | 76.1                 | 39.8                 | 52.1                 | 33.2                 | 40.8                 | 62.9                 |
| ( <b>iii</b> ) | Tanh gating                  | 1                          | X                                                        | 3.2B                 | 1.74s                   | 78.4                 | 40.5                 | 52.9                 | 35.9                 | 47.5                 | 66.5                 |
| (iv)           | Cross-attention architecture | GATED<br>XATTN-DENSE       | VANILLA XATTN<br>GRAFTING                                | 2.4B<br>3.3B         | 1.16s<br>1.74s          | 80.6<br>79.2         | 41.5<br>36.1         | 53.4<br>50.8         | 32.9<br>32.2         | 50.7<br>47.8         | 66.9<br>63.1         |
| (v)            | Cross-attention frequency    | Every                      | Single in middle<br>Every 4th<br>Every 2nd               | 2.0B<br>2.3B<br>2.6B | 0.87s<br>1.02s<br>1.24s | 71.5<br>82.3<br>83.7 | 38.1<br>42.7<br>41.0 | 50.2<br>55.1<br>55.8 | 29.1<br>34.6<br>34.5 | 42.3<br>50.8<br>49.7 | 59.8<br>68.8<br>68.2 |
| (vi)           | Resampler                    | Perceiver                  | MLP<br>Transformer                                       | 3.2B<br>3.2B         | 1.85s<br>1.81s          | 78.6<br>83.2         | 42.2<br>41.7         | 54.7<br>55.6         | 35.2<br>31.5         | 44.7<br>48.3         | 66.6<br>66.7         |
| (vii)          | Vision encoder               | NFNet-F6                   | CLIP ViT-L/14<br>NFNet-F0                                | 3.1B<br>2.9B         | 1.58s<br>1.45s          | 76.5<br>73.8         | 41.6<br>40.5         | 53.4<br>52.8         | 33.2<br>31.1         | 44.5<br>42.9         | 64.9<br>62.7         |
| (viii)         | Freezing LM                  | 1                          | <ul><li>✗ (random init)</li><li>✗ (pretrained)</li></ul> | 3.2B<br>3.2B         | 2.42s<br>2.42s          | 74.8<br>81.2         | 31.5<br>33.7         | 45.6<br>47.4         | 26.9<br>31.0         | 50.1<br>53.9         | 57.8<br>62.7         |

|                | Ablated setting              | Flamingo-3B original value | Changed value                                            | Param.<br>count ↓    | Step<br>time ↓          | COCO<br>  CIDEr↑     | OKVQA<br>top1↑       | VQAv2<br>top1↑       | MSVDQA<br>top1↑      | VATEX<br>CIDEr↑      | Overall<br>score↑    |
|----------------|------------------------------|----------------------------|----------------------------------------------------------|----------------------|-------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
|                |                              | Flamingo-31                | 3 model                                                  | 3.2B                 | 1.74s                   | 86.5                 | 42.1                 | 55.8                 | 36.3                 | 53.4                 | 70.7                 |
| (i)            | Training data                | All data                   | w/o Video-Text pairs<br>w/o Image-Text pairs             | 3.2B<br>3.2B         | 1.42s<br>0.95s          | 84.2<br>66.3         | 43.0<br>39.2         | 53.9<br>51.6         | 34.5<br>32.0         | 46.0<br>41.6         | 67.3<br>60.9         |
| (1)            | Training data                | - III uuu                  | Image-Text pairs→ LAION<br>w/o M3W                       | 3.2B<br>3.2B         | 1.74s<br>1.02s          | 79.5<br>54.1         | 41.4<br>36.5         | 53.5<br>52.7         | 33.9<br>31.4         | 47.6<br>23.5         | 66.4<br>53.4         |
| ( <b>ii</b> )  | Optimisation                 | Accumulation               | Round Robin                                              | 3.2B                 | 1.68s                   | 76.1                 | 39.8                 | 52.1                 | 33.2                 | 40.8                 | 62.9                 |
| ( <b>iii</b> ) | Tanh gating                  | 1                          | X                                                        | 3.2B                 | 1.74s                   | 78.4                 | 40.5                 | 52.9                 | 35.9                 | 47.5                 | 66.5                 |
| (iv)           | Cross-attention architecture | GATED<br>XATTN-DENSE       | VANILLA XATTN<br>GRAFTING                                | 2.4B<br>3.3B         | 1.16s<br>1.74s          | 80.6<br>79.2         | 41.5<br>36.1         | 53.4<br>50.8         | 32.9<br>32.2         | 50.7<br>47.8         | 66.9<br>63.1         |
| ( <b>v</b> )   | Cross-attention<br>frequency | Every                      | Single in middle<br>Every 4th<br>Every 2nd               | 2.0B<br>2.3B<br>2.6B | 0.87s<br>1.02s<br>1.24s | 71.5<br>82.3<br>83.7 | 38.1<br>42.7<br>41.0 | 50.2<br>55.1<br>55.8 | 29.1<br>34.6<br>34.5 | 42.3<br>50.8<br>49.7 | 59.8<br>68.8<br>68.2 |
| (vi)           | Resampler                    | Perceiver                  | MLP<br>Transformer                                       | 3.2B<br>3.2B         | 1.85s<br>1.81s          | 78.6<br>83.2         | 42.2<br>41.7         | 54.7<br>55.6         | 35.2<br>31.5         | 44.7<br>48.3         | 66.6<br>66.7         |
| (vii)          | Vision encoder               | NFNet-F6                   | CLIP ViT-L/14<br>NFNet-F0                                | 3.1B<br>2.9B         | 1.58s<br>1.45s          | 76.5<br>73.8         | 41.6<br>40.5         | 53.4<br>52.8         | 33.2<br>31.1         | 44.5<br>42.9         | 64.9<br>62.7         |
| viii)          | Freezing LM                  | ✓                          | <ul><li>✗ (random init)</li><li>✗ (pretrained)</li></ul> | 3.2B<br>3.2B         | 2.42s<br>2.42s          | 74.8                 | 31.5<br>33.7         | 45.6<br>47.4         | 26.9<br>31.0         | 50.1<br>53.9         | 57.8<br>62.7         |

|               | Ablated setting              | Flamingo-3B original value | Changed value                                            | Param.<br>count ↓    | Step<br>time ↓          | COCO<br>CIDEr↑       | OKVQA<br>top1↑       | VQAv2<br>top1↑       | MSVDQA<br>top1↑      | VATEX<br>CIDEr↑      | Overall<br>score↑    |
|---------------|------------------------------|----------------------------|----------------------------------------------------------|----------------------|-------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
|               |                              | Flamingo-3                 | 3 model                                                  | 3.2B                 | 1.74s                   | 86.5                 | 42.1                 | 55.8                 | 36.3                 | 53.4                 | 70.7                 |
| (i)           | Training data                | All data                   | w/o Video-Text pairs<br>w/o Image-Text pairs             | 3.2B<br>3.2B         | 1.42s<br>0.95s          | 84.2<br>66.3         | 43.0<br>39.2         | 53.9<br>51.6         | 34.5<br>32.0         | 46.0<br>41.6         | 67.3<br>60.9         |
| (1)           | Training Gata                | 7 m Gata                   | Image-Text pairs $\rightarrow$ LAION w/o M3W             | 3.2B<br>3.2B         | 1.74s<br>1.02s          | 79.5<br>54.1         | 41.4<br>36.5         | 53.5<br>52.7         | 33.9<br>31.4         | 47.6<br>23.5         | 66.4<br>53.4         |
| ( <b>ii</b> ) | Optimisation                 | Accumulation               | Round Robin                                              | 3.2B                 | 1.68s                   | 76.1                 | 39.8                 | 52.1                 | 33.2                 | 40.8                 | 62.9                 |
| (iii)         | Tanh gating                  | 1                          | X                                                        | 3.2B                 | 1.74s                   | 78.4                 | 40.5                 | 52.9                 | 35.9                 | 47.5                 | 66.5                 |
| (iv)          | Cross-attention architecture | GATED<br>XATTN-DENSE       | VANILLA XATTN<br>GRAFTING                                | 2.4B<br>3.3B         | 1.16s<br>1.74s          | 80.6<br>79.2         | 41.5<br>36.1         | 53.4<br>50.8         | 32.9<br>32.2         | 50.7<br>47.8         | 66.9<br>63.1         |
| ( <b>v</b> )  | Cross-attention frequency    | Every                      | Single in middle<br>Every 4th<br>Every 2nd               | 2.0B<br>2.3B<br>2.6B | 0.87s<br>1.02s<br>1.24s | 71.5<br>82.3<br>83.7 | 38.1<br>42.7<br>41.0 | 50.2<br>55.1<br>55.8 | 29.1<br>34.6<br>34.5 | 42.3<br>50.8<br>49.7 | 59.8<br>68.8<br>68.2 |
| (vi)          | Resampler                    | Perceiver                  | MLP<br>Transformer                                       | 3.2B<br>3.2B         | 1.85s<br>1.81s          | 78.6<br>83.2         | 42.2<br>41.7         | 54.7<br>55.6         | 35.2<br>31.5         | 44.7<br>48.3         | 66.6<br>66.7         |
| (vii)         | Vision encoder               | NFNet-F6                   | CLIP ViT-L/14<br>NFNet-F0                                | 3.1B<br>2.9B         | 1.58s<br>1.45s          | 76.5<br>73.8         | 41.6<br>40.5         | 53.4<br>52.8         | 33.2<br>31.1         | 44.5<br>42.9         | 64.9<br>62.7         |
| viii)         | Freezing LM                  | 1                          | <ul><li>✗ (random init)</li><li>✗ (pretrained)</li></ul> | 3.2B<br>3.2B         | 2.42s<br>2.42s          | 74.8<br>81.2         | 31.5<br>33.7         | 45.6<br>47.4         | 26.9<br>31.0         | 50.1<br>53.9         | 57.8<br>62.7         |

#### **Classification Results**

| Model        | Method           | Prompt size | shots/class | ImageNet<br>top 1 | Kinetics700<br>avg top1/5 |
|--------------|------------------|-------------|-------------|-------------------|---------------------------|
| SotA         | Fine-tuned       | -           | full        | 90.9 [127]        | 89.0 [ <b>134</b> ]       |
| SotA         | Contrastive      | -           | 0           | 85.7 [82]         | <b>69.6</b> [ <b>85</b> ] |
| NFNetF6      | Our contrastive  | 141         | 0           | 77.9              | 62.9                      |
|              |                  | 8           | 1           | 70.9              | 55.9                      |
| Flamingo-3B  | RICES            | 16          | 1           | 71.0              | 56.9                      |
| 0            |                  | 16          | 5           | 72.7              | 58.3                      |
|              |                  | 8           | 1           | 71.2              | 58.0                      |
| Flamingo-9B  | RICES            | 16          | 1           | 71.7              | 59.4                      |
|              |                  | 16          | 5           | 75.2              | 60.9                      |
|              | Random           | 16          | $\leq 0.02$ | 66.4              | 51.2                      |
|              |                  | 8           | 1           | 71.9              | 60.4                      |
| Flamingo-80B | RICES            | 16          | 1           | 71.7              | 62.7                      |
|              |                  | 16          | 5           | 76.0              | 63.5                      |
|              | RICES+ensembling | 16          | 5           | 77.3              | 64.2                      |

## **Strengths**

- The addition of extra layers while keeping the rest of the model frozen preserves knowledge of both models and is novel.
- The method is able to get very impressive results just using few input samples as demonstrations.
- The paper and appendix include a huge number of studies, justifying most of their model decisions, data decisions, parameter choices etc.

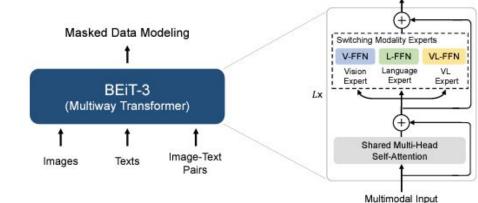
#### Weaknesses

- The spotlight flamingo model that gets the best results is exceptionally big at 80B parameters and making it quite cumbersome to use.
- The authors havent released their model and data, this is not a technical weakness but sets a bad precedent within the research community.
- Flamingo performs worse than its vision encoder on image classification.

#### Language Is Not All You Need: Aligning Perception with Language Models

#### Kosmos-1: Key Takeaways

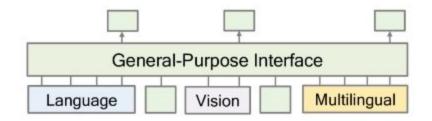
- A large multimodal LLM that can perceive general modalities, perform zero shot and few shot learning.
- Trained on a web scale multimodal corpora containing interleaved text and images.
- Kosmos-1 demonstrates impressive capabilities across, vision, language and perception language tasks.
- They evaluate on unique tasks like multimodal chain of thought reasoning, OCR free NLP and a novel nonverbal reasoning test.


#### **Related Works**

#### • MetaLM[2]: LLMs are general purpose interfaces

• Any input and output format that can be converted to text token can be a LLM usecase.

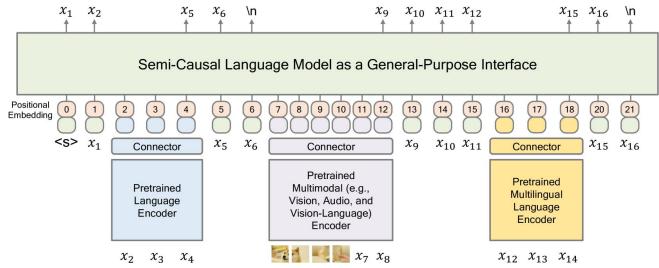
#### • Extending LLMs to multimodal tasks


- Flamingo[3]: Large MLLM for few shot learning
- BeIT[9]: masked language modelling on images, text, and pairs in a unified manner



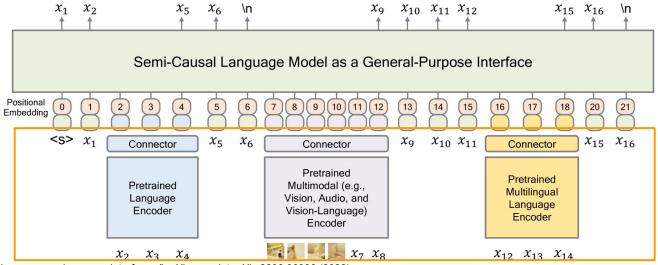
Wang, Wenhui, et al. "Image as a foreign language: Beit pretraining for all vision and vision-language tasks." arXiv preprint arXiv:2208.10442 (2022).

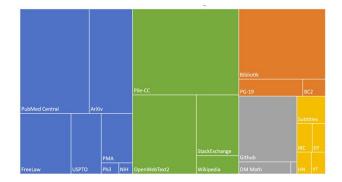
#### Kosmos - 1: Overview


- Kosmos 1 follows the same philosophy as the MetaLM and treats language models as a universal task layer.
- It builds on MetaLM, trains on more multimodal data, uses interleaved inputs.

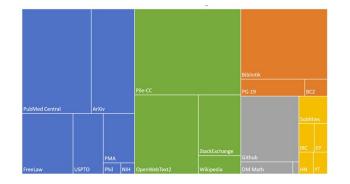


#### MetaLM


### Meta LM: Language models are a general purpose Interface


• MetaLM proposes to use LMs as a general interface for all kinds of input like video, images, multilingual etc.




### Meta LM: Language models are a general purpose Interface

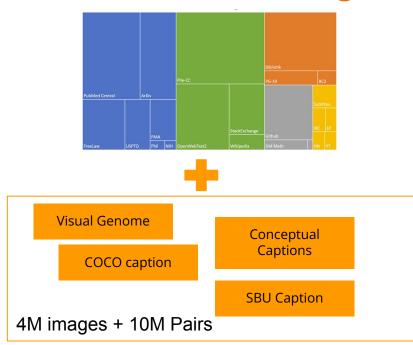
• MetaLM proposes to use LMs as a general interface for all kinds of input like video, images, multilingual etc.



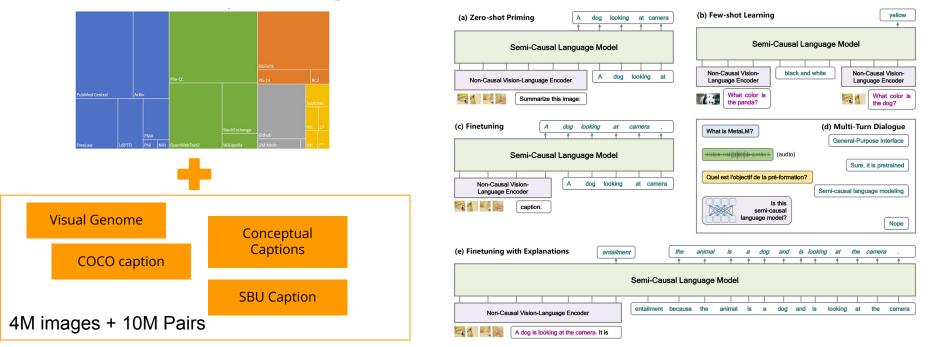


Train on PILE for language only Tasks




Train on PILE for language only Tasks

#### positive Text (IMDB) Labour says It will keep .. IMDB (Sentiment) XSum (Summarv) I got this as part of a competition prize ... Semi-Causal Language Model Semi-Causal Language Model Text (XSum) Pensions currently rise by the highest Labour says it Non-Causal Encoder Non-Causal Encoder will keep . Summary (XSum) Labour says it will Determine the sentiment: [Text] </s> OPTIONS: Summarize this article: [Text] keep the ... positive </s> negative </s>TARGET: </s> TARGET: (b) Multi-Turn Dialogue Better than Windows 8 An operating system Microsoft Semi-Causal Language Model An operating system Microsoft Better than Windows Non-Causal Encoder Non-Causal Encoder Non-Causal Encoder What is Windows 11? What do you think of it? Who released it? (c) Zero-Shot Priming (d) In-Context Learning David Gahan Positive Semi-Causal Language Model Semi-Causal Language Model David Non-Causa Positive Non-Causal Negative Non-Causal Non-Causal Encoder Encoder Encoder Encoder Who is the lead singer of depeche mode? Great A: Not happy, A: Have fun. A:

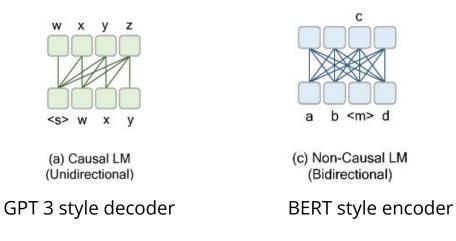

#### Evaluate on a Number of Tasks

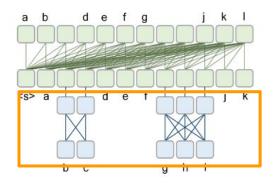
Hao, Yaru, et al. "Language models are general-purpose interfaces." arXiv preprint arXiv:2206.06336 (2022).

#### (a) Multitask Learning / Instruction Tuning



Train on PILE with Image-caption datasets

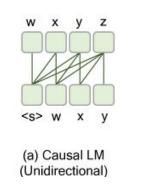




Train on PILE with Image-caption datasets

Evaluate on a number of tasks

#### Meta LM: Model Architecture

• Introduces a new semi-causal architecture that jointly learns with a combination of pretrained encoders each focusing on a modality.








#### Meta LM: Model Architecture

• Introduces a new semi-causal architecture that jointly learns with a combination of pretrained encoders each focusing on a modality.



GPT 3 style decoder

c a b <m> d

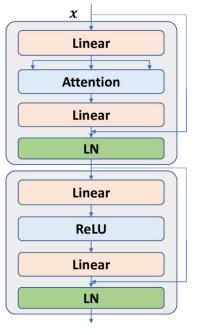
(c) Non-Causal LM (Bidirectional) BERT style encoder



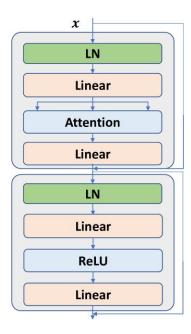


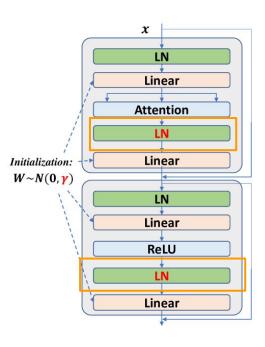
#### **Meta LM: Loss Function**

• Trains on a semi causal modelling objective, where the model predicts the text token given the representations of previous tokens from bidirectional encoders.


$$\max \sum_{i=0}^{k} \sum_{t=e_{i}}^{s_{(i+1)}} \log P(x_{t} \mid \boldsymbol{x}_{< t}, \{\boldsymbol{h}(\boldsymbol{x}_{s_{j}}^{e_{j}})\}_{j < i})$$

Here H(X) is the encoder function for each span which can be text or image.


## **Going from MetaLM to Kosmos-1**


- Kosmos-1 trains a model with 24 layers with a hidden dimension size of 2048 and 32 attention heads, totalling to 1.3B parameters similar to MetaLM.
- They change the default transformer module to the **magento[10]** module.

### **Background: Magento Module vs Other methods**









ViT, GPT

Magneto

## **Going from MetaLM to Kosmos-1**

- Kosmos-1 trains a model with 24 layers with a hidden dimension size of 2048 and 32 attention heads, totalling to 1.3B parameters similar to MetaLM.
- They change the default transformer to the **magento**[10] module
- They use Extrapolatable position embedding (**xPos**)[11] which generalizes better at long term dependencies.

| T d                    | 256           | 512   | 1024  | 2048          | 4096    |  |
|------------------------|---------------|-------|-------|---------------|---------|--|
| Length                 | Interpolation |       |       | Extrapolation |         |  |
| Transformer            | 46.34         | 36.39 | 29.94 | 132.63        | 1283.79 |  |
| Alibi                  | 37.66         | 29.92 | 24.99 | 23.14         | 24.26   |  |
| Roformer               | 38.09         | 30.38 | 25.52 | 73.6          | 294.45  |  |
| LEX Transformer (Ours) | 34.3          | 27.55 | 23.31 | 21.6          | 20.73   |  |

## **Going from MetaLM to Kosmos-1**

- Kosmos-1 trains a model with 24 layers with a hidden dimension size of 2048 and 32 attention heads, totalling to 1.3B parameters similar to MetaLM.
- They change the default transformer to the **magento**[10] module.
- They use Extrapolatable position embedding (**xPos**)[11] which generalizes better at long term dependencies.
- Trains with the semi causal next token prediction task, minimizing log likelihood.

### **Kosmos-1: Input Format**

Text:

<s> Kosmos-1 can perceive multimodal input, learn in context, and generate output. </s>

### Image-Caption:

<s> <image> Image Embedding </image> WALL-E giving potted plant to EVE. </s>

### Multimodal:

<s> <image> Image Embedding </image> This is WALL-E. <image> Image Embedding </image> This is EVE. </s>

### Kosmos - 1: Other Details

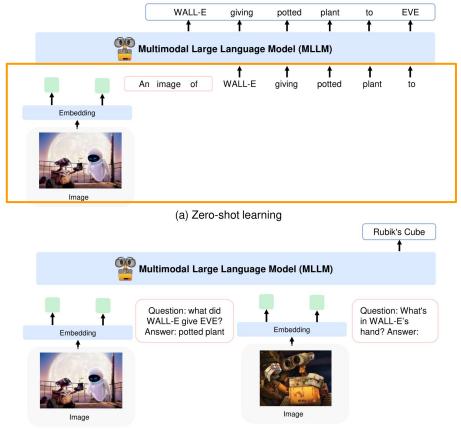
- **Vision Encoder:** CLIP ViT-L/14 that has been frozen except for the last layer.
- **Image preprocessing**: resized to 224 x 224
- **Tokenizer:** SentencePiece
- **Optimizer:** AdamW
- **Batch Size:** 1.2M tokens (0.5M tokens from text corpora, 0.5M tokens from image-caption pairs, and 0.2M tokens from interleaved data)

• **TextData:** Subset of the PILE dataset and common Crawl.

| Datasets          | Tokens (billion) | Weight (%) | Epochs            |
|-------------------|------------------|------------|-------------------|
| OpenWebText2      | 14.8             | 21.8%      | 1.47              |
| CC-2021-04        | 82.6             | 17.7%      | 0.21              |
| Books3            | 25.7             | 16.2%      | 0.63              |
| CC-2020-50        | 68.7             | 14.7%      | 0.21              |
| Pile-CC           | 49.8             | 10.6%      | 0.21              |
| Realnews          | 21.9             | 10.2%      | 0.46              |
| Wikipedia         | 4.2              | 5.4%       | 1.29              |
| BookCorpus2       | 1.5              | 1.1%       | 0.75              |
| Gutenberg (PG-19) | 2.7              | 1.0%       | 0.38              |
| CC-Stories        | 5.3              | 1.0%       | 0.19 <b>277.5</b> |
| NIH ExPorter      | 0.3              | 0.2%       | 0.75 Tokens       |

- **TextData:** Subset of the PILE dataset and common Crawl.
- Image-caption pairs: Collection of Several image caption datasets

| Datasets          | Tokens (billion) | Weight (%) | Epochs                 |
|-------------------|------------------|------------|------------------------|
| OpenWebText2      | 14.8             | 21.8%      | 1.47                   |
| CC-2021-04        | 82.6             | 17.7%      | 0.21                   |
| Books3            | 25.7             | 16.2%      | 0.63                   |
| CC-2020-50        | 68.7             | 14.7%      | 0.21                   |
| Pile-CC           | 49.8             | 10.6%      | 0.21                   |
| Realnews          | 21.9             | 10.2%      | 0.46                   |
| Wikipedia         | 4.2              | 5.4%       | 1.29                   |
| BookCorpus2       | 1.5              | 1.1%       | 0.75                   |
| Gutenberg (PG-19) | 2.7              | 1.0%       | 0.38                   |
| CC-Stories        | 5.3              | 1.0%       | <sub>0.19</sub> 277.5B |
| NIH ExPorter      | 0.3              | 0.2%       | 0.75 Tokens            |
|                   |                  |            |                        |
|                   | +                |            |                        |
| LAION 2B          | LAION 400M       | СОУС       | ) 700M                 |


- **TextData:** Subset of the PILE dataset and common Crawl.
- Image-caption pairs: Collection of Several image caption datasets
- Interleaved Data: documents containing images with text.

| Datasets                  | Tokens (billion) | Weight (%) | Epochs      |
|---------------------------|------------------|------------|-------------|
| OpenWebText2              | 14.8             | 21.8%      | 1.47        |
| CC-2021-04                | 82.6             | 17.7%      | 0.21        |
| Books3                    | 25.7             | 16.2%      | 0.63        |
| CC-2020-50                | 68.7             | 14.7%      | 0.21        |
| Pile-CC                   | 49.8             | 10.6%      | 0.21        |
| Realnews                  | 21.9             | 10.2%      | 0.46        |
| Wikipedia                 | 4.2              | 5.4%       | 1.29        |
| BookCorpus2               | 1.5              | 1.1%       | 0.75        |
| Gutenberg (PG-19)         | 2.7              | 1.0%       | 0.38        |
| CC-Stories                | 5.3              | 1.0%       | 0.19 277.5E |
| NIH ExPorter              | 0.3              | 0.2%       | 0.75 Tokens |
|                           | +                |            |             |
|                           | +                |            |             |
| LAION 2B                  | LAION 400M       | СОУС       | ) 700M      |
| LAION 2B<br>Conceptual Ca |                  |            |             |
| Conceptual Ca             |                  | 3.         | ) 700M      |

- **TextData:** Subset of the PILE dataset and common Crawl.
- Image-caption pairs: Collection of Several image caption datasets
- Interleaved Data: documents containing images with text.
- Language only instruction data: Unnatural Instructions and FLANv2

| Datasets                  | Tokens (billion)             | Weight (%) | Epochs                          |    |
|---------------------------|------------------------------|------------|---------------------------------|----|
| OpenWebText2              | 14.8                         | 21.8%      | 1.47                            |    |
| CC-2021-04                | 82.6                         | 17.7%      | 0.21                            |    |
| Books3                    | 25.7                         | 16.2%      | 0.63                            |    |
| CC-2020-50                | 68.7                         | 14.7%      | 0.21                            |    |
| Pile-CC                   | 49.8                         | 10.6%      | 0.21                            |    |
| Realnews                  | 21.9                         | 10.2%      | 0.46                            |    |
| Wikipedia                 | 4.2                          | 5.4%       | 1.29                            |    |
| BookCorpus2               | 1.5                          | 1.1%       | 0.75                            |    |
| Gutenberg (PG-19)         | 2.7                          | 1.0%       | 0.38<br>0.10 277.5B             |    |
| CC-Stories                | 5.3                          | 1.0%       | 0.19 277.58                     |    |
| NIH ExPorter              | 0.3                          | 0.2%       | 0.75 Tokens                     |    |
|                           |                              | 601/6      |                                 |    |
| LAION 2B                  | LAION 400M                   | СОУС       | ) 700M                          |    |
| LAION 2B<br>Conceptual Ca |                              |            | <mark>) 700M</mark><br>1B pairs |    |
| Conceptual Ca             |                              | 3.         |                                 | ts |
| Conceptual Ca             | aptions<br>leaved data<br>FL | 3.         | 1B pairs                        | ts |

### **Kosmos-1: Evaluation Format**



(b) Few-shot learning

### **Evaluation Tasks**

| Dataset             | Task description                                 | Metric      | Zero-shot | Few-shot |
|---------------------|--------------------------------------------------|-------------|-----------|----------|
| Language tasks      |                                                  |             |           |          |
| StoryCloze [34]     | Commonsense reasoning                            | Accuracy    | 1         | 1        |
| HellaSwag [61]      | Commonsense NLI                                  | Accuracy    | 1         | 1        |
| Winograd [28]       | Word ambiguity                                   | Accuracy    | 1         | 1        |
| Winogrande [40]     | Word ambiguity                                   | Accuracy    | 1         | 1        |
| PIQA [8]            | Physical commonsense                             | Accuracy    | 1         | 1        |
| BoolQ [11]          | Question answering                               | Accuracy    | 1         | 1        |
| CB [16]             | Textual entailment                               | Accuracy    | 1         | 1        |
| COPA [37]           | Causal reasoning                                 | Accuracy    | 1         | 1        |
| Rendered SST-2 [38] | OCR-free sentiment classification                | Accuracy    | 1         |          |
| HatefulMemes [25]   | OCR-free meme classification                     | ROC AUC     | 1         |          |
| Cross-modal trans   | fer                                              |             |           |          |
| RelativeSize [5]    | Commonsense reasoning (object size)              | Accuracy    | 1         |          |
| MemoryColor [36]    | Commonsense reasoning (object color)             | Accuracy    | 1         |          |
| ColorTerms [4]      | Commonsense reasoning (object color)             | Accuracy    | 1         |          |
| Nonverbal reasoni   | ng tasks                                         |             |           |          |
| IQ Test             | Raven's Progressive Matrices                     | Accuracy    | 1         |          |
| Perception-langua   | ge tasks                                         |             |           |          |
| COCO Caption [32]   | Image captioning                                 | CIDEr, etc. | 1         | 1        |
| Flicker30k [60]     | Image captioning                                 | CIDEr, etc. | 1         | 1        |
| VQAv2 [18]          | Visual question answering                        | VQA acc.    | 1         | 1        |
| VizWiz [19]         | Visual question answering                        | VQA acc.    | 1         | 1        |
| WebSRC [14]         | Web page question answering                      | F1 score    | 1         |          |
| Vision tasks        |                                                  |             |           |          |
| ImageNet [15]       | Zero-shot image classification                   | Top-1 acc.  | 1         |          |
| CUB [51]            | Zero-shot image classification with descriptions | Accuracy    | 1         |          |

# **Image Captioning**

### Kosmos-1 is able to outperform both 3B and 9B Flamingo models while being only 1.6B

| Model           | CO           | CO    | Flick | r30k        |
|-----------------|--------------|-------|-------|-------------|
| Model           | CIDEr        | SPICE | CIDEr | SPICE       |
| ZeroCap         | 14.6         | 5.5   | -     | -           |
| VLKD            | 58.3         | 13.4  | -     | -           |
| FewVLM          | 1.70         | -     | 31.0  | 10.0        |
| METALM          | 82.2         | 15.7  | 43.4  | 11.7        |
| Flamingo-3B*    | 73.0         | -     | 60.6  | -           |
| Flamingo-9B*    | 79.4         | -     | 61.5  | -           |
| Kosmos-1 (1.6В) | <b>84.</b> 7 | 16.8  | 67.1  | <b>14.5</b> |
| Flamingo (80B)  | 84.3         | _     | 67.2  | _           |

### Zero Shot results on COCO caption karpathy split

# **Image Captioning**

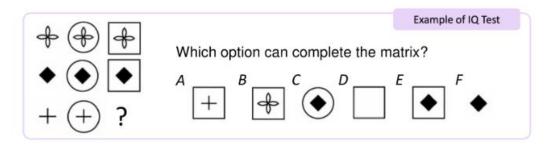
### Kosmos-1 Performs degrades when number of shots are increased from 4

| Model           | COCO  |               | Flickr30 |       | 0k    |               |
|-----------------|-------|---------------|----------|-------|-------|---------------|
| Model           | k = 2 | k = 4         | k = 8    | k = 2 | k = 4 | k = 8         |
| Flamingo-3B     | -     | 85.0          | 90.6     | -     | 72.0  | 71.7          |
| Flamingo-9B     | -     | 93.1          | 99.0     | -     | 72.6  | 73.4          |
| Kosmos-1 (1.6В) | 99.6  | <b>101.</b> 7 | 96.7     | 70.0  | 75.3  | 68.0          |
|                 |       |               | K = 32   |       |       | <i>k</i> = 32 |
| Flamingo - 3B   |       |               | 99.0     |       |       | 71.2          |
| Flamingo - 9B   |       |               | 106.3    |       |       | 72.8          |

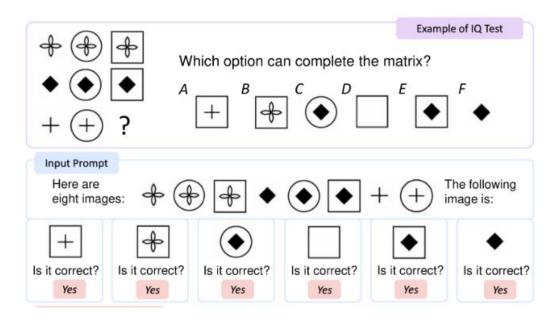
Zero Shot results on COCO caption karpathy split

## **Visual Question answering**

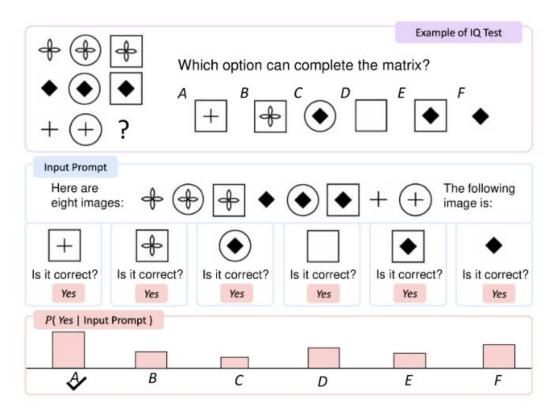
### Kosmos-1 outperforms Flamingo on VizWiz


| Model           | VQAv2 | VizWiz |
|-----------------|-------|--------|
| Frozen          | 29.5  | -      |
| VLKDViT-B/16    | 38.6  | -      |
| METALM          | 41.1  | -      |
| Flamingo-3B*    | 49.2  | 28.9   |
| Flamingo-9B*    | 51.8  | 28.8   |
| Kosmos-1 (1.6В) | 51.0  | 29.2   |
| Flamingo (80B)  | 56.3  | 31.6   |

## **Visual Question Answering**


Kosmos - 1 does better in k=2,4 but does poorly with higher K

| Model           | VQAv2 |              |        |       | VizWiz | Z      |
|-----------------|-------|--------------|--------|-------|--------|--------|
| Model           | k = 2 | <i>k</i> = 4 | k = 8  | k = 2 | k = 4  | k = 8  |
| Frozen          | 2     | 38.2         | 1      | 020   | 120    | 2      |
| METALM          | 2     | 45.3         | -      | -     | -      | 2      |
| Flamingo-3B     | -     | 53.2         | 55.4   | -     | 34.4   | 38.4   |
| Flamingo-9B     | -     | 56.3         | 58.0   | -     | 34.9   | 39.4   |
| Kosmos-1 (1.6В) | 51.4  | 51.8         | 51.4   | 31.4  | 35.3   | 39.0   |
|                 |       |              | k = 32 | 2     |        | k = 32 |
| Flamingo - 3B   |       |              | 57.1   |       |        | 45.5   |
| Flamingo - 9B   |       |              | 60.4   |       |        | 44.0   |






IQ-Test



IQ-Test



IQ-Test



| Method                               | Accuracy |
|--------------------------------------|----------|
| Random Choice                        | 17%      |
| Kosmos-1                             | 22%      |
| w/o language-only instruction tuning | 26%      |

### Results

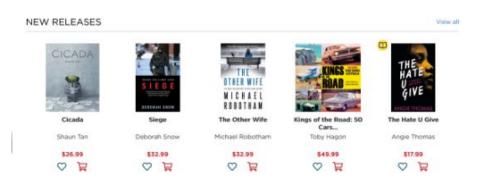
## **OCR Free Language understanding**



It's clear the filmmakers weren't sure where they wanted their story to go, and even more clear that they lack the skills to get us to this undetermined destination.

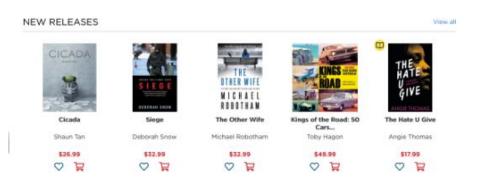
"Question: does this picture contain real hate speech? Answer: {answer}"

"Question: what is the sentiment of the opinion? Answer: {answer}"


Kiela, Douwe, et al. "The hateful memes challenge: Detecting hate speech in multimodal memes." Advances in Neural Information Processing Systems 33 (2020): 2611-2624.

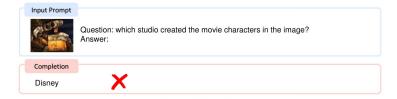
## **OCR Free Language understanding**

Kosmos -1 models dont uses OCR text whereas flamingo models do use them

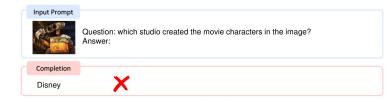

| Model           | HatefulMemes | Rendered SST-2 |
|-----------------|--------------|----------------|
| CLIP ViT-B/32   | 57.6         | 59.6           |
| CLIP ViT-B/16   | 61.7         | 59.8           |
| CLIP ViT-L/14   | 63.3         | 64.0           |
| Flamingo-3B     | 53.7         | -              |
| Flamingo-9B     | 57.0         | -              |
| Kosmos-1 (1.6В) | 63.9         | 67.1           |
| Flamingo (80B)  | 46.4         | -              |

# WEb page Question answering




"Given the context below from web page, extract the answer from the given text like this: Question: Who is the publisher of this book? Answer: Penguin Books Ltd. Context: {WebText} Q: {question} A: {answer} "

# WEb page Question answering




| Models          | EM            | <b>F1</b> |
|-----------------|---------------|-----------|
| Using extracted | d text        |           |
| LLM             | 7.6           | 17.9      |
| Kosmos-1        | 15.8          | 31.3      |
| Without using   | extracted tex | t         |
| Kosmos-1        | 3.8           | 10.6      |

"Given the context below from web page, extract the answer from the given text like this: Question: Who is the publisher of this book? Answer: Penguin Books Ltd. Context: {WebText} Q: {question} A: {answer} "



### **Standard Prompting**



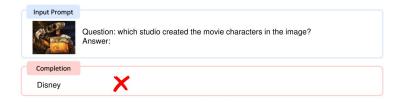
### Standard Prompting

### Chain-of-Thought Prompting



Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.


Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

### Model Output

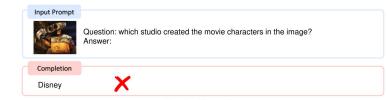
A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9.

Chain of thought prompting for language

Wei, Jason, et al. "Chain of thought prompting elicits reasoning in large language models." arXiv preprint arXiv:2201.11903 (2022). Huang, Shaohan, et al. "Language Is Not All You Need: Aligning Perception with Language Models." arXiv preprint arXiv:2302.14045 (2023).



### **Standard Prompting**


#### Input Prompt



Introduce this picture in detail:

#### Completion

It is a robot that is holding up a cube that is the same color as the wall. The image is from the film, WALL-E, by Pixar Animation Studios. It is the story of a small robot named WALL-E and his quest to build the ultimate life form. WALL-E is created by a group...



### **Standard Prompting**

#### Input Prompt



Introduce this picture in detail:

#### Completion

It is a robot that is holding up a cube that is the same color as the wall. The image is from the film, WALL-E, by Pixar Animation Studios. It is the story of a small robot named WALL-E and his quest to build the ultimate life form. WALL-E is created by a group...

#### Input Prompt



It is a robot that is holding up a cube that is the same color as the wall. The image is from the film, WALL-E, by Pixar Animation Studios. It is the story...

Question: which studio created the movie characters in the image? Answer:

Completion

Pixar Animation Studios



### Multimodal chain of thought

| Models                      | Accuracy |
|-----------------------------|----------|
| CLIP ViT-B/32               | 59.6     |
| CLIP ViT-B/16               | 59.8     |
| CLIP ViT-L/14               | 64.0     |
| Козмоз-1                    | 67.1     |
| w/ multimodal CoT prompting | 72.9     |





Introduce this picture in detail:

#### Completion

It is a robot that is holding up a cube that is the same color as the wall. The image is from the film, WALL-E, by Pixar Animation Studios. It is the story of a small robot named WALL-E and his quest to build the ultimate life form. WALL-E is created by a group...

#### Input Prompt



It is a robot that is holding up a cube that is the same color as the wall. The image is from the film, WALL-E, by Pixar Animation Studios. It is the story...

Question: which studio created the movie characters in the image? Answer:

Completion

Pixar Animation Studios

### Multimodal chain of thought

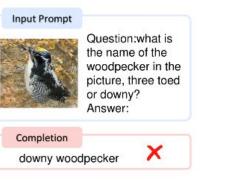
### Zero shot image classification



### Input is "The photo of the" and output is constrained to 1K classes

Deng, Jia, et al. "Imagenet: A large-scale hierarchical image database." 2009 IEEE conference on computer vision and pattern recognition. leee, 2009.

### Zero shot image classification




| Model    | Without Constraints | With Constraints |
|----------|---------------------|------------------|
| GIT [58] | 1.9                 | 33.5             |
| Kosmos-1 | 4.0                 | 38.1             |

Input is "The photo of the" and output is constrained to 1K classes

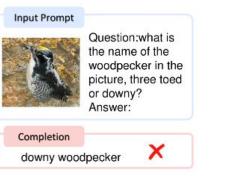
Deng, Jia, et al. "Imagenet: A large-scale hierarchical image database." 2009 IEEE conference on computer vision and pattern recognition. leee, 2009.

## Zero shot Image classification with Descriptions



### Input Prompt

Description of three toed woodpecker: It has black and white stripes throughout the body and a yellow crown. Description of downy woodpecker: It has white spots on its black wings and some red on its crown.




Question:what is the name of the woodpecker in the picture? Answer:

Completion

three toe woodpecker

### Zero shot Image classification with Descriptions



### Input Prompt

Description of three toed woodpecker: It has black and white stripes throughout the body and a yellow crown. Description of downy woodpecker: It has white spots on its black wings and some red on its crown.



Question:what is the name of the woodpecker in the picture? Answer:

Completion

three toe woodpecker



| Settings             | Accuracy |
|----------------------|----------|
| Without Descriptions | 61.7     |
| With Descriptions    | 90.0     |

# Language Tasks

# MLLM trained on the text corpora as an LLM is the baseline

| Task       | Zero-shot    |          | One-shot |          | <b>Few-shot</b> $(k = 4)$ |          |
|------------|--------------|----------|----------|----------|---------------------------|----------|
| Task       | LLM          | Kosmos-1 | LLM      | Kosmos-1 | LLM                       | Kosmos-1 |
| StoryCloze | 72.9         | 72.1     | 72.9     | 72.2     | 73.1                      | 72.3     |
| HellaSwag  | 50.4         | 50.0     | 50.2     | 50.0     | 50.4                      | 50.3     |
| Winograd   | 71.6         | 69.8     | 71.2     | 68.4     | 70.9                      | 69.8     |
| Winogrande | <b>56.</b> 7 | 54.8     | 56.7     | 54.5     | 57.0                      | 55.7     |
| PIQA       | 73.2         | 72.9     | 73.0     | 72.5     | 72.6                      | 72.3     |
| BoolQ      | 56.4         | 56.4     | 55.1     | 57.2     | 58.7                      | 59.2     |
| CB         | 39.3         | 44.6     | 41.1     | 48.2     | 42.9                      | 53.6     |
| COPA       | 68.0         | 63.0     | 69.0     | 64.0     | 69.0                      | 64.0     |
| Average    | 61.1         | 60.5     | 61.2     | 60.9     | 61.8                      | 62.2     |

### **Cross Modal Transfer**

Comparing Kosmos-1 trained with and without language-only instruction tuning on V+L tasks.

| Model                                | сосо | Flickr30k | VQAv2 | VizWiz |
|--------------------------------------|------|-----------|-------|--------|
| Kosmos-1                             | 84.7 | 67.1      | 51.0  | 29.2   |
| w/o language-only instruction tuning | 87.6 | 65.2      | 46.7  | 27.9   |

### **Cross Modal Transfer**

Comparing Kosmos-1 trained with and without language-only instruction tuning on V+L tasks.

| Model                                | сосо | Flickr30k | VQAv2 | VizWiz |
|--------------------------------------|------|-----------|-------|--------|
| Козмоз-1                             | 84.7 | 67.1      | 51.0  | 29.2   |
| w/o language-only instruction tuning | 87.6 | 65.2      | 46.7  | 27.9   |

Comparing Kosmos-1 and LLM baseline on common sense reasoning tasks.

| Model      | Size Reasoning     | <b>Color Reasoning</b> |              |  |
|------------|--------------------|------------------------|--------------|--|
| model      | RelativeSize       | MemoryColor            | R COLORTERMS |  |
| Using retr | ieved images       |                        |              |  |
| VALM [53]  | 85.0               | 58.6                   | 52.7         |  |
| Language-  | only zero-shot eva | luation                |              |  |
| LLM        | 92.7               | 61.4                   | 63.4         |  |
| Kosmos-1   | 94.2               | 76.1                   | 73.1         |  |

## **Strengths**

- Kosmos 1 uses fewer parameters than Flamingo models but is competitive on results and often outperforms.
- Unlike Flamingo their zero shot evaluation methods dont use two mock demonstrations.
- They train their models on open source datasets.

### Weaknesses

- Kosmos 1 seems to be scaling poorly to higher K, also it should be noted that they haven't done experiments for K = 32 a setting at which Flamingo does best and can outperform kosmos-1.
- Kosmos 1 seems to be doing poorly on classification tests, when looking at imagenet results and it performs well only with instructions, which may not be available at all times.
- Even though kosmos 1 can ingest interleaved multimodal input, they have not performed any experiments around video reasoning tasks.

### **Future Work**

- Authors can try to scale the models so that their sizes can be comparable to Flamingo for an apples to apples comparison.
- Authors can try to incorporate more modalities into their model, such as video etc.
- Authors can look into distillation methods to create smaller models when they scale up.

### Discussion

- Do you think not releasing models and datasets to the public hurts future research ?
- IQ tests seem like a effective method to learn how close a model is to human intelligence. Can we train models that do well on theses tests, have logic and pattern recognition skills?

### References

- 1. Brown, Tom, et al. "Language models are few-shot learners." Advances in neural information processing systems 33 (2020): 1877-1901.
- 2. Hao, Yaru, et al. "Language models are general-purpose interfaces." arXiv preprint arXiv:2206.06336 (2022).
- 3. Alayrac, Jean-Baptiste, et al. "Flamingo: a visual language model for few-shot learning." arXiv preprint arXiv:2204.14198 (2022).
- 4. Huang, Shaohan, et al. "Language Is Not All You Need: Aligning Perception with Language Models." arXiv preprint arXiv:2302.14045 (2023).
- 5. Hoffmann, Jordan, et al. "Training compute-optimal large language models." arXiv preprint arXiv:2203.15556 (2022).
- 6. Tsimpoukelli, Maria, et al. "Multimodal few-shot learning with frozen language models." Advances in Neural Information Processing Systems 34 (2021): 200-212.
- 7. Aghajanyan, Armen, et al. "Cm3: A causal masked multimodal model of the internet." arXiv preprint arXiv:2201.07520 (2022).
- 8. Brock, Andy, et al. "High-performance large-scale image recognition without normalization." International Conference on Machine Learning. PMLR, 2021.
- 9. Wang, Wenhui, et al. "Image as a foreign language: Beit pretraining for all vision and vision-language tasks." arXiv preprint arXiv:2208.10442 (2022).
- 10. Wang, Hongyu, et al. "Foundation transformers." arXiv preprint arXiv:2210.06423 (2022).
- 11. Sun, Yutao, et al. "A Length-Extrapolatable Transformer." arXiv preprint arXiv:2212.10554 (2022).