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Overview

e Background: CLIP
e Prompt Learning for VL models: CoOp
e Conditional Prompt learning for VL models: CoCoOp

e Test-time prompt learning for VL models: TPT



Background: Contrastive Language-image Pretraining

e Abridge between computer vision and natural language processing

e A multimodal model built on hundreds of millions of images and captions

e (Canreturn the best caption given an image

e Has impressive "zero-shot" capabilities, making it able to accurately predict entire

classes it's never seen before



Background: CLIP

Previous datasets might be large but lack of corresponding textual description

e YFCC100M shrunk by a factor of 6 to only 15m photos.

e Constructed a new dataset of 400 million image text pairs
o  Get queries from wikepedia
o Use queries to search for image-text pairs

e Collect around 20,000 pairs for 500,000 queries so that the data is balanced



Background: CLIP

(1) Contrastive pre-training
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Figure 1. Summary of our approach. While standard image models jointly train an image feature extractor and a linear classifier to predict
some label, CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text) training
examples. At test time the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or descriptions of the

target dataset’s classes.



Background: CLIP
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Background: CLIP

Weaknesses?

e Zero-shot performance well worse than fine-tuned SotA
e Does not work well with image regions
e Sensitive to prompt wording

o  Polysemy, some images are tagged with just a class label and not a full-text prompt
o  “Boxer” as a type of dog, but perceived as an athlete



Learning to Prompt p—

As an Al language model, | don't have feelings or emotions like humans do, but I'm
functioning properly and ready to assist you with any questions or concerns you may have.

How can | help you today?

From NLP:

F Translate "how are you" in French

Large pre-trained language models

"How are you" in French is "Comment allez-vous?"

'S Regenerate response



Learning to Prompt

Previous visual recognition system:

e ResNetor ViT: Limited in closed-set concepts; New categories requires more data for learning

new classifiers
e CLIPand ALIGN: align images and raw texts using two separate encoders; By pre-training at alarge

scale, models can learn diverse concepts and readily be transferred to different downstream tasks.
e Natural language is used to reference learned visual concepts



Learning to Prompt

Text prompt plays a key
role in downstream
datasets.

Different prompts lead to
different performance

But how do we identify
the right prompt?

Caltech101 Prompt Accuracy
a [CLASS]. 82.68
a photo of [CLASS]. 80.81
a photo of a [CLASS). 86.29
V] [V]; ... [V [CLASS]). 91.83
(@)
Describable Textures (DTD) Prompt Accuracy
o oo { 2photoofa[CLASS]. 39.83

a photo of a [CLASS] texture. ~ 40.25
5% [CLASS] texture. 4232
(V1 [V]: ... [Vl [CLASS]. 63.58

(c)

Flowers102

Prompt
a photo of a [CLASS].

a flower photo of a [CLASS].

a photo of a [CLASS), a type of flower.

(V1 [V]; ... [V]m [CLASS].
(b)
Prompt
a photo of a [CLASS).

a satellite photo of [CLASS].
a centered satellite photo of [CLASS].
(V11 [VI; ... VI [CLASS).

(d)

Accuracy
60.86

65.81
66.14

94.51

Accuracy
2417

37.46
37.56

83.53



Learning to Prompt for Vision-Language Models
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Learning to Prompt for Vision-Language Models

Average over 11 datasets

CoOp is a strong few-shot learner, &
requiring only two shots on average to ™
get decent margin over CLIP ]
"]
Given 16 shots for training, the average §”
501 —— CLIP + CoOp (M=16, end}
gap brought by CoOp cin be further N T o
increased to around 15% + CLIP + CoOp (M=16, end, CSC)
40 —e— CLIP + CoOp (M=16, mid, CSC)
« Linear probe CLIP
35

012 4 & 16
Number of labeled training examples per class



Learning to Prompt for Vision-Language Models

Specialized tasks (e.g. EuroSAT, DTD)
increase over 45% and 20% respectively

Better performance on most fine-grained
datasets (e.g. Flowers102, StanfordCars)

Improvement on OxfordPets and
Food101 are less appealing

CLIP + CoOp (M=16, end) vs, Zero-Shot CLIP

Flowers102 4 [ IRy
StanfordCars 1 _ 17.7%
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FGVCAircraft 4 -13.93
SUN397 4 [ Bt
Caltech101 1 [ X
Imagenet 1 | R
OxtforgPets - l+ 1.24
Foad101 4 .-2.64
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Learning to Prompt for Vision-Language Models

Loss of momentum in performance

improvement for OxfordPets and Food101.

Could be overfitting

CoOp demonstrates clear advantages over
the linear probe model

On average, using unified context leads to
better performance
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Learning to Prompt for Vision-Language Models

Source Target
Domain Generalization: Method ImageNet -v2 -Sketch -A R

ResNet-50

e  Comparison with zero-shot CLIP on it e yerof oo G

robustness to distribution shift using ARiCOpM=1 2% ol zop.

. .. CLIP + CoOp (M =4) 63.33 55.40 34.67 23.06 56.60
different vision backbones ResNet-101

e CoOpenhances CLIP's robustness to . = 22 =2 =

distribution shifts, despite the exposure to CLIP + CoOp (M=16) 66.60 66 3908 88 6300

CLIP + CoOp (M =4) 65.98 58.60 40.40 29.60 64.98

the source dataset VITB/32

e Linear probe model obtains much worse s s Y o i s

. . | . Linear Probe CLIP 59.58 49.73 28.06 19.67 47.20

results, exposing its weakness in domain CLIP + CoOp (M=16) 6685 58.08 40.44 3062 64.45

ge nera I ization. 5:::-1;71?)% (M=4) 66.34 58.24 4148 3134 65.78

Zero-Shot CLIP 66.73 60.83 46.15 47.17 73.96

Linear Probe CLIP 65.85 56.26 34.77 35.68 58.43

CLIP + CoOp (M =16) 71.92 64.18 46.71 48.41 74.32

CLIP + CoOp (M =4) 71.73 64.56 47.89 49.93 75.14




Learning to Prompt for Vision-Language Models

Further Analysis:

e Shorter context length benefits domain generalization, longer for better performance
e CoOpoutperforms prompt ensembling
e Randomiinitialization is sufficient



Conditional Prompt Learning for VL Models

e To fit web-scale data, such as the 400 million pairs of images and texts (CLIP)

e VL models are intentionally designed to have high capacity. Sometimes, even fine-tuning is
impractical.

e Asafer approachisto tune a prompt by adding some context that is meaningful to a task

However, prompt engineering is extremely time-consuming as it has to be based on trial and error,
hence the CoOp model.

e Butin CoOp, the learned context is not generalizable to wider unseen classes.



Conditional Prompt Learning for VL Models

This suggests that the
learned context
overfits the base
classes, thus failing to
capture more
generalizable elements.

The context is fixed
once learned in CoOp.

Wind farm

'
Train railway

Zero-shot

CoOp

CoCoOp

| [a] [photo] [of] [a] [arrival gate]. |

| [04] [v2] ... [vaf] [arrival gate]. |

| 1) [oa(a)] ... [oss(@)] [amvival gate]. |

| [a] [photo] [of] m [cathedral]. |

| [v1] [v2] ... [vas] [cathedral]. |

I [vi(z)] [va(z)] ... [vae(z)] [cathedral]. |

Accuracy: 69.36 @

Accuracy: 80.60 @

Accuracy: 79.74 @

0CoOp work well on the base classes observed during training and beat manual prompts by a significant margin.

Zero-shot

CoOp

CoCoOp

l [a] [photo] [of] [a] [wind farm]. |

| [v1] [v2] ... [vas] [wind farm]. |

| [v1(z)] [va(z)] ... [var(z)] [wind farm]. |

I [a] [phota] [of] [:\] [train railway]. I

I [v] [va] ... Iu_\;] [train railway]. l

| [v1(z)] [va(z)] ... [var(z)] [train railway]. |

Accuracy: 75.35 @

Accuracy: 65.89 @

Accuracy: 76.86 @

(b) The instance-conditional prompts learned by CoCoOp are much more generalizable than CoOp to the unseen classes.

Figure 1. Motivation of our research: to learn generalizable prompts. The images are randomly selected from SUN397 [55], which is
a widely-used scene recognition dataset.




Conditional Prompt Learning for VL Models

The key idea is to make a prompt
conditioned on each input
instance (image) rather than
fixed once learned

Extend CoOp by further learning
a lightweight neural network to
generate for each image an
input-conditional token (vector)

Similar to Show and Tell (Vinyals
et.al 2015), which validates that
it is more robust to class shift

context tokens

meta token |

Meta-Net
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Conditional Prompt Learning for VL Models
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Conditional Prompt Learning for VL Models

CoOp’s new accuracy is
consistently much weaker
than the base accuracy on
nearly all datasets

CoCoOp Significantly Narrows
Generalization Gap

CoCoOp Is More Compelling
Than CLIP

(a) Average over 11 datasets. (b) ImageNet. (c) Caltech101.
Base New | H Base New H Base New | H
CLIP 69.34 74.22 | 71.70 CLIP 7243 68.14 | 70.22 CLIP 96.84 94.00 | 95.40
CoOp 82.69 63.22 | 71.66 CoOp 76.47 67.88 | 71.92 CoOp 98.00 89.81 | 93.73
CoCoOp 8047 71.69 | 75.83 CoCoOp 7598 7043 | 73.10 CoCoOp 9796 93.81 | 95.84
(d) OxfordPets. (e) StanfordCars. (f) Flowers102.
Base New | H Base  New H Base New | H
CLIP 91.17 97.26 | 94.12 CLIP 63.37 74.89 | 68.65 CLIP 72.08 77.80 | 74.83
CoOp 93.67 95.29 | 9447 CoOp 78.12 6040 | 68.13 CoOp 97.60 59.67 | 74.06
CoCoOp 95.20 97.69 | 96.43 CoCoOp 7049 7359 | 72.01 CoCoOp 9487 71.75 | 81.71
(g) Food101. (h) FGVCAircraft. (i) SUN397.
Base New | H Base New H Base New | H
CLIP 90.10 91.22 | 90.66 CLIP 27.19  36.29 | 31.09 CLIP 69.36 7535 | 72.23
CoOp 88.33 82.26 | 85.19 CoOp 40.44 2230 | 28.75 CoOp 80.60 65.89 | 72.51
CoCoOp 90.70 91.29 | 90.99 CoCoOp 3341 2371 | 27.74 CoCoOp 79.74 76.86 | 78.27
(j) DTD. (k) EuroSAT. (1) UCF101.
Base New | H Base New | H Base  New H
CLIP 53.24 5990 | 56.37 CLIP 56.48 64.05 | 60.03 CLIP 70.53 77.50 | 73.85
CoOp 79.44 41.18 | 54.24 CoOp 92.19 54.74 | 68.69 CoOp 84.69 56.05 | 67.46
CoCoOp 77.01 56.00 | 64.85 CoCoOp 8749 60.04 | 71.21 CoCoOp 82.33 7345 | 77.64




Conditional Prompt Learning for VL Models

Comparison of prompt

learning methods in the e Toeget
cross-dataset transfer setting _ . & < g
= S 5 &} = £ fa
. P 2 § : § z § 3% 5 5 %
CoCoOp exhibits much % g 8 € “g’ Tz Z a 2 = N
. = % 3 2 ) =] 3 2
stronger transferability than £ v © @ = = = 2 e = = <
CoOp CoOp[62] 7151 9370 89.14 6451 68.71 8530 1847 64.15 4192 4639 66.55 63.88
CoCoOp  71.02 9443 90.14 6532 71.88 86.06 2294 67.36 4573 4537 6821 65.74
A 049  +073 +1.00 +0.81 +3.17 +0.76 +4.47 +321 +381 -1.02 +1.66 +1.86




Prompt Learning Limitations

CoOp:
e Interpreting the learned prompts is hard
CoCoOp:

e ltisslow totrain and would consume a significant amount of GPU memory if the batch size is set
larger than one, as each image needs an independent forward pass.
e Unseen classes still lags behind CLIP (7 out of 11 datasets)



Test-Time Prompt Tuning: Intro

e Vision-language pre-training, such as CLIP[1] and ALIGN[11], present a promising direction for
developing foundation models for vision tasks
o  encode awide range of visual concepts after training on millions of noisy image-text pairs
o  canbe applied to downstream tasks in a zero-shot manner
o  Thisis made possible by designed appropriate instruction prompts
e Recent works address this by proposing prompt tuning to directly learn prompts using training
data

o  We can fine-tune prompts with training data in the same way we finetune model parameters
o  Butthe learned prompts are limited to the distribution and tasks corresponding to training data
o It also requires training data which can be expensive or not available for zero-shot tasks



Test-Time Prompt Tuning: Related Work

e Prompting for foundation models
o Large-scale heterogeneous foundation models
o Prompt for different downstream tasks
o NLP -> VL; Require annotations -> single test
sample
e  Generalization under data distribution shifts
o Need to handle the discrepancy between the
underlying distributions of the test and the
training data
o CLIP can generalize to downstream tasks with
various distribution shifts in a zero-shot manner
o Better the CLIP by using consistency
regularization as an additional objective with the
confidence selection module.

O

Test-time optimization

Adapting machine learning models to test
samples on the fly

TENT [9] proposes a test-time objective by
minimizing the entropy of the batch-wise
prediction probability distributions

Zhang et al. [10] bypass the multi-sample
requirements using data augmentations
Refine the entropy minimization by
proposing confidence selection



Test-Time Prompt Tuning: Method

CLIP[1] with a hand-crafted prompt:

1.

(2) Create dataset classifier from label text

We prepend a hand-crafted prompt prefix to
every class

Feed them to the text encoder

(3) Use for zero-shot prediction

Each text feature is paired with the image

T3

feature.

Find the best pair base on similarity score

- B

I)'T3 =

A photo of
a .




Test-Time Prompt Tuning: Method

o textinputs{p;Y}={{p;yi}foryi € Y}provide the * —areminE/ v . < DEELXE)- %)
model with the most helpful context information p & P (Xy)~Dinin ( p( ):Y);
about the task where Fp(X) = sim(Biext ({P; V}), Evieua1 (X)).

e TPT optimizes the prompt p at test time based
on the single test sample

p* = argmin L(F, p, Xeest)
P



Test-Time Prompt Tuning: Method

TPT for image classification:

e Must select an unsupervised loss
e Theobjective promotes the consistency across
different augmented views of a given test image

e Propose confidence selection to filter out views
that generate high-entropy

K

p’ = arg min — Zﬁp(ynxm) 10g pp (¥i| Xiest),

i=1

)‘

- |
where pp(y-i|Xlest T V UtlA Xiest))-

N
1

ﬁp(ylxw) = p_N Z ll[H(p.,') < T]pp(y|-Ai(Xlesl))
1=1



Test-Time Prompt Tuning: TPT

prompt p class

L™

Pp(IA4(X))
average . ~
H— v g Al —{ min H(p,)
\1 = | !
T N0 Pp(Y1X)

X " accept X reject
(B
Qﬂ[-__i_ | I:ED : Learnable Parameters

Ppr ) e >
------------------ » Back Propagation

a single test image augmented views confidence selection



Test-Time Prompt Tuning: Method

Context-dependent visual reasoning:

e correctness of the prediction depends ‘-E-ED' .E:
on the context promptp cass
e Learnanoptimal label token cls on the [/ _mpon_ | ey
example images | E
B e
| Uncgative . :'DDE\: Learnable Parameters

________
a single test sample with

T, » Back Propagation
support and query images



Experiments: Robustness to Distribution Shifts

Datasets:

e Follow the settingin CLIP[1]

e Evaluation robustness on 4 ImageNet Variants:

ImageNet-V2 - test sets were re-sampled; independent of existing models so less overfitting. [5]
ImageNet-A - test set of natural adversarial examples [6]

ImageNet-R - collects images of ImageNet categories but with artistic renditions [8]
ImageNet-Sketch - black and white sketches [7]

o O O O



Experiments: Robustness to Distribution Shifts

Baselines:
e CoOp|2]
e CoCoOp|3]
e CLIP-default-prompt: “a photo of a"
e CLIP-ensemble-prompt: ensemble of 80 hand-crafted prompts



Experiments: Robustness to Distribution Shifts

ImageNet  ImageNet-A ImageNet-V2. ImageNet-R. ImageNet-Sketch

Meihed Topl acc. T Topl acc. T Topl acc. T Topl acc. T Topl acc. T fyeragel  OOD:Average
CLIP-RN50 58.16 21.83 5141 56.15 33.37 44.18 40.69
Ensemble 59.81 23.24 5291 60.72 35.48 46.43 43.09
CoOp 63.33 23.06 55.40 56.60 34.67 46.61 4243
CoCoOp 62.81 23.32 55.72 57.74 34.48 46.81 42.82
TPT 60.74 26.67 54.70 59.11 35.09 47.26 43.89
TPT + CoOp 64.73 30.32 57.83 58.99 35.86 49.55 45.75
TPT + CoCoOp 62.93 27.40 56.60 59.88 3543 48.45 44.83
CLIP-ViT-B/16 66.73 47.87 60.86 73.98 46.09 59.11 57.2
Ensemble 68.34 49.89 61.88 77.65 48.24 61.20 59.42
CoOp 71.51 49.71 64.20 75.21 47.99 61.72 59.28
CoCoOp 71.02 50.63 64.07 76.18 48.75 62.13 59.91
TPT 68.98 54.77 63.45 77.06 47.94 62.44 60.81
TPT + CoOp 73.61 57.95 66.83 77.27 49.29 64.99 62.83

TPT + CoCoOp 71.07 58.47 64.85 78.65 48.47 64.30 62.61




Experiments: Robustness to Distribution Shifts

ImageNet

ImageNet-A

ImageNet-V2.

ImageNet-R.

ImageNet-Sketch

maetiion Topl acc. T Topl acc. T Topl ace. T Topl acc. T Topl ace. T TNt (ORI
CLIP-RN50 58.16 21.83 51.41 56.15 33.37 44.18 40.69
Hand-crafted ensemble 59.81 2324 5291 60.72 35.48 46.43 43.09
CoOp 63.33 23.06 55.40 56.60 34.67 46.61 4243
CoOp (ensemble 3 seeds) 61.66 22.96 54.14 57.89 3494 46.32 42.48
CoOp + hand-crafted ensemble 63.60 23.23 55.63 57.07 34.84 46.87 42.69
CoCoOp 62.81 23.32 55.72 57.74 34.48 46.81 42.82
CoCoOp (ensemble 3 seeds) 63.34 24.27 56.12 58.24 35.46 47.49 43.52
CoCoOp + hand-crafted ensemble 63.03 24.16 55.73 57.88 35.22 47.20 43.25
CoCoOp + CoOp 63.86 23.69 56.45 5T 355 47.44 43.34
TPT (ours) 60.74 26.67 54.7 59.11 35.09 47.26 43.89
TPT + CoOp 64.73 30.32 57.83 58.99 35.86 49.55 45.75
TPT + CoCoOp 62.93 274 56.6 59.88 3543 48.45 4483




Experiments: Cross-Datasets Generalization

Cross-dataset generalization:

Method Fowerl® DTD Pets Cas UCFIOl Calichl0l Foodl0l SUNIT Arcrafi EuroSAT AVerEe

e 10datasets including plants,

animals, scenes, textures etc. CLIP-RN30 6175 4037 8357 5570 5884 85.88 7397 5880 1566 2369 5582

e  Twosettings: Ensemble 677 4037 8297 5589 5948 8126 M8 6085 1611 2579 5663
o ImageNetasa Co0p 6155 3729 8100 5532 5905 8653 559 5815 1512 2620 5618
comprehensive CoCo0p 6557 385 8839 622 S0 8138 162 961 1461 BB 5B

source dataset, TPT 6260 4084 8449 S846 6082  §702 7488 6146 1758 283 5166

F'c:‘reef/gj‘jadﬁ‘lantasm CLI-VITB/6 6744 4427 8825 6548 6513 9335 8365 6259 2367 4201 6358

o Fine-tuned datasets Ensemble 699 4504 8692 6611 6516 9355 8286 6560 222 5042 6459

are both source and CoOp 68.71 4192 89.14 6451 6655 93.70 8530 6415 1847 4639 6388

target with no CoCoOp 70.85 4545 9046 6490 6844 0379 8307 66.89 2220 3023 64.63

overlaps TPT 6898 4775 8779 6687  68.04 94.16 8467 655 A8 424 6510




Experiments: Cross-Datasets Generalization
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Experiments: Visual Reasoning

Baselines:

e The CNN classifier, trained to map both support and query images to a binary output
e The Meta-baseline regards each sample as a few shot task.
e Thetransformer-based HOITrans



Experiments: Visual Reasoning

Test Splits
Method seen act., unseen act., seen act., unseen act.,, Average
seen obj.,  seenobj., unseen obj., unseen obj.,
CNN-baseline 50.03 49 .89 49.77 50.01 49.92
Meta-baseline* 58.82 58.75 58.56 57.04 58.30
HOITrans 59.50 64.38 63.10 62.87 62.46

TPT (w/ CLIP-RN50) 66.39 68.50 65.98 65.48 66.59




Ablation Study

Test-time optimization

Four different parameter groups (adopt the same
setup as MEMO):

the entire model
the text encoder
the visual encoder
the text prompt

Average Top-1 Accuracy (%)

n

=

i

All

Visual Text
Encoder Encoder

Prompt



Ablation Study

Method ImageNet ImageNet-A  ImageNet-V2.  ImageNet-R.  ImageNet-Sketch

Topl acc. T Topl ace. T Topl acc. T Topl ace. T Topl acc. 1 Average ODESmncage
CLIP-RN50 58.16 21.83 51.41 56.15 33.37 44.18 40.69
baseline TPT 60.31 23.65 53.66 57.48 3431 45.88 42.28

+ confidence selection  60.74 (+0.43) 26.67 (+3.02) 54.70(+1.04) 59.11 (+1.63) 35.09 (+0.78) 47.26 (+1.38) 43.89 (+1.61)
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Cutoff Percentile

ImageNet  ImageNet-A ImageNet-V2. ImageNet-R. ImageNet-Sketch

Method Topl acc. T Topl acc. T Topl acc. T Topl acc. T Topl acc. T Average.  OOD Average
ResNet-50 76.13 0.00 63.20 36.17 24.09 39.92 30.87
MEMO 7723 0.75 65.03 41.34 27.72 4241 33.71
MEMO (p = 0.7) 77.56 0.92 65.51 41.93 28.20 42.82 34.14
MEMO (p = 0.5) 71.72 1.15 65.77 42.29 28.55 43.10 34.44
MEMO (p = 0.3) 77.57 1.43 65.85 42.64 28.33 43.16 34.56

MEMO (p = 0.1) 77.38 2.59 65.37 42.90 28.04 43.26 34.72




Ablation Study

Analyze two factors that affect TPT’s efficiency:

The number of augmented views
The number of optimization steps

'S
*

Average Top-1 Accuracy (%)
- e
> -~
»

816 32 64 128
the number of augmented views

(a) Different number of augmented views.

| 2 3 4 5 6 7 8
the number of TPT steps

(b) Different number of optimization steps.



Strengths

1. The proposed method does not requires additional data or supervision
2. Evenwithout additional pre-training, the model improves the performance
3. Theone step of optimization can increase the performance



Weaknesses

1. The most significant gap comes from the ensemble of CoOp/CoCoOp and TPT. However, an
ensemble in general brings improvements by itself. How do we validas the TPT?

2. The qualitative study was merely presenting the results. More discussions should be appreciated.
(e.g. the confidence selection)

3. The performance of TPT still behind the fine-tuning methods



Future work

One aspect of prompt tuning is, of course, improve the performance and reduce the computational cost.

On the other hand, prompts can mitigate model’s bias. This study showed that the proposed method has
good generalization ability. Future works can extend on generalization and provide deeper analysis on
how prompts eliminates biases
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