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Abstract 
Clustering techniques are widely used to summarize large quantities of data (e.g. aggregating 
similar news stories), however their outputs can be hard to evaluate. While a domain expert 
could judge the quality of a clustering, having a human in the loop is often impractical. 
Probabilistic assumptions have been used to analyze clustering algorithms, for example i.i.d. data, 
or even data generated by a well-separated mixture of Gaussians. Without any distributional 
assumptions, one can analyze clustering algorithms by formulating some objective function, and 
proving that a clustering algorithm either optimizes or approximates it. The k-means clustering 
objective, for Euclidean data, is simple, intuitive, and widely-cited, however it is NP-hard to 
optimize, and few algorithms approximate it, even in the batch setting (the algorithm known as 
"k-means" does not have an approximation guarantee). Dasgupta (2008) posed open problems 
for approximating it on data streams. 
 
In this talk, I will discuss my ongoing work on designing clustering algorithms for streaming and 
online settings. First I will present a one-pass, streaming clustering algorithm which 
approximates the k-means objective on finite data streams. This involves analyzing a variant of 
the k-means++ algorithm, and extending a divide-and-conquer streaming clustering algorithm 
from the k-medoid objective. Then I will turn to endless data streams, and introduce a family of 
algorithms for online clustering with experts. We extend algorithms for online learning with 
experts, to the unsupervised setting, using intermediate k-means costs, instead of prediction 
errors, to re-weight experts. When the experts are instantiated as k-means approximate (batch) 
clustering algorithms run on a sliding window of the data stream, we provide novel online 
approximation bounds that combine regret bounds extended from supervised online learning, 
with k-means approximation guarantees. Notably, the resulting bounds are with respect to the 
optimal k-means cost on the entire data stream seen so far, even though the algorithm is online. I 
will also present encouraging experimental results. 
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This talk is based on joint work with Nir Ailon, Ragesh Jaiswal, and Anna Choromanska. 
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