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ABSTRACT 
In this paper, a wavelet fuzzy classification approach is proposed 
to detect and track region outliers in meteorological data. First 
wavelet transform is applied to meteorological data to bring up 
distinct patterns that might be hidden within the original data. 
Then a powerful image processing technique, edge detection with 
competitive fuzzy classifier, is extended to identify the boundary 
of region outlier. After that, to determine the center of the region 
outlier, the fuzzy-weighted average of the longitudes and latitudes 
of the boundary locations is computed. By linking the centers of 
the outlier regions within consecutive frames, the movement of a 
region outlier can be captured and traced. Experimental evaluation 
was conducted on a real-world meteorological data to examine the 
effectiveness of the proposed approach. This work will help 
discover interesting and implicit information for large volume of 
meteorological data. 
 
Categories and Subject Descriptors 
H.2.8 [Database Applications]: Data mining, Spatial databases 
and GIS 

General Terms 
Algorithms 
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1. INTRODUCTION 
Spatial databases have become a significant area both in academia 
and industry over the past decade. From satellite observation 
system to urban planning, geography related spatial data are 
widely used; there are also other spatial data, such as medical 
image and gene maps, which are also important and useful. 
Spatial data mining, as one of the main focuses of spatial database 
research, is the process of discovering implicit and useful spatial 
patterns or rules from large spatial data sets [9, 20]. Like 

traditional data mining, spatial data mining techniques can be 
classified into classification, clustering, trend analysis, and outlier 
detection.   
 
Outliers are the observations differing from the remainder of the 
whole data set [2, 7]. Outliers are frequently treated as noise of the 
data sets. However, in some applications, outliers have real 
meaning and are essential components of the data as they reveal 
significant anomalous phenomena. Spatial outliers are 
observations that are inconsistent with the surrounding neighbors. 
They are frequently associated with disastrous natural events and 
the task of detecting spatial outlier is an essential part of spatial 
data mining. The challenges of spatial data mining arise from the 
following issues: i) Classical data mining techniques are designed 
to process numbers and categories; in contrast, spatial data is more 
complex and includes extended objects such as points, lines, and 
polygons; ii) Classical data mining techniques work with explicit 
inputs, whereas spatial predicates and attributes are often implicit; 
iii) Classical data mining techniques treats each input 
independently of other inputs, while spatial patterns often exhibit 
continuity and high autocorrelation among nearby features. 
 
A data stream is an ordered sequence of data that arrive 
continuously and must be processed on line. Stream data differs 
from conventional stored relational data since data elements in the 
stream come continuously and change fast. The stream is 
unbounded in size and impossible to save in a physical media. It 
needs to be handled quickly to extract nearly real-time 
information. Data stream should be viewed as an infinite process 
consisting of data which continuously evolves with time [1]. The 
goals of any stream data mining technique are to mine patterns, to 
process user queries in a fast and accurate manner, and to compute 
statistics on data streams in real time [4]. 
 
In the research of the Atmospheric Sciences, huge amounts of 
spatial data have been collected continuously from both 
observation and modeling. Discovering useful patterns from these 
data streams, especially spatial outliers, has great practical value 
and can help weather forecast, environment monitoring, and 
climate analysis. In the meteorological data, spatial outliers or 
anomaly patterns are often associated with severe weather events. 
Such events usually do not happen at a single point but encompass 
an area. That is to say, they are usually two dimensional spatial 
outlier regions. Furthermore, the temporal and spatial changes of 
these regions are frequently associated with the variations of 
weather phenomena and climate patterns. To automatically extract 
these outlier regions is a critical issue.  
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In this paper, we propose a wavelet fuzzy classification approach 
for detecting and tracking spatial outlier in meteorological data 
stream. For data of each time frame, wavelet transform is first 
performed along all latitudes. Then a powerful image processing 
technique, edge detection with competitive fuzzy classifier [11], is 
extended to detect the boundary of region outlier. After that, to 
determine the center of the region outlier, the fuzzy-weighted 
average of the longitudes and latitudes of the locations detected as 
boundary are computed. By linking the centers of the region 
outlier within each consecutive time frame, the movement of an 
outlier region can be effectively captured and tracked in a data 
stream. This work will help discover interesting and implicit 
information from large volume of meteorological data. 
 
The rest of the paper is organized as follows. In Section 2, the 
problem is defined and related works are introduced. Our 
approach is described in Section 3. Section 4 shows the 
experimental results and Section 4 draws the conclusions and 
introduces future work. 
 

2. PROBLEM DEFINITION AND 
RELATED WORKS 
There have been many outlier detection algorithms proposed [2, 3, 
8]. In previous works, outliers are usually disconnected points. 
But in weather and climate data, the outliers are frequently 
exhibited in irregular spatial forms such as regions. For the points 
enclosed in a region, the feature should be rather similar, while for 
the outside points surrounding the region, the feature would be 
distinctly different. Here, we define a region outlier as a group of 
adjoining points whose feature is inconsistent with that of their 
surrounding neighbors. In real atmosphere, the anomalies emerge 
at different spatial scales and may exhibit as various spatial 
shapes. This makes detection and tracking of these outliers from 
continuously arriving streams a challenging task.  
 
The problem is to design an efficient and practical approach to 
detect and trace region outliers (could be in irregular shapes) in 
spatial data streams. Such approaches can help identify and 
monitor spatial anomalies such as hurricanes, forest fires, tornado, 
thunder storm, and other severe weather events from the 
continuous observation data. Figure 1 shows an example of region 
outlier in the water vapor distribution over the east coast of the 
USA, Atlantic Ocean, and the Gulf of Mexico. The grayscale of 
each coordinate reflects its corresponding amount of water vapor. 
As can be seen, located at the left portion of the image, there is a 
spot with much higher water vapor than its surrounding neighbors, 
which means a hurricane at the Gulf of Mexico. It is also clear 
that this spot is not a single point but a group of connected points 
(a region). It is a region outlier. There exists other region outliers 
in this figure; the number of region outliers detected will be 
determined by the pre-defined threshold provided by domain 
experts. 
 

 
Figure 1:  An example of meteorological region outlier. 

 
Since meteorological data are usually two-dimensional spatial 
data and can be visualized as images, image processing 
techniques, e.g., edge detection, can be applied to detect 
meteorological region outliers. There are many different methods 
for edge detection [5, 6], such as Sobel filtering, Prewitt filtering, 
Laplacian of Gaussian filtering, moment-based operators, the 
Shen and Castan operator and the Canny and Deriche operator, 
but some common problems of these methods are their high 
computational cost, sensitivity to noise, anisotropy, and thick 
lines. Russo [16, 17], and also Russo and Ramponi [18], designed 
fuzzy rules for edge detection. Such rules can smooth while 
sharpening edges, but require a rather large rule set compared to 
simpler fuzzy methods [13]. Neural networks can be trained to 
detect edges [12] and radial basis functional link nets [15] are 
especially powerful for edge detection, but require training. Also, 
for meteorological data, feature changes are usually gradual and 
are more difficult to detect. That is to say, we may not be able to 
get the shape or coverage of the region outliers by using 
traditional image edge detection methods from the original data.  
 
In recent years, wavelet analysis methods are widely used in many 
science and technology fields, including data mining, where it has 
been used jointly with clustering, classification, regression, 
forecasting, and data visualization [10]. Sheikholeslami, et al. 
developed the WaveCluster approach which takes advantage of 
the multi-scale, multi-resolution properties of wavelet analysis 
and clusters the wavelet-transformed spatial data in the frequency 
with different resolutions [19]. A wavelet-analysis-based statistic 
approach is introduced in [22] for detecting region outliers in 
meteorological data. Previous works reveal that wavelet 
transformation can help identify distinct patterns that might be 
hidden within the original data.  
 
3. OUR APPROACH 
We propose a wavelet fuzzy classification approach to detect and 
track region outliers in meteorological data streams. For data of 
each time frame, wavelet transform is first performed along all 
latitudes. Then a powerful image processing technique, edge 
detection with competitive fuzzy classifier, is extended to detect 
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the boundary of region outlier. After that, to determine the center 
of the region outlier, the fuzzy-weighted average of the longitudes 
and latitudes of the locations detected as boundary are computed. 
By linking the centers of the region in each consecutive time 
frame, the movement of a region outlier in a data stream can be 
traced, and the approximate trajectory of the moving region can be 
captured. Details of these three steps are introduced in the 
following paragraphs respectively. 
 
3.1 Wavelet transform as preparation 
Wavelet transform can bring up distinct patterns that might be 
hidden within the original data. For meteorological data, it is 
preferable to decompose the original observation data into 
different spatial scales and treat them separately to simplify the 
problem and centralize the target object. Wavelet transformation 
provides the capability to achieve this with its multi-resolution 
character and the localization of variation in the frequency 
domain.  
 
Compared with traditional Fourier transform, which also transfer 
the signal into frequency domain and separate the scales, wavelet 
analysis has special attractive features: I) multi-resolution. 
Wavelet analysis examines the signal at different frequencies with 
different resolutions; the changes of the signal at different scales 
may be studied with different focuses; this feature makes wavelet 
an effective tool to filter potential signal noises and focus on 
certain scales; II) localization of the frequency. In traditional 
Fourier transform, the frequency domain has no localization 
information, in other words, if the frequency changes with time in 
the signal, it is hard to distinguish which frequency happens 
within what time range even all the frequencies may be detected. 
If we need to know the exact information of a variation, the 
frequency and the location of a certain variation or the strength of 
the variation at certain location, wavelet analysis has advantages 
over Fourier transform.  
 
There are continuous wavelet analysis and discrete wavelet 
analysis. In this paper, we use continuous wavelet analysis. For a 
wavelet function Ψ(t), the continuous wavelet transform of a 
discrete signal Xi (i=0,N-1) is defined as the convolution of X with 
scaled and translated Ψ, shown in equation (1): 
 

 
 
where (*) indicates the complex conjugate, n is the localization of 
the wavelet transform and s is the scale. For the details of wavelet 
transform, please refer to [21]. 
 
Many functions can be used as base or mother function for 
wavelet analysis. We use the Mexican hat function, defined in 
equation (2), since it provides a better localization (spatial 
resolution) [22]. 
 

       
 

We apply wavelet transform on the data along each latitude line, 
rather than along longitude line, since the scale in weather system 

is typically represented on latitude. In addition, the variations 
along longitude line are mostly normal patterns, such as the 
differences between tropics and high latitude areas, and are not the 
anomalous features of interest. Therefore, we focus on detecting 
the spatial variation along the latitude (X-axis). The wavelet 
transformed power indicates the strength of the variation along the 
latitude. The locations with high wavelet power value are the 
places where anomalies exist. We will concentrate on small scale 
weather systems such as hurricanes and tornadoes, as spatial 
outliers are usually small in size compared with the environment. 
 
Wavelet power mainly represents the variation of the signal on the 
spatial domain. For meteorological data analysis, we should focus 
on the spatial variation, rather than the value of the variable. The 
wavelet transform provide a better description of the variation, 
thus making it an effective tool for pre-processing original data. 
Another advantage of using wavelet is its multi-scale capability. 
We can focus on only the scale of particular interest. For the 
multi-scale data such as meteorological data, this makes the 
complicated variation convenient to be studied.  
 
3.2 Fuzzy classification to detect boundary  
In the next step, we extend a powerful edge detection technique, 
competitive fuzzy edge detector (CFED) [11], to detect the 
boundaries of region outliers from wavelet transformed 
meteorological data.  
 
An image is a two dimensional array where each element is called 
a pixel and represents a point in a corresponding two-dimensional 
space. Two-dimensional spatial data can be transformed into an 
image for visualization. Edge pixels in an image are defined as 
locations where there is a significant variation in gray level (or 
intensity level of color) in a fixed direction across a few pixels [7]. 
They are outliers in images and form curved or straight 
boundaries. Edge detection is by far the most common approach 
for detecting meaningful discontinuities in the gray level.  
 
The wavelet transformed data are first processed with a threshold. 
Only data above the threshold are kept and the rest are suppressed 
to 0. This step cuts out low-power data items and leaves only 
regions of high wavelet power. To make the later parameter 
setting of the fuzzy classifier easier, the data are then mapped to 
the range of [0-255], which is the range of grayscales for an 
image. Then CFED is applied to detect region outlier boundary.  
 
The CFED detects data on the region outlier boundary by fuzzy 
classification in the first step and applies competitive rules as a 
second step for the purpose of thinning the ridges around local 
maxima. A third step despeckles by removing single and double 
pixel noise specks. In the case of diffuse region outlier 
boundaries, it still output thin lines while most other edge 
detection methods result in thick lines. Compared with the widely 
used Canny edge detector, which also outputs thin lines, it takes 
much less computation and is less sensitive to noises [11]. 

 
Given an input dataset D, which is the result of the thresholding 
and mapping process, we define directions on a 3x3 spatial 
neighborhood of a data item as shown in Figure 2.  
 

(1)

(2)
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Figure 2: Spatial data and directions in a 3x3 neighborhood. 
 

The bi-directional summed magnitude differences between data 
item p5 and its neighbors are designated by d1, d2, d3 and d4 for 
Directions 1, 2, 3 and 4, respectively, are calculated by: 
 

d1=|p1-p5|+|p9-p5| (Direction 1),     (3a) 
d2=|p2-p5|+|p8-p5| (Direction 2),     (3b) 
d3=|p3-p5|+|p7-p5| (Direction 3),     (3c)  
d4=|p4-p5|+|p6-p5| (Direction 4),     (3d) 
 

For each data item in D, we compute a four-dimensional feature 
vector x = (d1, d2, d3, d4) of summed magnitude differences in four 
directions on its 3x3 spatial neighborhood. The magnitudes make 
each difference dj bidirectional. 
 
Data items are classified into four edge classes, a background 
class and a speckle edge class (a speckle is a noisy data item). 
Four typical neighborhood situations are used for each edge class: 
each directional edge neighborhood shown in Figure 3, its rotation 
by 180o, and the exchange of darker and lighter pixels in each of 
these two cases.  

 
Figure 3: Edge classes. 

 
Each set of four situations for a class has a single feature vector of 
summed magnitudes of differences as far as the low and high 
values are concerned. The background class is for any data whose 
neighborhood has low magnitude differences in the four 

directions. A speckle edge class is used for data on whose 
neighborhood the change magnitudes in all directions are high. 
 
We construct six prototype vectors c0, . . . , c5 to be the respective 
centers of the six classes (four edge, one background and one 
speckle edge classes). These centers, or prototypes, for the 
respective classes have component values ‘lo’ and ‘hi’ that 
represent low and high summed magnitude differences in the 
directions indicated. The parameters lo and hi are to be set by the 
user and depend on the data set and the sensitivity desired. These 
class centers for the situations, some of which are displayed in 
Figure 3, are listed in Table 1.  
 

Table 1: The classes and their prototype vectors. 
 

 
 
Figure 4 shows the fuzzy classifier architecture of CFED. The 
input feature vector x = (x1, . . . , xN) are feeded directly to six 
output nodes, each of which represents a class with an extended 
Epanechnikov fuzzy membership [14] centered on a prototype cj 
(see Eqs. (4a)–(4f)). It activates those fuzzy set membership 
functions, one of which will be a maximum. The output layer 
node with the maximum value determines the class. A data item is 
thus classified as one of four types of edges, a non-edge or a 
speckle edge.  
 

 
 
 

Figure 4: Edge-detection fuzzy classifier. 
 
 
    Class 0 (background): Max { 0,  1- ||D-µ 0||2/β2}    (4a) 
    Class 1 (Edge) :  Max { 0,  1- ||D-µ1||2/β2}               (4b) 
    Class 2 (Edge) :  Max { 0,  1- ||D-µ2||2/β2}               (4c) 
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    Class 3 (Edge) :  Max { 0,  1- ||D-µ3||2/β2}               (4d) 
    Class 4 (Edge) :  Max { 0,  1- ||D-µ4||2/β2}               (4e) 

Class 5 (Speckle edge): Max { 0,  1- ||D-µ5||2/β2}    (4f) 
 
 

To thin the edges, we next apply a competitive rule to each edge 
data item according to its assigned class. Each data item which is 
classified as an edge competes with the two data items on either 
side of it across the edge width. For these three data items, only 
the one with the largest difference magnitude is marked as 
boundary item. The rules for this competition are given below: 
 
IF x is Class 0 (background)  
    THEN do not mark as boundary item 
IF x is Class 1 (edge)  
    THEN compete d3 with neighbor pixels in Direc. 3 
 IF it wins THEN mark as boundary item 
 ELSE do not mark 
IF x is Class 2 (edge)  
    THEN compete d4 with neighbor pixels in Direc. 4 
 IF it wins THEN mark as boundary item 
 ELSE do not mark 
IF x is Class 3 (edge)  
    THEN compete d1 with neighbor pixels in Direc. 1 
 IF it wins THEN mark as boundary item 
 ELSEdo not mark. 
IF x is Class 4 (edge)  
    THEN compete d2 with neighbor pixels in Direc. 2 
 IF it wins THEN mark as boundary item 
 ELSE do not mark. 
IF x is Class 5 (speckle edge) THEN mark as boundary item 
 
In summary, the extended CFED model classifies data items into 
four different edge classes, a background class and a speckle edge 
class, based on their wavelet power. Competition rules are then 
applied accordingly to thin the detected edges. So even the region 
outlier has gradual wavelet power changes from the rest of the 
data set, the region outlier boundary can still be accurately 
located, which might not be achieved by most other edge 
detection approaches. 
 
3.3 Fuzzy-weighted average to track center 
To locate the center of the region outlier, we compute the fuzzy-
weighted average of longitudes and latitudes of the locations that 
are marked as boundary. Fuzzy-weighted average is used make 
the center more representative. The movement of the region 
outlier is tracked by linking the centers in consecutive time 
frames. 
 
A fuzzy weight is a weight determined by a fuzzy membership 
function, for example, the reciprocal of distances, shown in 
equation (5).  

wq= 1/Dq                                              (5)    

where Dq is the distance between the longitude (or latitude) of the 
center and  the longitude (or latitude) of the q-th location marked 
as boundary. If the distance is relatively large, then wq will be 
much smaller than if the distance is small. Average achieved with 
these fuzzy weights is immune to outlier vectors and more 
representative for densely located vectors. Since Dq can be zero 
we use 

  wq = 1/[Dq + 1]                                       (6)    
 
The weights are standardized so that they sum to unity over the 
vector set. 

  

∑
=

= Q

q 1
q

q
q

w

w
 w'                    (7) 

 
Then the fuzzy-weighted average (FWA) of the longitudes (or 
latitudes) vq of the boundary locations is computed as in equation 
(8). 
   
  FWA= w’q vq                                                 (8) 
 
We start with an initial center for the longitudes, which is the 
mean of longitudes of boundary locations. Then, i) compute 
weights of longitudes of boundary locations according to their 
distances to the current center; ii) Update the center with the 
fuzzy-weighted average of these longitudes. Step i and Step ii are 
repeated until the process converges (the longitude center makes 
little shift between two iterations). The final version of the 
longitude of the center is the longitude of the center of the region 
outlier.  The process to obtain the latitude of the center is similar. 
 
The center obtained by the above approach, compared with 
traditional methods, such as mean, median, regular average, is 
immune to noise in the detected boundary and is more 
representative for the region outlier. 
 
4. EXPERIMENT RESULTS 
In the experiment, we used NOAA/NCEP (National Centers of 
Environmental Prediction) global reanalysis data sets, which is a 
multiple-parameter data with a resolution of 1 degree by 1 degree. 
The data covers the whole earth and is updated 4 times a day, 
namely, 00AM, 06AM, 12PM, 18PM. For this particular study, 
we used the data of water vapor, as water vapor is a good 
indicator for depicting the weather system. We used data on 
September 18, 2003, during which hurricane Isabel landed the east 
coast of USA. 
 
Hurricane Isabel formed in the central Atlantic Ocean on 
September 6th, 2003. It moved in a general west-northwestward 
direction and strengthened to a category five hurricane by 11 
September. Weakening began on 16 September as the hurricane 
turned northwestward. Isabel made landfall on the Outer Banks of 
North Carolina on 18 September as a category two hurricane. 
Portions of eastern North Carolina and Southeastern Virginia 
experienced hurricane-force winds. Experiment results on 
hurricane Isabel demonstrate the effectiveness of our algorithms 
in detecting and tracking abnormal meteorological patterns. 
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4.1 Wavelet transform 
Figure 5 shows the original global water vapor distribution 
between 180oW and 75oE at 0AM on September 18, 2003. In 
general, the tropical region is covered by high value of water 
vapor. We first performed Mexican hat wavelet analysis on data 
over all latitudes, which reveal more significant anomalous 
features than over longitudes, and primarily focused on the 
anomalies with sub-weather scales, that is, the variation of 
1000km or 10 degrees at mid-latitude region. Figure 6 shows the 
wavelet transform power with scale index 3. As can be seen, there 
are some areas where the power is especially high than their 
surrounding neighbors. The spatial variations in these areas are 
prominent and they are potential region outliers. Besides, the 
bright hot spot center at 32oN and 72oW stands out and can be 
effectively identified, which corresponds to Hurricane Isabel. 
Notice that a high feature value does not necessarily generate a 
high wavelet power.  
 
 
 
 

 
 

Figure 5: Global water vapor distribution  
at 0 AM Sep. 18, 2003. 

 

 
 

Figure 6: Wavelet power distribution  
at scale index 3 at 0 AM, Sep. 18, 2003. 

4.2 Fuzzy classification to detect boundary 
In this experiment, we validated the effectiveness of the proposed 
fuzzy classification method on the transformed wavelet power 
image. Figure 7 shows the wavelet image at 0AM on September 
18, 2003, with the detected region outlier boundary marked. As 
can be seen, the boundary of Hurricane Isabel is accurately 
extracted by the proposed fuzzy classification approach. Figure 8 
shows another experiment result on September 18, 2003, at 
18:00PM. The boundary of Hurricane Isabel is also clearly 
identified.  
 
For the purpose of comparison, we also applied our approach on 
the original data without the wavelet transform procedure on data 
of 18:00PM, September 18, 2003 with the same cutoff percentage 
for thresholding. Then data can be mapped into the range of [0, 
255], and then the fuzzy classification can be used to identify the 
potential outlier regions. The experiment result is shown in Figure 
9. As can be observed, the boundary of Hurricane Isabel was not 
identified as in Figure 8. In addition, extra boundaries were 
detected and formed noisy output.  
 

 
 

Figure 7: Wavelet power distribution  
at 0 AM, Sep. 18, 2003, with Hurricane Isabel identified.  

 

 
 

Figure 8: Wavelet power distribution  
at 18 PM, Sep. 18, 2003, with Hurricane Isabel identified.  
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Figure 9: Detected boundary on original data  
at 18 PM, Sep. 18, 2003. 

 
4.3 Tracking the center of outlier region 
After the boundaries of region outliers are identified, the center of 
each region outlier can be computed using the proposed fuzzy-
weighted average approach. We tested our method on the four 
consecutive wavelet data on September 18, 2003. Table 2 lists the 
computed centers of Hurricane Isabel from 0A.M. to 18A.M. 
Figure 10 shows the 3D trajectory of the center movement of four 
consecutive region outliers for consecutive time frames. Four 
regions are illustrated in this figure. The boundary of each region 
outlier is depicted by dotted line and their center points are 
connected for continuous frames, so that its moving trajectory can 
be observed. The trend of Hurricane Isabel can be observed as that 
it moves northwestward to the inner land. 
 

Table 2: Computed center for each detected region outlier 
using fuzzy-weighted average  

 
 1 

(0AM)  
2 

(6AM) 
3 

(12PM) 
4 

(18PM) 
Latitude 32.57 33.29 34.51 36.42 

Longitude -72.45 -72.73 -73.25 -74.19 
 
 
5. CONCLUSIONS AND FUTURE WORK 
In this paper, we propose a wavelet fuzzy classification approach 
to detect and track region outliers in meteorological data. Mexican 
Hat wavelet transform is used to distinguish spatial region 
outliers. A powerful image processing technique, edge detection 
with competitive fuzzy classifier, is extended to detect the 
boundary of region outlier.  The boundary of region outlier is 
computed to determine the representative center using the fuzzy-
weighted average approach. And their trajectory can be plotted by 
linking these central points for consecutive frames. The 
experiment results demonstrate that our approaches can 
effectively discover anomalies corresponding to severe weather 
events. In the future, we are planning to study region outlier in 
three-dimensional spatial space with multiple attributes, such as 
the combination of pressure, rain fall, wind, cloud, and 
temperature, and to simultaneously track multiple moving region 
outliers for the continuous meteorological data streams. 

 
Figure 10: 3-D center trajectory for the detected region outlier 
within each time frame at 0 AM ~ 18 PM, September 18, 2003. 
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