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Abstract

Spatial outliers are the spatial objects with distinct features
from their surrounding neighbors. Detection of spatial out-
liers helps reveal valuable information from large spatial data
sets. In many real applications, spatial objects can not be
simply abstracted as isolated points. They have different
boundary, size, volume, and location. These spatial proper-
ties affect the impact of a spatial object on its neighbors and
should be taken into consideration. In this paper, we pro-
pose two spatial outlier detection methods which integrate
the impact of spatial properties to the outlierness measure-
ment. Experimental results on a real data set demonstrate
the effectiveness of the proposed algorithms.

Keywords
Spatial Outlier Detection, Spatial Data Mining, Algorithm

1 Introduction

As defined by Barnet [2], “an outlying observation or out-
lier in statistics, is one that appears to deviate markedly from
other members of the sample in which it occurs.” Identifica-
tion of outliers can lead to the discovery of hidden but useful
knowledge.

Identification of outliers in spatial data has attracted sig-
nificant attention from geographers and data mining experts.
These outliers are defined particularly as “spatial outliers.”
Spatial outliers are those observations which are inconsis-
tent with their surrounding neighbors. They are different
from traditional outliers in the following aspects. First, tra-
ditional outliers focus on global comparison with the whole
data set while spatial outliers pay more attention to local dif-
ferences among spatial neighborhood. Second, traditional
outlier detection mainly deals with numbers, characters, and
categories, whereas spatial outlier detection processes more
complex spatial data such as points, lines, polygons, and 3D
objects. Third, to detect spatial outliers, spatial correlation
need be considered. As described by the geological rule of
thumb, “Everything is related to everything else, but nearby
things are more related than distant things [11].”

Spatial outlier detection plays an important role in
many applications, including weather forecast, military im-

age analysis, and traffic management. In identification of
spatial outliers, attribute space is generally divided into two
parts, non-spatial attributes and spatial attributes. Spatial at-
tributes record the information related to locations, bound-
aries, directions, sizes, and volumes, which determine the
spatial relationships between neighbors. Based on the neigh-
borhood relationship, non-spatial attributes can be processed
to identify abnormal observations.

One potential problem of the existing spatial outlier de-
tection methods is that they use simple arithmetic average to
estimate the overall behavior of a set of neighbors and do
not consider the impact of spatial relationship (e.g., area and
contour) on the neighborhood comparison. In this paper, we
propose two algorithms to effectively improve the accuracy
of outlier detection by using weighted neighborhood com-
parison functions based on the impact of spatial attributes.

2 Related Work

Numerous spatial outlier detection algorithms have been
developed. Several algorithms are based on visualization,
that is, illustrate the distribution of neighborhood differ-
ence in a figure and identify the points in particular por-
tions of the figure as spatial outliers. These methods in-
clude variogram clouds, pocket plots, scatterplot and Moran-
scatterplot [4, 5, 7, 8]. Other algorithms perform statistical
tests to discover local inconsistency. Examples include z-
value approach [9] and iterative-z approach [6]. Spatial data
have various formats and semantics. Thus, many outlier de-
tection algorithms are designed to accommodate the special
property of the given spatial data. Shekharet al. introduced
a method for detecting spatial outliers in graph data set [10].
Zhaoet al. proposed a wavelet-based approach to detect re-
gion outliers [12]. Cheng and Li developed a multi-scale
approach to detect spatial-temporal outliers [3]. Adamet al.
proposed an algorithm which considers both the spatial rela-
tionship and the semantic relationship among neighbors [1].

3 Algorithm

In this section, we define the problem of spatial outlier detec-
tion, present two spatial weighted algorithms, and examine
their time complexity.



3.1 Problem Formulation We formalize the spatial out-
lier detection as follows.
Given:

• X is a set of spatial objects{x1, x2, . . . , xn}with single
or multiple attributes, wherexi ∈ <d.

• k is an integer denoting the number of adjacent data ob-
jects which form the neighborhood relationship. Every
objectxi hask neighbor objects based on its spatial lo-
cation, denoted asNNk(xi).

• Y is a set of attribute values{y1, y2, . . . , yn}, whereyi

is the attribute value ofxi.

• m is the number of outliers to be identified; generally
m ¿ n.

Objective:

• Design a mapping functionf : (X, Y, k) −→ Of .
Of = {OF1, OF2, . . . , OFn} whereOFi is the outlier
factor describing the degree of outlierness for objectxi,
OFi ∈ <d.

• Find a setZ of m data objects whereZ ⊂ X and for
∀xi ∈ Z and∀xj ∈ (X − Z), OFi > OFj .

The major task of spatial outlier detection is to design
an appropriate functionf , which can effectively represent
the outlierness of an object. The outlierness can be viewed
as the difference between an object and its neighbors.

3.2 Consider the Impact of Spatial PropertiesIn most
of the existing spatial outlier detection algorithms, spatial
attributes are used only for determining the neighborhood
relationship. The computation of the outlierness of a spatial
object is solely based on the non-spatial attributes of this
object and its neighbors. If two neighbors of an object
have the same nonspatial attribute values, they are deemed
to have equal impact on this object. However, in many real
applications, spatial objects can not be simply abstracted as
isolated points. They have different location, area, contour,
and volume. These spatial properties play important roles in
determining the impact of a spatial object on its neighbors
and should not be ignored. For example, suppose we would
investigate the expansion of a chemical pollution across a
number of adjacent counties. The impact of a county to
its neighbor county is closely related to their distance and
common border length. The smaller the distance and the
larger the common border, the higher possibility of pollution
expansion between these two counties.

Based on this observation, we propose a spatial outlier
detection method, which assigns different weights for differ-
ent neighbors in computing the outlierness of the central ob-
ject. The weight is determined by spatial relationships such
as distance and common border length.

3.3 Algorithm 1: Weighted z value approach The pro-
posed algorithm has four input parameters.X is a set ofn
objects containing spatial attributes, such as location, bound-
ary, and area. The non-spatial attributes are contained in an-
other setY . k is the number of neighbors. For description
simplicity, the value ofk is fixed for every object. The al-
gorithm can be easily generalized by replacing the fixedk
by a dynamick(xi). m is the number of requested outliers.
Generally,m should not be greater than 5% ofn.

Algorithm 1 : Weightedz value approach
Input :

X is a set of n spatial objects;
Y is the set of attribute values forX;
k is the number of neighbors;
m is the number of requested spatial outliers;

Output :
Os is a set ofm outliers

for(i=1; i ≤ n ; i++) {
/* calculate the neighbor hood relationship */
NNk(xi) = GetNeighbors(X, xi);
/* calculate the weighted average of allxi ’s neighbors */
NbrAvg(xi) = 0;
for eachxj ∈ NNk(xi) {

weight = getWeight(NNk(xi), xj )
NbrAvg(xi) = NbrAvg(xi) + yj ∗ weight

}
Diff(xi) = yi −NbrAvg(xi)

}
/* calculate the standardizedDiff(xi) as the outlierness factor */
µ = getMean(Diff)
σ = getStd(Diff)
for ( eachxi ∈ X ) {

OF (xi) = |Diff(xi)−µ

σ |
}
Os = getTopMOutliers(OF , m)

For each data object, the first step is to identify itsk
nearest neighbors. Calculating the Euclidean distance be-
tween the centers of two objects is the most frequently used
method. Next, for each objectxi, compute the weighted av-
erage of the non-spatial attribute values for allxi’s neigh-
bors. Different neighbors have different impact onxi, which
is represented by aweight. The weight is determined by the
spatial relationships betweenxi and its neighborxj . There
may be more than one spatial relationship which contributes
to the weight, for example, the inverse of distance between
xi andxj and the common border length betweenxi andxj .
The value ofweight for a neighborxj is between 0 and 1,
and the sum of weights for allxi’s neighbors is 1. Assuming
xj is ther-th neighbor ofxi, theweight of xj can be ob-
tained by the following equation:

weight =
∑q

p=1 αp • Spr∑k
l=1 Spl

q denotes the maximum number of spatial properties which
determine the weight.Spl represents the value of a particular
spatial propertySp for thel-th neighbor ofxi. αp is the fac-
tor which determines the importance of spatial propertySp,
and

∑q
p=1 αp = 1. For example, if two spatial properties,

the inverse of distance and the length of common border are
used for weight calculation, the equation can be represented



as:
weight = α1 • invDistr∑k

l=1 invDistl
+ α2 • Borderr∑k

l=1 Borderl
.

Weighted averageNbrAvg is obtained by summarizing the
product of the weight and the non-spatial attribute valueyj

for each neighborxj . Next, the difference betweenxi’s non-
spatial attribute value andNbrAvg is computed, denoted as
Diff(xi). Based on the mean and standard deviation of
Diff , the standardizedDiff(xi) is then computed as the
outlierness factor forxi. Finally, the topm objects with
largest outierness factors are identified as outliers and out-
put to the result setOs.

If the impact of spatial properties on the nonspatial
attribute is ignored, that is,q = 0, we designate the weight
as 1

k . In this case,NbrAvg is the arithmetic average of
neighbors, which makes this algorithm the same as the
statisticalz value approach in [9]. Thus, weightedz value
approach can be viewed as the generalization ofz value
approach.

3.4 Algorithm 2: Averaged Difference Algorithm In
this section, we present a variant of Algorithm 1, Averaged
Difference Algorithm. For simplicity, we call itAvgDiff
algorithm. Unlike Algorithm 1,AvgDiff is based on
the weighted average of the absolute difference between
xi and each of its neighbors. The main idea is that we
compare an object with each of its neighbors one by one,
instead of obtaining the average of all its neighbors before
comparison. The reason lies in that the simple average
of neighbors may conceal their variance. For example,
suppose we have an objectO1 with attribute value of 50.
It has two neighborsO2 and O3, with attribute values of
0 and 100 respectively. The average ofO2 andO3 is 50,
which is identical to the value ofO1. However, bothO2

and O3 are quite different fromO1. By computing the
absolute difference first and then computing the average,
we can retain the variance among the neighbors. Since the
difference is absolute, it will not follow normal distribution.
Therefore, it is not necessary to be normalized. Similar
to Algorithm 1, spatial properties are employed as weight
of the difference between a given object and its neighbor.
The AvgDiff algorithm has the same input and output
parameters as the weightedz value approach. For each
data objectxi, the first step is to identify itsk nearest
neighbors. Different from algorithm 1,AvgDiff algorithm
does not compute the weighted average ofxi’s neighbors
or calculate the difference between the attribute value of
xi and this average. Instead, it first calculates the absolute
differencediff betweenxi and each of its neighborsxj ,
and then obtain the weighted averageAvgDiff(xi) of these
difference values. Here, the computation ofxj ’s weight is
the same as Algorithm 1. The weighted average difference
can be directly used as outlierness factorOF . Finally, the top
m objects with largestOF values are identified as outliers

Algorithm 2 : AvgDiff Algorithm
Input :

X is a set of n spatial objects;
Y is the set of attribute values forX;
k is the number of neighbors;
m is a number of requested spatial outliers;

Output :
Os is the set ofm outliers

for(i=1; i ≤ n ;i++) {
/* calculate the neighbor hood relationship */
NNk(xi) = GetNeighbors(X, xi);
/* calculate the weighted average difference betweenxi and */
/* its neighbors */
AvgDiff(xi) = 0;
for eachxj ∈ NNk(xi) {

diff = |yi − yj |
weight = getWeight(NNk(xi), xj )
AvgDiff(xi) = AvgDiff(xi) + diff ∗ weight

}
}
for ( eachxi ∈ X ) {

OF (xi) = AvgDiff(xi)
}
Os = getTopMOutliers(OF , m)

and are output to the result setOs.

3.5 Time Complexity For the weightedz value approach,
a k nearest neighbor (KNN) query is issued first to obtain
the neighborhood for each spatial point. There are two
choices to perform the KNN query. We can use a grid-based
approach, which processes KNN query in constant time if
the grid directory resides in memory, leading to a complexity
of O(n) for determiningk neighbors for all objects in the
data set. If an index structure (e.g. R-tree) exists for the
spatial data set, spatial index can be used to process KNN
query, whose cost isO(logn), leading to a complexity of
O(nlogn). The cost of computing the weighted average for
all the neighbors of objectxi is O(k), which is very small
compared with the cost of KNN query and can be ignored.
The time complexity of computing mean, standard deviation
and standardized value of the difference betweenxi and
the average of its neighbors isO(n). The cost of picking
the topm outliers fromn objects isO(nlogm). Sincem
¿ n, this cost can be viewed asO(n). In summary, if
the number of pointn is much greater than the number of
neighborsk and the number of spatial outliersm, the time
complexity isO(n) for grid-base structure, orO(nlogn) for
spatial index structure. The computation cost is primarily
determined by the KNN query. For theAvgDiff algorithm,
the time complexity of computingk nearest neighbors is the
same as that of weightedz value approach. The computation
of averaged difference has the cost ofO(k), which can be
ignored compared with the time complexity ofKNN query.
Therefore, the total time complexity is mainly determined by
theKNN query, which isO(n) for grid-base structure, or
O(nlogn) for spatial index structure.



4 Experiment

We conduct experiments on a real data set, West Nile virus
(WNV) data provided by the U.S. Centers for Disease Con-
trol and Prevention (CDC). The WNV data set includes the
number of wild bird cases, mosquito cases, and veterinary
cases at county level in the United States, between January
1, 2001 and December 31, 2003. Our experiment is based on
the cases of veterinaries infected by WNV in 2003.

The location of each county is determined by the bound-
ary file provided by U.S. Census Bureau. The number of
neighbors was chosen to be dynamic, i.e., the neighborhood
of a county consists of the set of adjacent counties. When
calculating the weights, two spatial properties are employed,
inverse center distance and common border length. The
shorter the center distance and the longer the common bor-
der length, the higher the weight. We assume that the inverse
center distance and the common border length have equal
impact on the outlierness of a county. Since different coun-
ties have different size of area, we use the density of WNV
cases to make them comparable. The density is expressed by
the number of cases per square kilometer.

4.1 Result Analysis In addition to the weightedz algo-
rithm andAvgDiff algorithm, we also conducted experi-
ment on the existingz value approach for comparison. Ta-
ble 1 provides the experimental results for all these three spa-
tial outlier detection algorithms. The top 30 spatial outliers
are presented, which account for about 1% of all the 3109
counties.

The weightedz algorithm has much different result
compared withz approach. For example, York Co.(PA)
is identified as the top outlier by weightedz approach.
However, it is only ranked the 11th byz algorithm. As
shown in Figure 1, York Co. has 7 neighbors whose attribute
values are small and one neighbor, Lancaster Co., whose
attribute value is large. If we do not consider spatial weight,
the big difference between York Co. and Lancaster Co.
will be significantly counteracted by the other 7 neighbors.
Nevertheless, when the common border length and center
distance are taken into account, Lancaster Co. has a large
weight (0.21), thus dominating the average of York Co.’s
neighbors. Consequently, the difference between York Co.
and the weighted average of its neighbors will be large,
which leads to a high ranking for Lancaster Co. by weighted
z approach.

The weightedz value algorithm andAvgDiff algo-
rithm have similar results, identifying same 22 counties in
the top 30 outliers but in different order. The ranking vari-
ation is caused by the different mechanisms used by these
two algorithms to calculate the average neighborhood dif-
ference. In addition, there are 8 outlier counties identified
by AvgDiff algorithm but not identified by weightedz al-
gorithm. Anne Arundel Co.(MD) is an example, which is

Figure 1: The 2003-Vet WNV case density for York Co.(PA)
and its neighbors

Figure 2: The 2003-Vet WNV case density for Anne Arundel
Co. (MD) and its neighbors

ranked as the 24th outlier byAvgDiff algorithm. As shown
in Figure 2, Anne Arundel Co. has 4 neighbors, Baltimore
city, Howard Co., Prince George’s Co., and Baltimore Co.
The attribute value (0.0199) of Howard Co. is larger than that
of Anne Arundel Co. (0.0158), while the other 3 neighbor-
ing counties have smaller attribute values (0.0000, 0.0000,
0.0129) than Anne Arundel Co.. Thus, the difference be-
tween Howard Co. and Anne Arundel Co. is “neutralized”
by the difference between other 3 neighbors and Anne Arun-
del Co., which makes the weightedz algorithm not be able
to identify Anne Arundel Co..AvgDiff does not have this
“neutralization” issue, because it uses the absolute difference
between a county and its neighbors.

Since we have two weighted algorithms, it is intriguing
to know which one should be chosen under which conditions.
The performance comparison between the two weighted al-
gorithms is highly dependent on the data set and domain ex-
perts. From the view of data mining, these two proposed al-
gorithms focus on rendering a filtering mechanism to present
a small set of outlier candidates for further investigation by
domain experts.

5 Conclusion

In this paper, we propose two spatial outlier detection algo-
rithms which use spatial properties as weights to represent



Methods
Rank z Alg. Weightedz Alg. AvgDiff Alg.

1 Harford County,MD,0.0158 York County,PA,0.0175 Lancaster County,PA,0.0683
2 Hot Springs County,WY,0.0008 Berks County,PA,0.0121 Chester County,PA,0.0501
3 Delaware County,PA,0.0126 Lebanon County,PA,0.0245 Lebanon County,PA,0.0245
4 Adams County,PA,0.0178 Delaware County,PA,0.0126 New Castle County,DE,0.0000
5 Sandoval County,NM,0.0014 Cecil County,MD,0.0078 Carroll County,MD,0.0378
6 Torrance County,NM,0.0018 New Castle County,DE,0.0000 Berks County,PA,0.0121
7 Los Alamos County,NM,0.0035 Lancaster County,PA,0.0683 Gloucester County,NJ,0.0321
8 Berks County,PA,0.0121 Chester County,PA,0.0501 Cecil County,MD,0.0078
9 Lancaster County,PA,0.0683 Cumberland County,NJ,0.0063 Salem County,NJ,0.0309
10 Carroll County,MD,0.0378 Montgomery County,PA,0.0184 Delaware County,PA,0.0126
11 York County,PA,0.0175 Harford County,MD,0.0158 York County,PA,0.0175
12 Baltimore city,MD,0.0000 Adams County,PA,0.0178 Baltimore city,MD,0.0000
13 Howard County,MD,0.0199 Carroll County,MD,0.0378 Rockwall County,TX,0.0210
14 McKinley County,NM,0.0002 Frederick County,MD,0.0175 Cumberland County,NJ,0.0063
15 Philadelphia County,PA,0.0029 Howard County,MD,0.0199 Philadelphia County,PA,0.0029
16 Weld County,CO,0.0050 Dauphin County,PA,0.0044 Dauphin County,PA,0.0044
17 Cumberland County,NJ,0.0063 Philadelphia County,PA,0.0029 Bucks County,PA,0.0216
18 Cecil County,MD,0.0078 Baltimore County,MD,0.0129 Montgomery County,PA,0.0184
19 Denton County,TX,0.0056 Camden County,NJ,0.0087 Monmouth County,NJ,0.0147
20 Baltimore County,MD,0.0129 Baltimore city,MD,0.0000 Union County,PA,0.0134
21 Johnson County,WY,0.0012 Salem County,NJ,0.0309 Ramsey County,MN,0.0149
22 Boulder County,CO,0.0094 Gloucester County,NJ,0.0321 Camden County,NJ,0.0087
23 Montgomery County,PA,0.0184 Mercer County,NJ,0.0051 Baltimore County,MD,0.0129
24 Lebanon County,PA,0.0245 Atlantic County,NJ,0.0062 Anne Arundel County,MD,0.0158
25 Santa Cruz County,AZ,0.0000 Cumberland County,PA,0.0133 Howard County,MD,0.0199
26 Guadalupe County,NM,0.0004 Ocean County,NJ,0.0049 Frederick County,MD,0.0175
27 Hood County,TX,0.0018 Dallas County,TX,0.0070 Harford County,MD,0.0158
28 Arapahoe County,CO,0.0072 Bucks County,PA,0.0216 Bernalillo County,NM,0.0139
29 Santa Fe County,NM,0.0075 Burlington County,NJ,0.0062 Montgomery County,MD,0.0125
30 Tarrant County,TX,0.0085 Queen Anne’s County,MD,0.0000 Hancock County,WV,0.0093

Table 1: The top 30 spatial outlier candidates detected byz, weightedz, andAvgDiff algorithms.

the impact of neighbors on a given object. The experiment
on the West Nile virus data evalidates the effectiveness
of our methods. Another advantage of our algorithms is
that they can provide an ordering of the spatial outliers
with respect to their degree of outlierness. Currently, our
algorithms focus on single (nonspatial) attribute outlier
detection. We plan to extend them to identify spatial outliers
with multiple attributes. In addition, we are working on a
classification-based training method to identify important
spatial features and their impact factors.
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