Chapter 1

WHAT’S SPATIAL ABOUT SPATIAL DATA
MINING: THREE CASE STUDIES

Shashi Shekhar, Yan Huang, Weili Wu, C.T. Lu

Abstract  Spatial data mining is the process of discovering interesting and pre-
viously unknown, but potentially useful, patterns from large spatial
datasets. Extracting interesting and useful patterns from spatial datasets
is more difficult than extracting the corresponding patterns from tra-
ditional numeric and categorical data due to the complexity of spatial
data types, spatial relationships, and spatial autocorrelation. A popular
approach is to apply classical data mining techniques after transforming
spatial components into non-spatial components via feature selection.
An alternative is to explore new models, new objective functions, and
new patterns which are more suitable for spatial data and their unique
properties. This chapter investigates techniques in the literature to in-
corporate spatial components via feature selection, new models, new
objective functions, and new patterns.

Keywords: spatial data mining, feature selection, spatial databases, co-location
rules, spatial autocorrelation, spatial outliers

1. INTRODUCTION
Widespread use of spatial databases [Gut94, SC01, SCR99, Wor95]

is leading to an increasing interest in mining interesting and useful, but
implicit, spatial patterns [Gre00, KAH96, Mar99, RS99, SNM*95]. Spa-
tial data sets and patterns are abundant in many application domains
related to NASA, the National Imagery and Mapping Agency(NIMA),
the National Cancer Institute(NCI), and the United States Department
of Transportation(USDOT). Efficient tools for extracting information
from geo-spatial data are crucial to organizations which make decisions
based on large spatial data sets. These organizations are spread across
many domains including ecology and environment management, pub-
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lic safety, transportation, public health, business, travel, and tourism
[AM95, HGL93, TES89, Kru95, Hai89, SYH93, SNM 195, YLI7].

Extracting interesting and useful patterns from spatial datasets is
more difficult than extracting corresponding patterns from traditional
numeric and categorical data due to the complexity of spatial data types,
spatial relationships, and spatial autocorrelation.

There are different representations for spatial data. Because many
datasets are collected from satellites, aerial-photographs, and Digital
Elevation Maps (DEM), much spatial information is stored as thematic
maps which are qualitative and categorical raster data, usually maps
of land cover classes such as temperature, rainfall, pasture, urban areas,
and standing water. Coupled with this raster data representation is
vector data, the other common GIS data model, made up of points,
lines, or polygons, with associated attributes. Spatial data mining deals
with not only data types such as integers, dates and strings, but also
complex data types like points, lines, and polygons. Furthermore, rela-
tions between spatial objects add another dimension to the complexity
of spatial data mining. Basic spatial relations include metric (e.g. dis-
tance), directional (e.g. north of), and topological (e.g. adjacent).

Traditional data mining algorithms [Agr94] often make assumptions
(e.g. independent, identical distributions) which violate Tobler’s first
law of Geography: everything is related to everything else, but nearby
things are more related than distant things [Tob79]. In other words,
the values of attributes of nearby spatial objects tend to systematically
affect each other. In spatial statistics, an area within statistics devoted
to the analysis of spatial data is called spatial autocorrelation [Cre93].
Scientists and researchers in several disciplines have created, adapted,
and applied statistical techniques to spatial data. For example, in im-
age processing and vision, Markov Random Fields(MRFs) is a popular
model to incorporate context for image segmentation and classification.
Economists use spatial autoregression models to predict and estimate
trends in regional economies. The variogram, a tool to capture spatial
information in data, is widely used in geography and remote sensing. In
spatial data mining, knowledge discovery techniques which ignore spatial
autocorrelation typically perform poorly in the presence of spatial data.
The models derived may turn out to be not only biased and inconsistent,
but may also be a poor fit to the data set.

In this paper, we provide three case studies in spatial data mining.
The first case study examines the classification of spatial datasets. The
second case study describes the generalization of association rules to
spatial co-location patterns. The third case study focuses on detecting
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spatial outliers. In each case study, we bring out unique challenges of
spatial data mining relative to classical data mining.

2. SPATIAL CLASSIFICATION

Given a set of data (a training set) with one attribute as the depen-
dent attribute, the classification task is to build a model to predict the
unknown dependent attributes of future data based on other attributes
as accurately as possible. A set of data (different from the training
set) with dependent attributes known in advance is used to validate the
model. In spatial classification, the attribute properties of neighboring
objects may also have an effect on the membership of objects.

2.1 AN ILLUSTRATIVE APPLICATION
DOMAIN

We now introduce an example to illustrate the different concepts in
spatial data mining. We are given data about two wetlands, named
Darr and Stubble, on the shores of Lake Erie in Ohio USA in order to
predict the spatial distribution of a marsh-breeding bird, the red-winged
blackbird (Agelaius phoeniceus). The data was collected from April to
June in two successive years, 1995 and 1996.

A uniform grid was imposed on the two wetlands and different types
of measurements were recorded at each cell or pixel. In total, values of
seven attributes were recorded at each cell. Domain knowledge is crucial
in deciding which attributes are important and which are not. For ex-
ample, Vegetation Durability was chosen over Vegetation Species because
specialized knowledge about the bird-nesting habits of the red-winged
blackbird suggested that the choice of nest location is more dependent
on plant structure, plant resistance to wind, and wave action than on
the plant species.

Our goal is to build a model for predicting the location of bird nests
in the wetlands. Typically the model is built using a portion of the
data, called the Learning or Training data, and then tested on the
remainder of the data, called the Testing data. In the learning data,
all the attributes are used to build the model and in the testing data,
one value is hidden, in our case the location of the nests.

We focus on three independent attributes, namely Vegetation Durabil-
ity, Distance to Open Water, and Water Depth. The spatial distribution
of Vegetation Durability and the actual nest locations for the Darr wet-
land in 1995 are shown in Figure 1.1. These maps illustrate the following
two important properties inherent in spatial data.
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Figure 1.1 (a) Learning dataset: The geometry of the wetland and the locations of
the nests, (b) The spatial distribution of vegetation durability over the marshland

1. The values of Vegetation Durability and the actual nest locations
which are referenced by spatial location tend to vary gradually
over space (values of Distance to Open Water and Water Depth
are similar). While this may seem obvious, classical data mining
techniques, either explicitly or implicitly, assume that the data
is independently generated. For example, the maps in Figure 1.2
show the spatial distribution of attributes if they were indepen-
dently generated. Classical data mining techniques like logistic
regression [OM97] and neural networks [O099] were applied to
build spatial habitat models. Logistic regression was used because
the dependent variable is binary (nest/no-nest) and the logistic
function “squashes” the real line onto the unit-interval. The val-
ues in the unit-interval can then be interpreted as probabilities.
The study concluded that with the use of logistic regression, the
nests could be classified at a rate 24% better than random [0099].

2. The spatial distributions of attributes sometimes have distinct lo-
cal trends which contradict the global trends. This is seen most
vividly in Figure 1.1(b), where the spatial distribution of Vegeta-
tion Durability is jagged in the western section of the wetland as
compared to the overall impression of uniformity across the wet-
land. This property is called spatial heterogeneity. In section 3.2
we describe a measure which quantifies the notion of spatial auto-
correlation.

The fact that classical data mining techniques ignore spatial autocor-
relation and spatial heterogeneity in the model-building process is one
reason why these techniques do a poor job. A second, more subtle but
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Figure 1.2 Spatial distribution satisfying random distribution assumptions of classi-
cal regression

equally important reason is related to the choice of the objective function
to measure classification accuracy. For a two-class problem, the standard
way to measure classification accuracy is to calculate the percentage of
correctly classified objects. However, this measure may not be the most
suitable in a spatial context. Spatial accuracy—how far the predictions
are from the actuals—is as important in this application domain due to
the effects of the discretizations of a continuous wetland into discrete
pixels, as shown in Figure 1.3. Figure 1.3(a) shows the actual locations
of nests and 1.3(b) shows the pixels with actual nests. Note the loss
of information during the discretization of continuous space into pix-
els. Many nest locations barely fall within the pixels labeled ‘A’ and are
quite close to other blank pixels, which represent 'no-nest’. Now consider
two predictions shown in Figure 1.3(c) and 1.3(d). Domain scientists
prefer prediction 1.3(d) over 1.3(c), since the predicted nest locations
are closer on average to some actual nest locations. The classification
accuracy measure cannot distinguish between 1.3(c) and 1.3(d), and a
measure of spatial accuracy is needed to capture this preference.

A simple and intuitive measure of spatial accuracy is the Average
Distance to Nearest Prediction (ADNP) from the actual nest sites, which
can be defined as

K
1
ADNP(A,P) = o Z d(Ag, Ag.nearest(P)).
k=1
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Figure 1.8 (a)The actual locations of nests, (b)Pixels with actual nests, (c)Location
predicted by a model, (d)Location predicted by another model. Prediction(d) is
spatially more accurate than (c).

Here Ay represents the actual nest locations, P is the map layer of pre-
dicted nest locations and Ag.nearest(P) denotes the nearest predicted
location to Aj. K is the number of actual nest sites.

2.2 APPROACHES OF MODELING SPATIAL
DEPENDENCIES

Decision Tree Approaches. A spatial classification algorithm is pro-
posed in [EKS97]. This method is based on the well-known ID3 [Qui86]
algorithm. It employs the “neighborhood” concept and extends the at-
tributes by considering not only properties of the classified objects, but
also the attribute values of neighboring objects. Objects are considered
neighbors if they satisfy some neighborhood relations such as overlap,
close-to, east, etc. For instance the economic power of the city can be
classified based on the types of neighboring cities. In this example, the
dependent attribute is economic power. Both the attributes of object
city (e.g. population of city, amount of tazes of city) and the attributes
of neighborhing cities (e.g. type of neighbor of city, type of neighbor of
neighbor of city) are considered by this spatial classification algorithm.
The algorithm “materializes” spatial relationship as attributes, but it
does not analyze spatial autocorrelation, which is important property of
the spatial data.

Kopersiki, Han, and Stefanovic presented an efficient method for spa-
tial classification [KHS98]. The authors proposed some optimization
techniques like the " Two-Step” spatial computation approach to build
decision trees. This algorithm includes the spatial relationship as a pred-
icate in decision tree. More accurate and efficient decision trees can be
produced via this two-step approach where coarse computation are per-
formed to get a sample of approximate spatial predicates followed by
fine computations done only for promising patterns. However, this al-
gorithm does not take into account spatial autocorrelation and does not
explicitly factor spatial properties into the model.
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Logistic Regression Modeling. Given an n—vector y of observa-
tions and an n x m matrix X of explanatory data, classical linear re-
gression models the relationship between y and X as

y=X[+e

Here X = [1,X] and 8 = (Bo,---,0m)’. The standard assumption on
the error vector € is that each component is generated from an indepen-
dent, identical and normal distribution, i.e, ¢; = N(0,?).

When the dependent variable is binary, as is the case in the “bird-
nest” example, the model is transformed via the logistic function and
the dependent variable is interpreted as the probability of finding a nest
at a given location. Thus, Prob(y = 1) = %. This transformed
model is referred to as logistic regression.

The fundamental limitation of classical regression modeling is that
it assumes that the sample observations are independently generated.
This may not be true in the case of spatial data. As we have shown in
our example application, the explanatory and the independent variables
show a moderate to high degree of spatial autocorrelation(see Figure
1.1). The inappropriateness of the independence assumption shows up
in the residual errors, the ¢;’s. When the samples are spatially related,
the residual errors reveal a systematic variation over space, i.e., they
exhibit high spatial autocorrelation. This is a clear indication that the
model was unable to capture the spatial relationships existing in the
data. Thus the model is a poor fit to the data. Incidently, the notion
of spatial autocorrelation is similar to that of time autocorrelation in
time series analysis but is more difficult to model because of the multi-
dimensional nature of space.

Spatial Autocorrelation and Examples.. Many measures are avail-

able for quantifying spatial autocorrelation. Each has strengths and
weaknesses. Here we briefly describe Moran’s I measure.

In most cases, Moran’s I measure (henceforth MI) ranges between
-1 and +1 and thus is similar to the classical measure of correlation.
Intuitively, a higher absolute value indicates high spatial autocorrelation.
A high positive value implies that like classes tend to cluster together
or attract each other. A low negative value indicates that high and low
values are interspersed. Thus like classes are de-clustered and tend to
repel each other. A value close to zero is an indication that no spatial
trend (random distribution) is discernible using the given measure.

All spatial autocorrelation measures are crucially dependent on the
choice and design of the contiguity matrix W. The design of the matrix
itself reflects the influence of neighborhood. Two common choices are
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Figure 1.4 A spatial neighborhood and its contiguity matrix

the four and the eight-neighborhood. Thus given a lattice structure and
a point S in the lattice, a four-neighborhood assumes that S influences all
cells which share an edge with S. In an eight-neighborhood, it is assumed
that S influences all cells which either share an edge or a vertex. An eight
neighborhood contiguity matrix is shown in Figure 1.4. The contiguity
matrix of the uneven lattice (left) is shown on the right hand-side. The
contiguity matrix plays a pivotal role in the spatial extension of the
regression model.

Spatial Autoregression Model(SAR). We now show how spatial
dependencies are modeled in the framework of regression analysis.

This framework may serve as a template for modeling spatial depen-
dencies in other data mining techniques. In spatial regression, the spatial
dependencies of the error term, or, the dependent variable, are directly
modeled in the regression equation [Ans88]. Assume that the depen-
dent values y; are related to each other, i.e., y; = f(y;) i # j. Then the
regression equation can be modified as

y=pWy+XgB+e

Here W is the neighborhood relationship contiguity matrix and p is a
parameter that reflects the strength of spatial dependencies between the
elements of the dependent variable. After the correction term pWy is
introduced, the components of the residual error vector € are then as-
sumed to be generated from independent and identical standard normal
distributions.

We refer to this equation as the Spatial Autoregressive Model
(SAR). Notice that when p = 0, this equation collapses to the classical
regression model. The benefits of modeling spatial autocorrelation are
many: (1) The residual error will have much lower spatial autocorrela-
tion, i.e., systematic variation. With the proper choice of W, the resid-
ual error should, at least theoretically, have no systematic variation. (2)
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If the spatial autocorrelation coefficient is statistically significant, then
SAR will quantify the presence of spatial autocorrelation. It will indi-
cate the extent to which variations in the dependent variable (y) are
explained by the average of neighboring observation values. (3) Finally,
the model will have a better fit, i.e., a higher R-squared statistic.

As in the case of classical regression, the SAR equation has to be
transformed via the logistic function for binary dependent variables. The
estimates of p and § can be derived using maximum likelihood theory or
Bayesian statistics. We have carried out preliminary experiments using
the spatial econometrics MATLAB package for making the MATLAB
toolbox, which implements a Bayesian approach using sampling-based
Markov Chain Monte Carlo (MCMC) methods [LeS97]. The general
approach of MCMC methods is that when the joint-probability distri-
bution is too complicated to be computed analytically, then a sufficiently
large number of samples from the conditional probability distributions
can be used to estimate the statistics of the full joint probability dis-
tribution. While this approach is very flexible and the workhorse of
Bayesian statistics, it is a computationally expensive process with slow
convergence properties. Furthermore, at least for non-statisticians, it is
a non-trivial task to decide what “priors” to choose and what analytic
expressions to use for the conditional probability distributions.

Computing Markov Random Fields with Graph Partitioning
Technique. Markov Random Fields(MRF's) generalize Markov Chains
to multi-dimensional structures. Since there is no natural order in a
multi-dimensional space, the notion of a transition probability matrix is
absent in MRF's.

MRFs have found applications in image processing and spatial statis-
tics, where they have been used to estimate spatially varying quantities
like intensity and texture for noisy measurements. Typical images are
characterized by piece-wise smooth quantities, i.e, they vary smoothly
but have sharp jumps(discontinuities) at the boundaries of the homo-
geneous areas. Because of these discontinuities, the least-squares ap-
proach does not provide an adequate framework for the estimation of
these quantities. MRFs provide a mathematical framework to model
our priori belief that spatial quantities consist of smooth patches with
occasional jumps.

We will follow the approach suggested in [BVZ99] where it is shown
that the maximum a posteriori estimate of a particular configuration of
an MRF can be obtained by solving a suitable min-cut multi-way graph
partitioning problem.
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Example 1: A classification problem with no spatial con-
straints
Even though MRF's are inherently multi-dimensional, we will use a sim-
ple one-dimensional example to illustrate the main points. Consider the
graph G = (V, E) shown in Figure 1.5(a). The node-set V itself consists
of two disjoint sets X and L. The members of X are {z1,z2, 23} and the
members of L are {l1,l>}. Typically the z;s are the pixels and the I’ s are
the labels, like nest or no-nest. There is an edge between each member of
the set X and L. Here we will interpret the edge weights as probabilities.
For example, py = Prob(z1 = l1) = 0.7 and py = Prob(z1 = lz) = 0.3;
p1t+p2=1

Our goal is to provide a labeling for the pixel set X. This will be
done by partitioning the graph into two disjoint sets(not X and L) by
removing certain edges such that:

1. There is a many-to-one mapping from the set X to L. Every
element of X must be mapped to one and only element of L.

2. The elements of L cannot belong to the same set. Thus there
are no edges between elements of L and therefore the number of
partitions is equal to the cardinality of L, and

3. The sum of the weights of the edges removed(the cut-set) is the
minimum of all possible cut-sets.

In this example the cut-set is easily determined. For example, of the
two edges connecting each element of X and an element of L, remove the
edge with the smaller weight. Figure 1.5(b) shows the graph with the
cut-set removed. Thus we have just shown that when the weights of the
edges are interpreted as probabilities, the min-cut graph partition in-
duces a Maximum Apriori Estimate(MAP) estimate for the pixel labels.
We prefer to say that the min-cut induces a Bayesian classification on
the underlying pixel set. This is because we will use the Bayes theorem
to calculate the edge weights of the graphs.

Example 2: Adding spatial constraints
In the previous example we did not use any information about the spa-
tial proximity of the pixels relative to each other. We do that now by
introducing additional edges in the graph structure.

Consider the graph shown in Figure 1.5(c) in which we have added
two extra edges (z1,x2) and (z9,z3) with a weight A. In this example
we have chosen A = (.2.

Now if we want to retain the same partitions of the graph as in Exam-
ple 1, then the cut-set has two extra edges, namely (z1,z2) and (z9, z3).
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Figure 1.5 (a) Initially each pixel is assigned to both labels with different edge
weights. The edge weights correspond to probabilities about assigning each pixel
to a different label, (b) A min-cut graph partitioning induces a labeling of the pixel
set. Labels which correspond to the maximum probabilities are retained, (c) Spatial
autocorrelation is modeled by introducing edges between pixel nodes, (d) A min-
cut graph partitioning does not necessarily induce a labeling where the labeling with
maximum probabilities are retained. If two neighboring pixels are assigned different
labels, then the edge connecting the pixels is added to the cut-set.

Thus the sum of the weights of the edges in the cut-set W(C'1 is
WC1=0.3+0.4+0.45+2X

But now, depending upon A, the cut-set weight may not be minimal.
For example, if A = 0.2 then the weight of the cut-set W2 consisting
of the edges {(z1,l2), (z2,11), (z3,11), (z1,22)} is

WC2=0.3+0.4+0.55+ 0.2

Thus WC2 < W(C'1. What is happening is that if two neighboring pixels
are assigned to different labels, then the edge between the two neighbors
is added to the cut-set. Thus there is a penalty associated with two
neighboring nodes being assigned every time to different labels. Thus
we can model spatial autocorrelation by adding edges between the
pixel nodes of the graph. We can also model spatial heterogeneity
by assigning different weights, the A’s to the pixel edges.

3. SPATIAL CO-LOCATION RULES

Association rule finding [HGNOO] is an important data mining tech-
nique which has helped retailers interested in finding items frequently
bought together to make store arrangements, plan catalogs, and pro-
mote products together. In market basket data, a transaction consists
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of a collection of item types purchased together by a customer. Associ-
ation rule mining algorithms [AS94, AS94] assume that a finite set of
disjoint transactions are given as input to the algorithms. Algorithms
like apriori [AS94] can efficiently find the frequent itemsets from all
the transactions and association rules can be found from these frequent
itemsets. Many spatial datasets consist of instances of a collection of
boolean spatial features (e.g. drought, needle leaf vegetation). While
boolean spatial features can be thought of as item types, there may not
be an explicit finite set of transactions due to the continuity of under-
lying spaces. We define co-location rules, a generalization of association
rules to spatial datasets, in this section.

3.1 ILLUSTRATIVE APPLICATION
DOMAINS

Many ecological datasets [LCM™97, NVAT99] consist of raster maps
of the Earth at different times. Measurement values for a number of
variables (e.g., temperature, pressure, and precipitation) are collected
for different locations on Earth. Maps of these variables are available for
different time periods ranging from twenty years to one hundred years.
Some variables are measured using sensors while others are computed
using model predictions.

A set of events, i.e., boolean spatial features, are defined on these spa-
tial variables. Example events include drought, flood, fire, and smoke.
Ecologists are interested in a variety of spatio-temporal patterns in-
cluding co-location rules. Co-location patterns represent frequent co-
occurrences of a subset of boolean spatial features. Examples of inter-
esting co-location patterns in ecology are shown in Table 1.1.

The spatial patterns of ecosystem data sets include:

a. Local co-location patterns represent relationships among events
in the same grid cell, ignoring the temporal aspects of the data. Exam-
ples from the ecosystem domain include patterns P1 and P2 of Table 1.1.
These patterns can be discovered using algorithms [AS94] for mining
classical association rules.

b. Spatial co-location patterns represent relationships among
events happening in different and possibly nearby grid cells. Examples
from the ecosystem domain include patterns P3 and P4 of Table 1.1.

Additional varieties of co-location patterns may exist. Furthermore,
temporal natures of the ecosystem data give rise to many other time
related patterns. We focus on the above co-location patterns in the
following sections.
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Table 1.1 Examples of interesting spatio-temporal ecological patterns. Net Primary
Production (NPP) is a key variable for understanding the global carbon cycle and
the ecological dynamics of the Earth

Pattern Variable A variable B Examples of interesting
# patterns
P1 Cropland Area  Vegetation Higher cropland area alters
NPP
P2 Precipitation Vegetation Low rainfall events lead to
Drought Index lower NPP
P3 Smoke Aerosol Precipitation Smoke aerosols alter the
Index likelihood of rainfall in a
nearby region
P4 Sea Surface Land Surface Surface ocean heating af-
Temperature Climate and fects regional terrestrial cli-
NPP mate and NPP

3.2 CO-LOCATION RULE APPROACHES

Given the difficulty in creating explicit disjoint transactions from con-
tinuous spatial data, this section defines several approaches to module
co-location rules. We will use Figure 1.6 as an example spatial dataset
to illustrate different models. In Figure 1.6, a uniform grid is imposed
on the underlying spatial framework. For each grid [, its neighbors are
defined to be the nine adjacent grids (including /). Spatial feature types
are labeled beside their instances. We define following basic concepts to
facilitate the description of different models.

Definition 1 A co-location is a subset of boolean spatial features or
spatial events.

Definition 2 A co-location rule is of the form: C; — Co(p, cp) where
C1 and Cy are co-locations, p is a number representing prevalence mea-
sure and cp is a number measuring conditional probability.

The prevalence measure and the conditional probability measure are
called interest measures and defined differently in different models which
will be described shortly.

The reference feature centric model is relevant to application do-
mains focusing on a specific boolean spatial feature, e.g. cancer. Domain
scientists are interested in finding the co-locations of other task relevant
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Figure 1.6 Spatial dataset to illustrate different co-location models. Spatial feature
types are labeled besides their instances. The 9 adjacent grids of a grid [ (including
1) are defined to be I’s neighbors. a) Reference feature centric model. The instances
of A are connected with their neighboring instances of B and C by edges. b) Window
centric model. Each 3 X 3 window corresponds to a transaction. c) Event centric
model. Neighboring instances are joined by edges.

features (e.g. asbestos, other substances) to the reference feature. This
model enumerates neighborhoods to “materialize” a set of transactions
around instances of the reference spatial feature. A specific example is
provided by the spatial association rule [KH95].

For example, in Figure 1.6 a), let the reference feature be A, the set
of task relevant features be B and C, and the set of spatial predicates
include one predicate named “close_to”. Let us define close_to(a,b) to
be true if and only if b is a’s neighbor. Then for each instance of spatial
feature A, a transaction which is a subset of relevant features {B,C} is
defined. For example, for the instance of A at (2,3), transaction {B,C}
is defined because the instance of B at (1,4) (and at (3,4)) and instance
of C at (1,2) (and at (3,3)) are close_to (2,3). The transactions defined
around instances of feature A are summarized in Table 1.2.

Table 1.2 Reference feature centric view: transactions are defined around instances
of feature A relevant to B and C in figure 1.6 a)

Instance of A Transaction
(0,0) @

(2,3) {B,C}
(3,1) {C}

(5,5) o
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With “materialized” transactions, the support and confidence of the
traditional association rule problem [AS94] may be used as prevalence
and conditional probability measures as summarized in Table 1.3. Since
1 out of 2 non-empty transactions contains instances of both B and C
and 1 out of 2 non-empty transactions contain C in Table 1.2, an asso-
ciation rule example is: is_type(i, A) A 3j is_type(j, B) A close_to(j,i) —
Ik is_type(k, C) A close_to(k, i) with 1 + 100% = 100% probability.

The window centric model is relevant to applications like mining,
surveying and geology, which focus on land-parcels. A goal is to pre-
dict sets of spatial features likely to be discovered in a land parcel given
that some other features have been found there. The window centric
model enumerates all possible windows as transactions. In a space dis-
cretized by a uniform grid, windows of size KXk can be enumerated and
materialized, ignoring the boundary effect. Each transaction contains
a subset of spatial features of which at least one instance occurs in the
corresponding window. The support and confidence of the traditional
association rule problem may again be used as prevalence and condi-
tional probability measures as summarized in Table 1.3. There are 16
3X3 windows corresponding to 16 transactions in Figure 1.6 b). All of
them contain A and 15 of them contain both A and B. An example of an
association rule of this model is: aninstanceof type Ain awindow —
aninstance of type B in this window with % = 93.75% probability. A
special case of the window centric model relates to the case when win-
dows are spatially disjoint and form a partition of space. This case
is relevant when analyzing spatial datasets related to the units of po-
litical or administrative boundaries (e.g. country, state, zip-code). In
some sense this is a local model since we treat each arbitrary partition
as a transaction to derive co-location patterns without considering any
patterns cross partition boundaries. The window centric model “materi-
alizes” transactions in a different way from the reference feature centric
model.

The event centric model is relevant to applications like ecology
where there are many types of boolean spatial features. FEcologists
are interested in finding subsets of spatial features likely to occur in
a neighborhood around instances of given subsets of event types. For
example, let us determine the probability of finding at least one in-
stance of feature type B in the neighborhood of an instance of fea-
ture type A in Figure 1.6 c¢). There are four instances of type A and
two of them have some instance(s) of type B in their 9-neighbor ad-
jacent neighborhoods. The conditional probability for the co-location
rule is: spatial feature A atlocationl — spatial featuretype Bin9 —
neighbor neighborhoodis 50%.
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Neighborhood is an important concept in the event centric model.
Given a reflexive and symmetric neighbor relation R, we can define
neighborhoods of a location [ which satisfies the definition of neigh-
borhood in Topology [Wor95] as follows:

Definition 3 A neighborhood of! is a set of locations L = {l1,...,l;}
such that l; is a neighbor of I i.e. (I,l;) € R(Vi € 1...k).

We generalize the neighborhood definition to a collection of locations.

Definition 4 For a subset of locations L’ if L’ is a neighborhood of every
location in L = {l1,...,lx} then L’ is a neighborhood of L.

In another word, if every /1 in L’ is a neighbor of every Iy in L, then L’
is a neighborhood of L.

The definition of neighbor relation R is an input and is based on the
semantics of application domains. It may be defined using topologi-
cal relationships (e.g. connected, adjacent), metric relationships (e.g.
Euclidean distance) or a combination (e.g. shortest-path distance in a
graph such as roadmap). In general there are infinite neighborhoods over
continuous space and it may not be possible to materialize all of them.
But we are only interested in the locations where instances of spatial fea-
ture types (events) occurs. Even confined to these locations, enumerat-
ing all the neighborhoods incurs substantial computational cost because
support based pruning cannot be carried out before the enumeration of
all the neighborhoods is completed and the total number of neighbor-
hoods is obtained. Furthermore, this support-based prevalence measure
definition may not be meaningful because the value of the prevalences
may be extremely small due to the fact that many neighborhoods are
contained in bigger neighborhoods and counted multiple times. Thus the
participation index is proposed to be a prevalence measure as defined
below.

Definition 5 For a co-location C = {f1,..., fx} and a set of locations
I = {i1,... ik} where ij is an instance of feature f;(Vj € 1,...,k) if I
is a neighborhood of I itself then I is an instance of C.

In other words, if elements of I are neighbors to each other, then [ is an
instance of C. For example, {(3,1),(4,1)} is an instance of co-location
{4, C} in Figure 1.6 c) using a 9-neighbor adjacent neighbor definition.

Definition 6 The participation ratio pr(C,f;) for feature type f;
of a co-location C = {f1, fa,..., fx} is the fraction of instances of f;

which participate in the co-location C. It can be formally defined as
|distinct(m s, (all instances of co—location C))|

[instancesof {fi}|

where T is a projection operation.
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For example, in Figure 1.6 c), instances of co-location {A, B} are
{(2,3), (1,4)} and {(2,3)), (3,4)}. Only one instance (2,3) of spatial fea-
ture A out of four participates in co-location {4, B}. So pr({4, B}, A) =
1 =25
1

Definition 7 The participation index of a co-location C = {f1, fa, ...
18 Hf:l pr(C, fz)

In Figure 1.6 c), participation ratio pr({4, B}, A) of feature A in co-
location {A, B} is .25 as calculated above. Similarly pr({4, B}, B) is
1.0. The participation index for co-location {4, B} is .25 X 1.0 = .25.

The conditional probability of a co-location rule C; — ()5 in the event
centric model is the probability of finding C5 in a neighborhood of C
or it can be formally defined as:

Definition 8 The conditional probability of a co-location rule C; —
. |distinct(nc, (all instances of co—location C1UC>))|
Cy is .
[instances of C1]

where ™ is a projection
operation.

For details of algorithms which mine co-location rules in event centric
model refer to [SHO1].

4. SPATIAL OUTLIERS

Outliers have been informally defined as observations which appear to
be inconsistent with the remainder of that set of data [BL94], or which
deviate so much from other observations as to arouse suspicions that
they were generated by a different mechanism [Haw80]. Spatial outliers
are observations that are inconsistent with those in their neighbhorhood,
even though they may not be inconsistent with the overall population.
The identification of spatial outliers can lead to the discovery of unex-
pected knowledge and has a number of practical applications in areas
related to transportation, epidemiology, precision agriculture, natural
resource management, voting irregularity, and weather prediction.

Many outlier detection algorithms have been recently proposed; how-
ever, spatial outlier detection remains challenging for some reasons.
First, the choice of a neighborhood is non-trivial. Second, the design
of statistical tests for the spatial outliers needs to account for the dis-
tribution of the attribute values at various locations as well as the dis-
tribution of aggregate function of attribute values over the neighbor-
hoods. In addition, the computational cost of determining parameters
for a neighborhood-based test can be high due to the possibility of join
computations

afk}
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Table 1.3 Interest measures for different models

Model Items transactions Interest measures for C; — Co
defined by
Prevalence Conditional
probability
local boolean  partitions of fraction of Pr(Cy in a parti-
feature space partitions tion given C in the
types with C; UC> partition)
reference predicates instances  of fraction of Pr(Cy is true for
feature on refer- reference fea- instance of an instance of
centric ence and ture (7 and reference reference features
relevant (o involved feature with given Cj is true
features  with CiUCy for that instance of
reference feature)
window  boolean  possibly  in- fraction of Pr(Cs in a window
centric feature finite set windows given Cj in that
types of distinct with C;UCy  window)
overlapping
windows
event boolean  neighborhoods participation Pr(Cy in a neigh-
centric feature of instances of index of borhood of Ch)
types feature types CiUC(Cy
4.1 AN ILLUSTRATIVE APPLICATION

DOMAIN: TRAFFIC DATA SET

In 1995, the University of Minnesota and the Traffic Management
Center(TMC) Freeway Operations group started the development of a
database to archive sensor network measurements from the freeway sys-
tem in the Twin Cities. The sensor network includes about nine hundred
stations, each of which contains one to four loop detectors, depending on
the number of lanes. Sensors embedded in the freeways and interstate
monitor the occupancy and volume of traffic on the road. At regular
intervals, this information is sent to the Traffic Management Center for
operational purposes, e.g., ramp meter control, as well as research on
traffic modeling and experiments.
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In this application, we are interested in discovering the location of
stations whose measurements are inconsistent with those of their spatial
neighbors and the time periods when those abnormalities arise. The out-
lier detection tasks are: a) Build a statistical model for a spatial dataset;
b) Check whether a specific station is an outlier; ¢) Check whether sta-
tions on a route are outliers.

Figure 1.7 shows an example of traffic flow outliers. Figure 1.7(a)
and (b) are the traffic volume maps for I-35W North Bound and South
Bound, respectively, on January 21 1997. The X-axis is the 5-minute
time slot for the whole day and the Y-axis is the label of the stations
installed on the highway, starting from 1 in the north end to 61 in the
south end. The abnormal dark line at time slot 177 and the dark rect-
angle during time slot 100 to 120 on the X-axis and between station
29 to 34 on the Y-axis can be easily observed from both (a) and (b).
This dark line at time slot 177 is an instance of temporal outliers, where
the dark rectangle is a spatial-temporal outlier. Moreover, station 9 in
Figure 1.7(a) exhibits inconsistent traffic flow compared with its neigh-
boring stations, and was marked as a spatial outlier.

Average Traffic Volume(Time v.s. Station)

Average Traffic Volume(Time v.s. Station)

8

]

135W Station ID(North Bound)

(a) I-35W North Bound (b) I-35W South Bound

Figure 1.7 An example of an outlier

4.2 SPATIAL OUTLIER DETECTION
APPROACHES

Outliers in a spatial data set can be classified into three categories,
namely, set-based outliers, multi-dimensional space-based outliers, and
graph-based outliers. A set-based outlier is a data object whose at-
tributes are inconsistent with attribute values of other objects in a given
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data set regardless of spatial relationships. Both multi-dimensional
space-based outliers and graph-based outliers are called spatial out-
liers, that is, data objects that are significantly different in the attribute
space from the collection of data objects among spatial neighborhoods.
However, multi-dimensional space-based outliers and graph-based out-
liers are based on different spatial neighborhood definitions. In multi-
dimensional space-based outlier detection, the definition of spatial neigh-
borhood is based on Euclidean distance, while in graph-based spatial
outlier detection, the definition is based on graph connectivity.

Many outlier detection algorithms [ABKS99, BL94, BKNS99, KN97,
KN98, PS88, RR96, YSZ99] have been recently proposed, as shown in
Figure 1.8. The set-based outlier detection algorithms [BL94, Joh92]
consider the statistical distribution of attribute values, ignoring the spa-
tial relationships among data objects. Numerous distribution-based out-
lier detection tests, known as discordancy tests [BL94, Joh92], have been
developed for different circumstances, depending on the data distribu-
tion, the number of expected outliers, and the types of expected outliers.
The main idea is to fit the data set to a known standard distribution,
and develop a test based on distribution properties.

‘ Outlier Detection Methods ‘
# Spaial o besed
— ] 1
Statistica Multi-cimensional Graph-based
distribution of metric spatial data set spatial data set
attribute value
1 1
i atial Graph
Distance-based (FindOut) Depth threshold | —Pial Grap
Wavelet Based Outlier
based Detection
(SGBOD)
Distanceto k-th (Optics- OF )
Neighbor Density in
Neighborhood

Figure 1.8 Classification of outlier detection methods

The multi-dimensional space-based methods model data sets as a col-
lection of points in a multidimensional space, and provide tests based
on concepts such as distance, density, and convex-hull depth. Knorr
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and Ng presented the notion of distance-based outliers [KN97, KN98|.
For a k dimensional data set 1" with N objects, an object O in T is a
DB(p, D)-outlier if at least a fraction p of the objects in T lies greater
than distance D from O. Ramaswamy et al. [RRS] proposed a formula-
tion for distance-based outliers based on the distance of a point from its
k' nearest neighbor. After ranking points by the distance of each point
to its k" nearest neighbor, the top n points are declared as outliers. Bre-
unig et al. [BKNS99] introduced the notion of a “local” outlier where
the outlier-degree of an object is determined by taking into account the
clustering structure in a bounded neighborhood of the object, e.g., k
nearest neighbors. They formally defined the outlier factor to capture
this relative degree of isolation or outlierness. Their notions of outliers
are based on the same theoretical foundation as density-based cluster
analysis [ABKS99]. In computational geometry, some depth-based ap-
proaches [RR96, PS88] organize data objects in convex hull layers in
data space according to peeling depth [PS88], and outliers are expected
to be found from data objects with shallow depth value. Conceptually,
depth-based outlier detection methods are capable of processing multi-
dimensional datasets. However, with the best case computational com-
plexity Q(NT#/21) for computing a convex hull, where N is the number
of objects and k is the dimensionality of the dataset, depth-based out-
lier detection methods may not be applicable for high dimensional data
sets. Yu et al. [YSZ99] introduced an outlier detection approach, called
FindOut, which identifies outliers by removing clusters from the original
data. Its key idea is to apply signal processing techniques to transform
the space and find the dense regions in the transformed space. The
remaining objects in the non-dense regions are labeled as outliers.

Multi-dimensional Euclidean spatial based methods detect outliers in
multidimensional data space. These approaches have some limitations.
First, the multi-dimensional approaches assume that the data items are
embedded in isometric metric space and do not capture the spatial graph
structure. Consider the application domain of traffic data analysis. A
multi-dimensional method may put a detector station in the neighbor-
hood of another detector even if the detectors were on opposite sides
of the highway (e.g., I-35W north bound at exit 230, and I-35W south
bound at exit 230), leading to the potentially incorrect identification of
a bad detector. Secondly, these methods do not exploit apriori informa-
tion about the statistical distribution of attribute data. Finally, they
seldom provide the confidence measure of the discovered outliers.

In this following subsection, we describe a general framework for de-
tecting spatial outliers in a spatial data set with an underlying graph
structure. The detailed work can be found in [SLZO01].
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Choice of Spatial Statistic. For spatial statistics, several param-
eters should be pre-determined before running the spatial outlier test.
First, the neighborhood must be selected, based on a fixed cardinality or
a fixed graph distance or a fixed Euclidean distance. Second, the aggre-
gate neighborhood function must be chosen, e.g., mean, variance, and
auto-correlation. The third parameter that should be pre-determined is
the values used for comparing a location with its neighbors, either just
one attribute or a vector of attribute values. Finally, the statistic must
be chosen.

The statistic used in the graph-based outlier detection method is
S(z) = [f(z) — Eyen)(f(y))], where f(z) is the attribute value for
a data record z, N(x) is the fixed cardinality set of neighbors of z, and
Eyen(z)(f(y)) is the average attribute value for neighbors of z. Statistic
S(z) denotes the difference of attribute value of each data object z and
the average attribute value of z’s neighbors.

Characterizing the Distribution of the Statistic.

Lemma 1 Spatial Statistic S(z) = [f(z) — Eyen(z)(f(y))] is normally
distributed if attribute value f(x) is normally distributed.

Proof:

Given the definition of neighborhood, for each data record z, the aver-
age attribute values Eycn () (f(y)) of z's k neighbors can be calculated.
Since attribute values f(z) are normally distributed and an average of
normal variables is also normally distributed, the average attribute val-
ues Eycn(s)(f(y)) over neighborers is also a normal distribution for a
fixed k cardinality neighborhood.

Since the attribute value and the average attribute value over neigh-
bors are two normal variables, the distribution of difference S(z) of each
data object z and the average attribute value of z’'s neighbors is also
normally distributed. H

Test for Outlier Detection. The test for detecting an outlier in a
graph structure can be described as follows. |%| > 6. For each
data object z with an attribute value f(z), the S (xs) is the difference of
the attribute value of data object  and the average attribute value of
its neighbors. us is the mean value of all S(z), and oy is the standard
deviation of all S(z). The choice of § depends on the specified confidence
interval. For example, a confidence interval of 95 percent will lead to
0=~ 2.
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4.3 COMPUTATION OF TEST
PARAMETERS

We now describe the Test Parameters Computation(7'PC) algorithm
to calculate the test parameters, e.g., mean and standard deviation for
the statistics. The computed mean and standard deviation can then be
used to validate the outlier of the incoming data set.

Given an attribute data set V and the connectivity graph G = (V, E),
the TPC algorithm first retrieves the neighbor nodes from G for each
data object z, then it computes the difference of the attribute value of
z to the average of the attribute values of z’'s neighbor nodes. These
different values are then stored as a set called the AvgDist_Set. Finally,
the AvgDist Set is used to get the distribution value ps and os.

4.4 COMPUTATION OF TEST RESULTS

The neighborhood aggregate statistics value, e.g., mean and standard
deviation, computed in the TP(C algorithm can be used to verify the
outlier of an incoming data set. The two verification procedures are
Route Outlier Detection(ROD) and Random Node Verification(RNV).
The ROD procedure detects the spatial outliers from a user specified
route with the graph, e.g., all stations along a highway. The RNV pro-
cedure check the outlierness from a set of randomly generated nodes.
The steps to detect outliers in both ROD and RNV are similar

Given a route RN in the data set V' with graph structure G = (V, E),
the ROD algorithm first retrieves the neighboring nodes from G for each
data object z in the route RN, then it computes the difference S(z)
between the attribute value of z and the average of attribute values of
z's neighboring nodes. Each S(z) can then be tested using the spatial
outlier detection test |%| > . The 0 is pre-determined by the given
confidence interval. The data objects with a statistic greater than 6 are
then declared as outliers.

5. CONCLUSION

In this chapter, we provide a new viewpoint for understanding the
spatial data mining literature. Two major approaches are identified:
the classical data mining method after feature selection and new spatial
data mining approaches. We mainly focus on the second approach. We
introduced the spatial autoregression model and Markov random fields
with graph partitioning to remove trends resulting from spatial depen-
dency in classical location prediction models. A new pattern, co-location
rules mining, which is associated with classical association rules mining,
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but different due to the intrinsic implicit transactions in spatial data, is
introduced along with new prevalence measures and conditional prob-
ability definitions. Spatial outlier detection models spatial dependence
via neighborhood graphs. Finally, there are other interesting spatial
patterns including hotspot analysis, aggregate proximity [KN96, KR96],
and boundary shape matching [KNS97]. We briefly describe one of
these in following paragraph and plan to explore some of these in future
work.
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