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Abstract

Spatial outliers are the spatial objects whose nonspatial attribute
values are quite different from those of their spatial neighbors.
Identification of spatial outliers is an important task for data
mining researchers and geographers. A number of algorithms
have been developed to detect spatial anomalies in meteorologi-
cal images, transportation systems, and contagious disease data.
In this paper, we propose a set of graph-based algorithms to
identify spatial outliers. Our method first constructs a graph
based on k-nearest neighbor relationship in spatial domain, as-
signs the nonspatial attribute differences as edge weights, and
continuously cuts high- weight edges to identify isolated points
or regions that are much dissimilar to their neighboring objects.
The proposed algorithms have two major advantages compared
with the existing spatial outlier detection methods: accurate in
detecting point outliers and capable of identifying region out-
liers. Experiments conducted on the US Housing data demon-
strate the effectiveness of our proposed algorithms.

1 Introduction

A spatial outlier is a spatially-referenced object whose non-
spatial attribute values are significantly different from those
of other spatially-referenced objects in its spatial neighbor-
hood [16]. In contrast to traditional outliers, spatial outliers are
local anomalies that are extreme compared to their neighbors [2],
but do not necessarily deviate from the remainder of the whole
data set. Informally, spatial outliers can be called “local outliers,”
because they focus on local differences, while traditional outliers
can be called “global outliers,” since they are based on global
comparison. In certain situations, an outlier may not appear as a
single spatial object but in the form of a group of adjoining ob-
jects, i.e., a region. The nonspatial attribute values of the spatial
objects within this region are similar, but they are significantly
different from the nonspatial attribute values of the objects sur-
rounding this region. We name this type of outliers as “region
outliers [22].”

The identification of spatial outliers can reveal hidden but
valuable information in many applications. For example, it can
help locate severe meteorological events, identify aberrant genes
or tumor cells, discover highway congestion segments, pinpoint

military targets in satellite images, determine potential locations
of oil reservoirs, and detect water pollution incidents. For spatial
outlier detection, the attribute space can be separated into two
components, spatial and nonspatial attributes. Spatial attributes
are used to determine the relationship of spatial neighborhood.
Then nonspatial attributes are compared among spatial neighbors
to identify local instabilities which break spatial autocorrelation
and continuity.

The outlierness of a spatial object can be evaluated by
comparing the nonspatial attribute values of this object with
those of its k-nearest neighbors (kNN ). The entire data set
can be represented with a number of intra-connected subgraphs
based on the kNN relationships. k directed edges can be
drawn from each object to its k-nearest spatial neighbors, and
the weight of an edge denotes the absolute nonspatial difference
between two neighboring nodes. In this paper, we propose two
algorithms to detect both point outliers and region outliers based
on the kNN graph. The proposed algorithms have two major
advantages compared with the existing spatial outlier detection
methods: accurate in detecting point outliers and capable of
identifying region outliers.

The rest of the paper is organized as follows. Section
2 discusses the related work in spatial outlier identification;
Section 3 defines the problem of spatial outlier detection and
provides the motivation of our approaches; Section 4 presents
two spatial outlier detection algorithms based on kNN graph;
Section 5 illustrates the experimental design and results; and
finally Section 6 summarizes our work and points out future
research directions.

2 Related Work

Outliers have been extensively studied in the past decades and
numerous methods have been developed, including distance-
based methods [5, 14], cluster-based methods [11, 21], depth-
based methods [13, 15], and distribution-based methods [20].
Along with the fast development of geospatial information ser-
vices and the wide usage of digital images, identification of out-
liers in spatial data has received more and more attention. Tradi-
tional outlier detection methods may not be efficiently applica-
ble to spatial data. First, spatial data generally possess complex
data formats such as lines and polygons which can be combined
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to form more complex objects. Second, spatial data often exhibit
spatial autocorrelation where “everything is related to everything
else, but nearby things are more related than distant things [19].”

To mine anomalies from spatial data, many methods have
been proposed. Visualization methods illustrate the neighbor-
hood distribution in a figure and identify particular points as
spatial outliers. These methods include variogram cloud, pocket
plot, scatterplot, and Moran-scatterplot [3, 4, 10, 12]. A Scatter-
plot [3] shows attribute values on the X-axis and the average of
the attribute values in the neighborhood on the Y -axis. Nodes
far away from the regression line are flagged as potential spatial
outliers. A Moran scatterplot [10] normalizes attribute values
against the neighborhood average of values. Other algorithms,
such as z-value, perform statistical tests to discover local incon-
sistencies [8, 9]. z-value is the normalized difference between a
spatial object and the average of its spatial neighbors [18]. The
absolute z-value can determine the outlierness of an object where
higher z-values indicate a higher likelihood that an object is a
spatial outlier. Shekhar et al. provided a unified definition of
spatial outlier detection and prove that this definition generalizes
the existing algorithms such as z-value, Scatterplot, and Moran
Scatterplot [18]. Lu et al. proposed algorithms to detect spatial
outliers with multiple nonspatial attributes using Mahalanobis
distance [9].

Spatial data have various formats and semantics. Kou et al.
developed spatial weighted outlier detection algorithms which
use properties such as center distance and common border length
as weight when comparing nonspatial attributes [6]. Adam
et al. proposed an algorithm which considers both spatial
relationship and semantic relationship among neighbors [1].
Liu and Jezek proposed a method for detecting outliers in
an irregularly-distributed spatial data set [7]. The outlierness
of an object o is measured by both the spatial interpolation
residual and surface gradient of its neighborhood. Shekhar et
al. proposed an outlier detection method to identify anomalies
in transportation network [17]. Their methods are based on road
network connectivity and temporal neighborhoods based on time
series.

3 Problem Formulation and Motivation

In this section, we formally define the problem and provide the
motivation of the graph-based algorithms.

3.1 Problem Definition of Spatial Outlier Detection

We formalize the spatial outlier detection problem as fol-
lows.

Given:

• X is a set of spatial objects {x1, x2, . . . , xn} with single or
multiple nonspatial attributes, where xi ∈ �d.

• k is an integer denoting the number of adjacent data objects
which form the neighborhood relationship. Every object xi

has k neighbor objects based on its spatial location, denoted
as NNk(xi).

• Y is a set of attribute values {y1, y2, . . . , yn}, where yi is
the nonsptial attribute value of xi.

• m is the number of outliers to be identified; generally
m � n.

Objective:

• Design a mapping function f : (X, Y, k) −→ G(X, E).
G(X, E) is a graph, where each node is an object in X and
E is the set of edges. The edge between two nodes reflects
the difference of their non-spatial attributes.

• Find a partition strategy which continuously segments
graph G(X, E), to obtain a set Z of m data objects where
Z ⊂ X and for ∀xi ∈ Z , xi is disconnected with all other
objects.

3.2 Motivation

Existing spatial outlier detection algorithms have several
deficiencies. First, As described in [8], if an object has
exceptionally large or small nonspatial attribute values, it will
have negative impact on its spatial neighbors, such that some of
them may be falsely marked as outliers and the “true” outliers
may be overlooked. Figure 1 shows an example spatial data
set, where x and y coordinates denote the 2D spatial locations
and z coordinate represents the value of nonspatial attributes.
In this data set, four spatial outliers are expected, S1, S2, S3,
and S4, because their nonspatial attribute values are much
larger or smaller than their spatial neighbors. Table 1 shows the
outlier detection results of several algorithms on the data set in
Figure 1, including z-value algorithm, Moran-scatterplot, and
scatterplot. We can observe that none of the three can accurately
identify all four “true” outliers. Moreover, they identify a
“false” outlier, E1, which is in fact a normal point. E1 is
erroneously detected because the nonspatial attribute value of its
neighbor S1 is extremely high (200), and therefore dominates
the neighborhood average of E1. Figure 2(a) and Figure 2(b)
demonstrate scatterplot and Moran scatterplot of the example
data set.
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Figure 1: An example data set, where X and Y coordinates
denote the spatial locations and Z coordinate represents the value
of nonspatial attribute.
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Methods
Rank Scatter- Moran z Graph-

plot Scatterplot Alg. based
1 S1 S1 S1 S1
2 E1 E1 E1 S2
3 S2 S3 S3 (S3,S4)

Table 1: Top three spatial outliers detected by scatterplot, Moran
scatterplot, z-value, and graph-based method.

In Figure 2(a), the points far from the regression line are marked
as outliers. In Figure 2(b), the points located in the upper left and
lower right quadrants are identified as outliers. Both scatterplot
and moran-scatterplot mistakenly detect E1 as an outlier.
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(b) Moran-Scatterplot

Figure 2: The Scatterplot and Moran-scatterplot of the data set
shown in Figure 1.

Second, most of the existing algorithms focus on evaluating
the outlierness of single object and are not suitable for detecting
region outliers. If a group of outlying objects cluster together
and have similar nonspatial attribute values, they might be
erroneously marked as normal points. As shown in Table 1,
neither scatterplot, Moran-scatterplot, nor z-value approach can
identify the region outlier (S3,S4). In many applications, spatial
outliers appear in the form of connected components, or regions.
For example, a hurricane zone consists of a group of points
whose wind speed, air pressure, and water vapor density are
much different from the surrounding areas.

Third, some existing methods such as z-value approach and
Moran-scatterplot identify spatial outliers by calculating the nor-
malized non-spatial attribute difference between each object and
the average of its spatial neighbors. This normalization is across

the entire data set, which may not be appropriate for certain con-
ditions. For example, if the data set consists of a number of
spatial clusters, the objects in the same cluster are spatially cor-
related to each other and the objects in different clusters have no
direct correlations. Therefore, normalization based on the entire
data set may not be suitable. One potential solution for this is-
sue is to first identify the object clusters in the data set, and then
consider statistical characteristics of each cluster individually to
detect outliers. To address the above deficiencies, we propose a
set of graph-based algorithms to accurately identify both point
outliers and region outliers. Based on the example data set in
Figure 1, we first construct a kNN graph as shown in Figure 3.
Each circle represents an object whose nonspatial attribute value
is marked within the circle. An arrow pointing from a node x1

to another node x2 represents that x2 is one of x1’s k nearest
neighbors. If x1 and x2 are connected by a double directed edge,
they are k-nearest neighbors of each other. The edge weight is
the absolute difference between the nonspatial attribute values
of two neighboring nodes. For example, the weight of the edge
connecting S1 and S2 is 100(200 − 100). Note that there are
3 subgraphs in the kNN graph. To make the edges comparable
among different subgraphs, a standardization process can be per-
formed for each subgraph independently. The proposed graph-
based algorithms then continuously cut the longest edge, i.e., the
edge with the largest weight until certain number of points or
connected regions have been isolated. The isolated points will
be marked as point outliers since their nonspatial attribute values
are much different from those of their neighbors. The regions
will be marked as region outliers once the verification procedure
validates that their degrees of outlierness are beyond thresholds.

Figure 4 shows the edge-cut result of Figure 3, where three
outliers are identified, S1, S2, and (S3, S4). One of them
consists of two spatial objects, forming a region outlier. (S3,
S4) is labelled as a region outlier because they have been isolated
from other points and their nonspatial attribute values are similar
to each other but dissimilar to those of their neighbors. A
region is marked as “isolated” when there are no edges going
out from each point in that region. The neighbors of a region
consist of all points which have directed edges going out of that
region. Table 1 shows that the graph-based method can detect
all expected spatial outliers and is capable of identifying the
outlier region. In summary, the graph-based algorithms have
the following advantages compared with the existing spatial
outlier detection methods. (1) Detect both point and region
outliers. Based on graph connectivity, neighboring points with
similar nonspatial attribute values can be grouped conveniently;
(2) Avoid identifying “false” outliers and correctly locate “true”
outliers; (3) More “local”. We only consider the outlierness of
an object within a subgraph where this object belongs to, instead
of normalizing data across the entire data set.

4 Algorithm

In this section, we propose two graph-based algorithms. The
first algorithm POD is designed for point outlier detection,
and the second algorithm ROD is to identify region outliers.
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Figure 3: The kNN based graph representation of a small data
set,k = 3.
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Figure 4: The result of graph-based outlier detection: 2 point
outliers and 1 region outlier are identified.

Computational complexities of both algorithms are examined as
well.

The major step of spatial outlier detection is to compare the
nonspatial values between each object and its spatial neighbors.
Thus, a graph G(X, E) can be created based on the k-nearest
neighbors (kNN ) relationship. Each node represents an object
xi, and k edges direct from xi to each of its k-nearest neighbors.
The weight of an edge represents the dissimilarity between two
neighboring points. For single (nonspatial) attribute data set,
we can use the absolute difference of the nonspatial attribute as
the weight. For a data set with multiple (nonspatial) attributes,
we can use the Mahalanobis distance between two nodes as the
weight. The outgoing degree of each node is k, the number of
neighbors. Note that the graph may consist of a set of subgraphs
which are not connected to each other. We call each subgraph as
a cluster and consider their different statistical characteristics in
spatial outlier detection.

The data structure for the graph is shown in Figure 5. Each
node (object) xi is represented by a tuple with 3k + 3 elements,
where xi=〈 id, val, nbr1, diff1, flag1, . . ., nbrk, diffk, flagk,
cID 〉. id denotes the unique identification of a node; val is the
nonspatial attribute value of xi; nbrj(1 ≤ j ≤ k) represents
the j-th neighbor of xi; diffj stands for the weight of the edge
−−−→xi, xj ; flagj indicates the status of edge −−−→xi, xj (flagj = 1
denotes that the edge has been cut and flagj = 0 represents that
xi and xj are still connected); cID refers to the subgraph which
xi belongs to. The neighbor list is sorted by their edge weights

ID val Diff_1Nbr_1 Flag_1  ... Diff_kNbr_k Flag_k cID

ID val Diff_1Nbr_1 Flag_1 ?... Diff_kNbr_k Flag_k cID2 100 1001 0  ... 807 0 1

1 200 1903 0  ... 1905 0 1

ID val Diff_1Nbr_1 Flag_1 Diff_kNbr_k Flag_k cID ...

Nbr 1 Nbr k

… … … … … … … … … 

Figure 5: The data structure for graph representation.

in descending order, i.e., diff1 ≥ diff2 ≥ . . . ≥ diffk. The
reverse k nearest neighbors(rKNN ) of each object also need to
be stored. The rKNN of an object xi is a set of objects whose
k nearest neighbors contains xi. We can use a data structure
similar to Figure 5 to store the rKNN of each node. The only
difference is that the number of objects in rKNN may not be
fixed as k, so the tuple for each node is a variant-length array.
The reverse nearest neighbor table can be contructed from the
nearest neighbor table and used for extracting connected regions
from the graph.
In addition, a priority queue EdgeQueue is created to maintain
all edges, which are sorted based on their weights in descending
order. An array clusterArr contains a set of subgraphs. Each
subgraph is represented as a four element tuple clusteri, where
clusteri=<cID, mean, std, size>. cID is the unique identi-
fication of a subgraph; mean is the average nonspatial attribute
value of all objects in the subgraph; std is the standard deviation
of nonspatial attribute values in this subgraph; and size is the
number of objects in the subgraph. These statistics can be used
for normalizing edge weights in each subgraph.

4.1 Algorithm 1: Point Outlier Detection

This section introduces an algorithm to detect single point
outliers based on kNN graph. We assume that all k(xi)
are equal to a fixed number k. (The algorithm can be easily
generalized by replacing the fixed k by a dynamic k(xi).)

The proposed algorithm has four input parameters. X is
a set of n objects containing spatial attributes such as location,
boundary, and area. The non-spatial attributes are contained in
another set Y . In many applications, these nonspatial attribute
values can be the results of preprocessing procedure like dimen-
sion reduction or data standardization. k is the number of neigh-
bors. m is the number of requested outliers. Generally, m should
not be greater than 5% of n, assuming the nonspatial attribute
follows normal distribution with confidence interval of 95%.

For each data object, the first step is to identify its k

nearest neighbors. Calculating the Euclidean distance between
the centers of two objects is the most commonly used approach.
Next, based on the k-nearest neighbor set NNk, a graph G

is constructed. G may contain multiple subgraphs which are
disconnected with each other. Since different subgraphs may
have distinct characteristics, the nonspatial attribute values need
to be standardized first within each subgraph. In this way,
the edge weights are comparable among different subgraphs.
Next, a priority queue edgeQueue is created to arrange all
edges in descending order based on their weights. To partition
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Algorithm 1 : Point Outlier Detection (POD)
Input:

X is the set of n spatial objects;

Y is the set of nonspatial attribute values for X;

k is the number of neighbors;

m is the number of requested spatial outliers;

Output:

Os is a set to store detected spatial outliers

for(i=1; i ≤ n ; i++) {

/* calculate the neighborhood relationship */

NNk(xi) = GetNeighbors(X , xi); }

/* Generate a graph G based on NNk */

G = createGraph(X , Y , NNk);

/* standardize the attribute values by subgraph */

G = standardize(G);

/* create the edge priority queue */

EdgeQueue = createEdgeQueue(G);

Os = empty; /* initialize Os */

while ( sizeOf(Os) ≤ m ) {

edge = DeQueue(EdgeQueue); /* select the longest edge */

/* cut this edge and return the starting node */

o = CutEdge(G, edge);

/* check if o has become an isolated point*/

if ( isIsolated(o) ) {

MarkOutlier(Os , o); } }

/* output the outliers */

Output(Os);

the graph, a “longest-edge-cut” strategy is employed and the
partition will be conducted with multiple iterations. In each
iteration, the longest edge −−−→xi, xj (the edge with the highest
weight) is dequeued from edgeQueue and cut. Here, cutting
an edge is equal to set the flagj of the node xi as “1.” The
CutEdge function returns the starting node of the edge. After
each cutting operation the algorithm will check if this starting
node o has become isolated, i.e., no outgoing edges. If true,
o is marked as a spatial outlier and inserted into the outlier
set Os. Finally, when all m spatial outliers are identified, the
partition loop stops and Os is output. The ranking of outliers is
determined by their identification sequence.

4.2 Algorithm 2: Region Outlier Detection

One major benefit of the graph-based method is that it can
detect region outliers. A region outlier consists of a group of
adjoining spatial objects whose nonspatial attributes are similar
to each other but quite different from the surrounding objects of
this group. In a partitioned graph, a connected component can
be deemed as a region outlier if the variance in the component
is small and the variance between the component and its
neighborhood is large. Algorithm 2 is designed especially for
discovering region outliers. For simplicity, we call it ROD

algorithm. ROD has 6 input parameters: X contains the spatial
attributes of the data set; Y contains the nonsptial attribute
values of the data set; k is the number of neighbors; TEDGE

denotes the threshold for edge-cutting; TSIM represents the
threshold for evaluating the evenness within a region; TDIFF

is the threshold to measure the difference between a region
and its neighbors. The detailed algorithm is described as
follows. Similar to Algorithm 1, a graph first needs to be

Algorithm 2 : Region Outlier Detection (ROD)
Input:

X is a set of n spatial objects;

Y is the set of nonspatial attribute values for X;

k is the number of neighbors;

TEDGE is the threshold for the edge weights to be cut;

TSIM is the threshold of within region similarity;

TDIF F is the threshold of between-region difference;

Output:

Os is a set of region outliers

for(i=1; i ≤ n ; i++) {

/* calculate the neighborhood relationship */

NNk(xi) = GetNeighbors(X , xi); }

/* Generate a kNN graph G */

G = createGraph(X , Y , NNk);

/* create a priority queue based on edge weight */

EdgeQueue = createEdgeQueue(G);

edge = DeQueue(EdgeQueue); //select the longest edge

while ( weightOf(edge) > TEDGE ) {

G = CutEdge(G, edge); // cut edge in the graph

/* select the longest edge */

edge = DeQueue(EdgeQueue); }

/* find all regions with size less than k*/

regions = findCandidateRegions(G);

for(i=1; i < sizeOf(regions) ; i++) {

if ( regionEvenness(regions[i]) > TSIM ) {

nbrs = getNbrOfRegion(G, regions[i]);

if ( computeDiff (regions[i], nbrs > TDIF F ) {

markOutlier(Os , regions[i]); } } }

/* output the outliers */

Output(Os);

created based on the kNN relationship. Then a priority queue
edgeQueue is to rank all edges in descending order based on
their weights. Next, the algorithm continuously selects the
longest edge from the edgeQueue and cuts it if the weight of
this edge is larger than threshold TEDGE . After cutting all edges
with weight above TEDGE , a function is called to detect the
candidate region outliers, regions. Each of these candidates is
a connected region which contains less than k objects. regions

is only a candidate set, and each region in this set needs further
verification. The verification includes three steps: (1) for a
region region[i], determine the set of its spatial neighbors,
nbrs, which contains all the distinct k-nearest neighbors of
each point in regions[i]. If the size of nbrs is smaller than the
size of regions[i], then region[i] is not a region outlier; (2)
check the evenness of nonspatial attribute values in regions[i].
If the degree of evenness is smaller than the threshold TSIM ,
regions[i] should not be identified as an outlier; (3) compute the
nonsptial attribute value difference between region[i] and nbrs.
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If the difference is less than the threshold TDIFF , regions[i]
is not an outlier. Once regions[i] has been verified as a region
outlier through the above procedures, it will be inserted into Os.

There are two essential issues in setting the ROD algorithm:
how to evaluate the evenness within a region and how to mea-
sure the difference between a region and its neighborhood. The
evenness of a region can be evaluated by “Coefficient of Varia-
tion” (dividing standard deviation by mean), by “Inter-Quartile
Range” (difference between the first and third Quartiles), or by
“MinMax Difference” ( Max−Min

Mean ). The variation between two

regions can be measured using diff = |mr−mnbr|
(mr+mnbr)/2 , where mr

is the median nonspatial attribute value of a region r and mnbr

is the median nonspatial attribute value of r’s neighbors. A high
diff value represents large difference between a region and its
neighbors.

4.3 Time Complexity

In the POD algorithm, a k nearest neighbor (kNN ) query
is issued for each spatial point. It will take O(n) to perform
kNN query for n objects if a grid-based indexing is used and
the grid directory resides in memory. The cost of generating a
kNN graph is O(kn), and edge weight standardization takes
O(kn) computation. The priority queue generation has time
complexity of O((kn)log(kn)) based on heap sort. The number
of edge cuts is indeterministic, so we assume there are at most
n edge-cuts. The cost of checking “isolated” status of a point
is O(k), thus the cost for checking all edge cuts is O(kn).
In summary, assuming n � k and n � m, the total time
complexity of POD algorithm is O(n) + O(kn) + O(kn) +
O((kn)log(kn)) + O(kn) ≈ O(nlogn) for grid-base indexing.
The computation cost is primarily determined by priority queue
generation.

For the ROD algorithm, the time complexity of kNN

computation, graph generation, and edge weight priority queue
creation is the same as that of the POD algorithm. For edge
cutting cost, we can assume the total number of edge-cuts is
n, leading to complexity of O(n). In addition, it takes O(n)
to identify candidate regions. The verification procedure costs
O(mk), where m is the number of detected region outliers
and m � n. Finally, the total time complexity of the ROD

algorithm is O(n) + O(kn) + O((kn)log(kn)) + O(n) + O(n)
+ O(mk) ≈ O(nlogn), which is also primarily determined by
priority queue generation.

5 Experiment

In this section, we discuss our experiments on a real data
set, Fair Market Rents data provided by the PDR − DHUD

(Policy Development and Research, U.S. Department of Housing
and Urban Development), to validate the effectiveness of our
proposed algorithms. Experimental design is introduced first,
followed by result analysis.

5.1 Experiment Design

The Fair Market Rent data contain the 50th percentile rents for
fiscal year 2005 at county level. This data include the rental
prices for efficiencies, one-bedroom apartments, two-bedroom
apartments, three-bedroom apartments, and four-bedroom
apartments in 3000+ counties across the United States. The
proposed algorithms can help administrative personnel identify
and then investigate outlier counties whose rental prices are
much different from their neighboring counties. Apartment
renters can also explore the rent data to find a place where the
rent is abnormal.

The location of each county is determined by the longitude
and latitude of its center. The proposed algorithms facilitate
the discovery of abnormal rent rates by comparing reports from
neighboring counties. The number of neighbors was chosen
to be k = 8, which represents eight different directions from
the centering county: East, West, North, South, Northeast,
Northwest, Southeast, and Southwest. The distance between
a county and its neighbors is the Euclidean distance between
their centers. The experiments contain two parts: point outlier
detection and region outlier detection. For the point outlier
detection methods, top ten outliers will be identified from 3095
counties.

5.2 Result Analysis

5.2.1 Point outlier Detection

We applied four algorithms to the apartment rent data set,
including z-algorithm, Scatterplot, Moran-scatterplot, and the
proposed graph-based point outlier detection algorithm POD.
Table 2 shows the top ten outlier counties based on one-bedroom
rent in year 2005. The number in parenthesis denotes the
average rent for one-bedroom apartments in the given county.
POD algorithm identifies seven common counties as does the z

algorithm, which is a commonly used approach.
POD algorithm can avoid identifying “false” outliers. For

example, Dorchester Co.(MD) is identified as the 7th outlier
by MoranScatterplot algorithm. However, Dorchester Co. is
not very outlying if we take a closer look. Figure 6 illus-
trates the rental prices of Dorchester Co. (451) and its 8 neigh-
bors (575,576,513,1045,460,750,548,702). The number in each
county denotes the average rent in US dollar. Generally, the rent
difference within 140 dollar is viewed as normal. More than
half of the neighboring counties have normal rent difference with
Dorchester Co., so Dorchester Co. should not be identified as a
spatial outlier. Dochester Co. is identified by Moran-scatterplot
mainly because it has a neighbor, Calvert Co.(MD), which has a
very high rent (1045) and significantly raises the average rent of
the neighborhood. The POD algorithm does not have this prob-
lem, because the edge-cutting makes each neighboring county
contribute equally to the outlierness of the centering county. In
addition, POD algorithm can detect outliers that are not iden-
tified by other three methods. For example, Dukes Co.(MA) is
ranked as the sixth outlier by POD algorithm. As shown in
Figure 7, the one-bed rent in Dukes Co. is 941, which is much
higher than its 7 neighbors (difference > 150) except Nantucket
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Methods
Rank z Alg. Scatterplot MoranScatterplot POD Alg.

1 Nantucket Co.,MA(1250) Nantucket Co.,MA(1250) Blaine Co.,ID(801) Blaine Co.,ID(801)
2 Pitkin Co.,CO(1095) Caroline Co.,VA(495) Teton Co.,WY(748) Nantucket Co.,MA(1250)
3 Frederick Co.,MD(1045) Blaine Co.,ID(801) Elbert Co.,CO(444) Teton Co.,WY(748)
4 Suffolk Co.,MA(1120) Teton Co.,WY(748) Surry Co.,VA(446) Summit Co.,UT(901)
5 Blaine Co.,ID(801) Elbert Co.,CO(444) La Paz Co.,AZ(471) Suffolk Co.,MA(1120)
6 Summit Co.,UT(901) Plymouth Co.,MA(636) Moffat Co.,CO(435) Dukes Co.,MA(941)
7 Teton Co.,WY(748) Worcester Co.,MA(549) Dorchester Co.,MD(451) Fairfield Co.,CT(1239)
8 Ventura Co.,CA(1093) Summit Co.,UT(901) Sumter Co.,FL(415) Dane Co.,WI(660)
9 Fairfield Co.,CT(1239) Barnstable Co.,MA(729) Polk Co.,WI(465) Centre Co.,PA(610)

10 Clarke Co.,VA(956) Pitkin Co.,CO(1095) Polk Co.,GA(414) Pitkin Co.,CO(1095)

Table 2: Top 10 spatial outliers detected by z-value, scatterplot, Moran scatterplot, and graph-partition algorithms based on 1-bedroom
rent.

Figure 6: Dorchester Co.(MD) is detected by Moran-scatterplot
algorithm based on one-bedroom rent data in 2005.

Co.(MA). Nantucket Co. has been identified as the 2nd outlier
which has very high attribute value, 1250. If the arithmetic av-
erage is used to represent the overall characteristics of Dukes
Co.’s neighbors in other three algorithms, Nantucket Co. will
significantly increase the neighborhood average. Therefore, the
difference between Dukes Co. and its neighborhood average will
be small, thus causing Dukes Co. to not being detected by other
three algorithms. However, it is a “true” outlier, since its attribute
value is much different from most of its neighboring counties.

Figure 7: Dukes Co.(MA) identified by POD algorithm based
on one-bedroom rent data in 2005.

5.2.2 Region Outlier Detection
We also applied ROD algorithm to the 2-bedroom rent data in
2005. The evenness within a region is evaluated by “MinMax”
difference, which is calculated by Max−Min

Mean . The threshold
TSIM was chosen to be 0.15, which means the difference
between the minimum and the maximum nonspatial attribute

Figure 8: A region outlier detected by ROD algorithm based on
two-bedroom rent data in 2005.

values should be less than 15% of the average value. The
dissimilarity between a region and its neighbor set is measured
with diff = |mr−mnbr|

(mr+mnbr)/2 . The threshold TDIFF was set to be
0.4, which means that a region will be identified as an outlier if
the difference with its neighbors is more than 40% of the average
of both sets. Table 3 shows two identified region outliers: one
consists of 6 counties and the other consists of 4 counties.

Figure 8 shows the first outlier region with 6 counties having
the same rent values 829 (marked in light gray). This region has
15 neighboring counties(rent ranging from 431 to 645), whose
rents are much lower than the outlier region. Figure 9 presents
the second outlier region with 4 counties, whose average two-
bedroom rents are 1060, 1033, 1033, and 1033 respectively. This
region has 11 neighboring counties whose rents are significantly
lower than the four counties within the region. The existing
algorithms are not capable of detecting a group of counties as
outliers. In fact, many counties in the region cannot be detected
by point outlier detection methods, because their non-spatial
attribute values are similar to most of their neighbors.

6 Conclusion

In this paper, we propose two spatial outlier detection algorithms
based on kNN graph: one to detect point outliers and another
to identify region outliers. The construction of kNN graphs
makes it possible to connect adjacent points to a region if their
nonspatial attribute values are similar. Therefore, the ability to
identify region outliers distinguishes our method from existing
spatial outlier detection algorithms. In addition, the edge cut
strategy can reduce the negative impact of objects with very
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Outliers Counties in the region Neighboring counties

1 Wake,NC(829) Orange,NC(829) Wilson,NC(602) Wayne,NC(549) Warren,NC(522) Vance,NC(507) Sampson,NC(431)
Johnston,NC(829) Franklin,NC(829) Randolph,NC(645) Person,NC(546) Nash,NC(593) Moore,NC(616) Lee,NC(576)
Durham,NC(829) Chatham,NC(829) Harnett,NC(539) Greene,NC(467) Granville,NC(573) Caswell,NC(526) Alamance,NC(645)

2 Hinsdale,CO(1033) Ouray,CO(1033) San Juan,CO(692) Saguache,CO(494) Rio Grande,CO(494) Montrose,CO(634)
Mineral,CO(1033) La Plata,CO(776) Gunnison,CO(757) Dolores,CO(692) Delta,CO(578)

San Miguel,CO(1060) Conejos,CO(494) Archuleta,CO(742) Montezuma,CO(582)

Table 3: 2 region outliers detected by ROD Alg. based on two-bedroom rent data in 2005.

Figure 9: A region outlier detected by ROD algorithm based on
two-bedroom rent data in 2005.

large/small values on their neighbors. Thus the graph-based
approach can detect “true” outliers ignored by other methods
and avoid identifying “false” outliers. The experimental results
on the US House Rent data set validate the effectiveness of
the proposed methods. This paper focuses on single nonspatial
attribute outlier detection. We are working on multi-attribute
algorithms based on kNN graphs and further result will be
reported in the near future.
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