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Abstract

Detecting spatial outliers can help identify significant anomalies in spatial data sequences. In the field of meteorological
data processing, spatial outliers are frequently associated with natural disasters such as tornadoes and hurricanes. Previous
studies on spatial outliers mainly focused on identifying single location points over a static data frame. In this paper, we
propose and implement a systematic methodology to detect and track regional outliers in a sequence of meteorological
data frames. First, a wavelet transformation such as the Mexican Hat or Morlet is used to filter noise and enhance the
data variation. Second, an image segmentation method, k-connected segmentation, is employed to identify the outlier
regions. Finally, a regression technique is applied to track the center movement of the outlying regions for consecutive
frames. In addition, we conducted experimental evaluations using real-world meteorological data and events such as Hur-
ricane Isabel to demonstrate the effectiveness of our proposed approach.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Due to the ever-increasing amount of spatial data, spatial data mining has become an important research
area over the past decade [19,44]. From satellite observation systems to urban planning, geography related
spatial data are widely used. Other types of spatial data, such as medical images and gene maps, have received
a significant amount of attention from medical professionals and researchers. As defined in [24], spatial data
mining is the process of discovering hidden but valuable patterns from large spatial data sets. Similar to tra-
ditional data mining, spatial data mining techniques can be classified into four categories: classification, clus-
tering, trend analysis, and outlier detection. The challenges for spatial data mining have arisen from the
following issues. First, classical data mining is designed to process numerical and categorical data, whereas
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spatial data mining deals with more complex spatial structures that often contain extended objects such as
points, lines, and polygons. Second, classical data mining treats each input independently from other inputs
while spatial patterns often exhibit continuity and high autocorrelation with nearby samples.

As the most widely-used spatial data, geographic data not only deals with three dimensional volumes, but
also contains temporal information. Together, these form spatial data sequences. In recent years, spatio-tem-
poral data has attracted a great deal of attention from computer scientists, geographers, environmental
researchers, resource managers, and biologists. This data contains complex structures, arrives continuously,
evolves over time, and needs to be processed in real time. However, unlike a video stream, the frame sampling
period can be as long as minutes, and there are no strict restrictions on processing speed. Several recent studies
have been conducted to develop specific data mining techniques to detect useful patterns from continuous data
streams [12,14,22]. Because these techniques are not specifically designed for processing spatial data, they may
not be effectively utilized by geospatial applications. Intensive research is therefore needed to extract patterns
from spatio-temporal data and to accurately predict their trends [11,29].

Outlier detection is a process that is often used to identify objects which differ from the other members in
the same data set [4,21]. In the research on atmospheric sciences, huge amounts of spatial data are continu-
ously collected from both observation and simulation modeling. Discovering useful patterns from these data,
especially spatial outliers and their movements, will have great practical value for weather forecasting, envi-
ronmental monitoring, and climate analysis. In meteorological data, spatial outliers are those observations
that are inconsistent with their surrounding neighbors. Spatial outliers or anomalies are often associated with
severe weather events such as tornadoes and hurricanes. These events do not usually happen at a single loca-
tion but cover an extended region, so spatial outliers are usually two dimensional regions. Furthermore, the
spatio-temporal changes in these regions are frequently associated with variations of weather phenomena and
climate patterns.

The ability to automatically extract these outlier regions is therefore a crucial issue. Typically, the methods
used to address this problem rely on image segmentation and pattern recognition techniques [16,25]. Image
segmentation divides an image into constituent regions. This technique has been widely used in several prac-
tical applications, such as military satellite image analysis. Wavelet transformation is an important tool for
digital signal processing, image processing, and data mining. Wavelet transformation can represent data in
a hierarchical structure, with multiple resolutions ranging from gross to fine. In addition, it can provide the
time and frequency information simultaneously, thus rendering a time–frequency representation of the signal.
Another advantageous property of wavelet transformation is that it can distinctly capture the differences
between a data item and its neighboring items [28].

In this paper, we propose and implement a systematic methodology to detect and track region outliers in a
sequence of meteorological data frames. First, a wavelet transformation such as the Mexican Hat or Morlet is
used to sharpen and enhance the data variation. Second, an image segmentation method, k-connected segmen-
tation, is applied to identify the outlier regions. Finally, a regression technique is used to track the center
movement of the outlier regions through consecutive frames. In addition, we conducted experimental evalu-
ations using real-world meteorological data, in this case the data collected during Hurricane Isabel, to validate
the effectiveness of the proposed algorithms. This paper is organized as follows: Section 2 provides a literature
survey; Section 3 discusses the problems and proposes various approaches; Section 4 introduces the algorithm
design; Section 5 describes its application to the real meteorological data and analyzes the experimental
results; and finally, we summarize our work and discuss future research directions in Section 6.

2. Background and related work

This section surveys the related research work in spatial outlier detection, image segmentation, spatio-tem-
poral data sequence mining, and meteorological pattern identification.

Numerous studies have been conducted to identify outliers from large spatial data sets. These existing spa-
tial outlier detection methods can generally be grouped into two categories: graphic approaches and quanti-
tative tests. Graphic approaches are based on the visualization of spatial data, which highlights spatial
outliers. Examples include variogram clouds and pocket plots [20,38]. Quantitative methods, e.g., Scatterplot
[19] and Moran scatterplot [32], provide tests that distinguish spatial outliers from the remainder of the data
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set. For instance, Shekhar et al. introduced a method for detecting spatial outliers in graph data [45]. An out-
lier may have a negative impact on its neighbors when its attribute value is much higher or lower than the
average of its neighbors. Two iterative methods and one median-based approach were proposed in [31] to
address this problem. Most of the existing spatial outlier detection methods are designed for point data. How-
ever, outliers may also exist in other spatial forms, such as lines and regions.

Image segmentation partitions an image into different components or objects. This is a key procedure for
image preprocessing, object detection, and movement tracking. The existing image segmentation approaches
can be categorized into five groups. The first and most popular, threshold segmentation, uses a threshold or
clip-level to transform a grey-scale image into a binary image. Cheriet et al. proposed an approach that
explores the use of an optimal threshold for minimizing the ratio of between-segments variance and the total
variance [9]. Another approach, called the maximum entropy approach, is to define a threshold based on com-
paring the entropies of the segmented image [36]. The second method, proposed by Rosenfeld, treats an image
as a 2D fuzzy set and uses a-cut to develop a fuzzy connectivity [41]. A variation of this fuzzy connectedness is
to measure two pixels to evaluate if they are ‘‘fuzzy connected’’. A pixel set is referred to as k-connected if for
any two points there is a path that is k-connected where k is a fuzzy value between 0 and 1 [6]. Both threshold
segmentation and k-connected segmentation can be executed in linear time. The third method is called split-
and-merge segmentation [16], or quad-tree segmentation. This method splits an image into four blocks or
parts and checks if each part is homogenous. If not, the splitting process will be repeated; otherwise a merging
process will be performed. This method is accurate for complex image segmentation, but is complicated to
implement and costs more computation time (O(n log n)). The fourth category is related to the K-means or
fuzzy c-means. This is a standard classification method that is often applied in image segmentation [8]. Here,
the pixels are classified into different clusters to reach a minimum total ‘‘error’’, where the ‘‘error’’ refers to the
distance from a pixel to the center of its own cluster. This method may produce very convincing results. Nev-
ertheless, it employs an iterative process to reach convergence. The fifth method, the Mumford–Shah method,
uses the variational principal [35]. This method considers three factors in segmentation: the length of the edges
of all segments, the unevenness of the image without edges, and the error between the original image and the
segmented images. When the three weighted factors reach a minimum, this iterative segmentation process
stops. Chan and Vese employed level-sets to confine the search of segment edges based on contour boundaries
[5]. Their approach is more efficient than the Mumford–Shah method, although level-sets may limit its reflex-
ibility compared to the original method.

The theoretical analysis of segmentation algorithms in which the iteration processes are involved has had
significant development in recent years. Researchers started to view the algorithms from different angles. For
instance, the performance focuses not only on the segmentation details but also on the time cost. The state-of-
the-art results for these segmentation algorithms are listed below: (1) For the K-means and the fuzzy c-means,
researchers already have some good algorithms. Kanungo et al. improved Lloyd’s K-means clustering algo-
rithm. Their algorithm has the time complexity of at least O(n log n) since a kd-tree is required [23]. For exam-
ple, to process a 128 · 128 image, it needs 14 times as much time as a linear algorithm that only requires one
single scan. Runkler et al. [42] concluded the algorithm for fuzzy c-means is O(c2n), where c is the number of
classes. When there are 10 segments in the image, the execution time of this algorithm equals the time it takes
to scan the image 100 times. The time complexity of the maximum entropy method used to select thresholds
was studied by several researchers [7,15,30]. The time complexity is O(n2) for one or two thresholds. Even
though this is a very good result, it is far from a log linear algorithm. A nearest neighbor based algorithm
for finding the thresholds was proposed in [48], with a time complexity of O(n log n).

For meteorological data, the feature changes are usually not sharp enough to form clear edges. Therefore,
the direct application of image segmentation cannot be utilized effectively to determine the coverage of the
outlier regions. To distinguish the variation of feature gradients, wavelet techniques can be applied to the ori-
ginal spatial data before performing image segmentation [49]. Wavelet has many favorable properties, such as
supporting multi-resolution and frequency localization, which makes it a widely used tool for digital signal
processing and image processing [13,33]. In recent years, wavelet transformation techniques have been
extended to data mining areas including clustering [43], classification [27], and data visualization [34].

A copious amount of attention has also been devoted to identifying and tracking useful patterns from con-
tinuous data sequences. These patterns include clusters, evolution, deviations, and anomalies. (1) Clusters:
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Guha et al. proposed a divide-and-conquer approach for continuous data clustering [18], while Li et al.
explored a clustering technique for moving objects that captured the moving patterns of a set of similar data
points [29]. (2) Evolution: By extending an existing spatio-temporal data model, Tripod [17], Djafri et al. devel-
oped a general approach to characterizing the evolution of queries in a spatio-temporal database [11]. Aggar-
wal also presented a framework to detect changes and identify useful trends in evolving data sequences [2],
while Giannella et al. designed an algorithm to maintain frequent patterns under a tilted-time window frame-
work in order to answer time-sensitive queries [14]. (3) Deviations: Palpanas et al. utilized kernel density esti-
mators for online deviation detection in continuous data sequences [37]. (4) Anomalies: A neighborhood-based
anomaly detection approach was proposed by Adam et al. for high dimensional spatio-temporal sensor data
streams [1].

With the explosion in the amount of meteorological data, extensive research has been conducted to assist
meteorologists in accurately identifying the patterns associated with severe weather events. Several
approaches, including fuzzy clustering [3], neural networks [10], genetic algorithms [26], and support vector
machines [40,46], have been proposed to classify storm cells. For example, Peters et al. presented a rough-
set-based method capable of classifying four types of storm events: hail, heavy rain, tornadoes, and wind [39].

3. Problem and approach

In the Earth’s atmosphere, anomalies emerge at different spatial scales and may appear in different shapes,
which presents a daunting challenge to those seeking to detect outliers from continuous meteorological data
sequences. Fig. 1 shows an image of the water vapor distribution over the east coast of the US, the Atlantic
Ocean, and the Gulf of Mexico. The color intensity of each region reflects its water vapor content, and the
‘‘hot spot’’ located in the left portion of the image (28�N, 90�W) indicates a hurricane in the Gulf of Mexico.
This outlier spot is not a single point but a group of points, a region. This region has a much higher water
vapor content than its surrounding neighbors. Thus, a regional outlier is a group of adjacent points whose fea-

tures are inconsistent with those of their surrounding neighbors. The red-colored hot spot, a hurricane, in Fig. 1
is a regional outlier. Regional outliers are determined by domain experts based on a pre-defined threshold. The
challenge is to design an efficient and practical approach to automatically detect regional outliers, which could
be in irregular shapes, from spatial data sequences. In real applications, such approaches can help identify spa-
tial anomalies such as hurricanes, tornadoes, thunder storms, and other severe weather events in the observa-
tion data.
Fig. 1. A regional outlier (hurricane) in meteorological data.
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In order to accurately extract regional outliers, it is preferable to decompose the original observations into
different spatial scales in order to reduce the complexity and centralize the target object. Wavelet transforma-
tion provides such a capability with its multi-resolution characteristics. First, wavelet transformation can be
used to decompose the original spatial variation of the data into different scales, allowing users to focus on the
scale of interest and identify the potential outliers at that scale. Second, the localization of variations in the
frequency domain is useful in determining the spatial location of outliers.

In this application, we will apply wavelet transformation in the real spatial domain and then analyze the
transformed data for a particular set of scales. As spatial outliers are usually small in size compared with
the environment, relatively small scales will be selected for hurricanes and tornadoes. The wavelet power indi-
cates the strength of the variation and the localization of high values reveals the places where anomalies exist.
In the next section, we will discuss how the wavelet transformation is used in our application.

Image segmentation can be employed to extract spatial regions within which the meteorological character-
istics are similar. The segmentation algorithm needs to be fast in order to process sequential frames and even
high-speed image streams. For example, the selected algorithms should not scan the whole frame multiple
times. Ideally, the original frame or part of the original frame should be scanned only once. With O(n log n)
time complexity, split-and-merge methods would not be practical for this purpose. K-means and fuzzy c-
means, as well as the Mumford–Shah method, need extensive computation time because they require numer-
ous iterations. Thus, to achieve a satisfactory speed, the threshold method and k-connected method are the
only two options since they both have linear time complexity. Threshold segmentation seems to offer the sim-
plest solution, but when an image involves multiple thresholds, the determination of these thresholds values
will be both difficult and time-consuming. The advantage of the k-connectedness approach is that it can deter-
mine segments at different intensity levels without the need to calculate different thresholds or clip-level values.
Based on the above reasoning, we chose the k-connectedness approach to segment the meteorological data.

Our goal here is to identify the largest outlying region in which the value of each pixel is above a reasonable,
predefined threshold. If we select the threshold method, the image is translated into a binary image based on a
specified threshold, then a breadth-first search algorithm is used to label each connected component and select
the largest one. The major advantage of this approach is that the process is easy to perform. Its disadvantage,
however, is that it does not tolerate any noise. Using a k-connected search algorithm [6], we can start with any
pixel above a threshold, and find all the neighbors that have similar values by comparing them with the start-
ing pixel. This method is therefore a generalized version of the threshold method. The details of a k-connected
search are described as follows.

An image is a mapping from a two dimensional space to the real space R. Without loss of generality, let R2

be the two-dimensional grid space, the 2D digital space. A digital image can be represented by a function:
f:R2! [0,1]. Let p = (x,y), q = (u,v) 2 R2, and p, q are said to be adjacent if max{kx � uk,ky � vk} 6 1. (A
pixel, i.e. picture element, is a pair of (p, f(p)).) So, if p, q are adjacent and f(p), f(q) have only a ‘‘little’’ dif-
ference, then pixels (p, f(p)) and (q, f(q)) are said to be k-adjacent. If there is a point r that is adjacent to q
and (q, f(q)), (r, f(r)) are k-adjacent, then (p, f(p)), (r, f(r)) are said to be k-connected. Similarly, we can define
the k-connectedness along a path of pixels.

Mathematically, let (R2, f) be a digital image. If p and q are adjacent, we can define a measure called ‘‘neigh-
bor-connectivity’’ as given below:
af ðp; qÞ ¼
1� kf ðpÞ � f ðqÞk=H if p; q adjacent

0 otherwise

�
ð1Þ
where H = max{f(x)jx 2 R2}.
Let x1,x2, . . . ,xn�1,xn be a simple path. The path-connectivity b of a path p = p(x1,xn) = {x1,x2, . . . ,xn} is

defined as
bf ðpðx1; xnÞÞ ¼ minfaf ðxi; xiþ1Þji ¼ 1; . . . ; n� 1g ð2Þ
or
bf ðpðx1; xnÞÞ ¼
Y
faf ðxi; xiþ1Þji ¼ 1; . . . ; n� 1g ð3Þ
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Finally, the degree of connectivity between two vertices x,y with respect to q is defined as
Cf ðx; yÞ ¼ maxfbf ðpðx; yÞÞjp is aðsimpleÞpath:g ð4Þ
For a given k 2 [0, 1], point p = (x, f(x)) and q = (y, f(y)) are deemed k-connected if Cf(x,y) P k.
If Eq. (2) applies, k-connectedness is reflexive, symmetrical, and transitive. Thus, it is an equivalence rela-

tion. If Eq. (3) applies, k-connectedness is reflexive and symmetrical. Therefore, it is a similarity relation.

4. Algorithm design

In this section, we first describe a wavelet transformation on image data. Second, we design a segmentation
algorithm to obtain the largest connected region whose wavelet power is above background. Third, after the
center point and boundary of the region are stored, a linear regression will be employed to construct the
approximate trajectory of the moving region in consecutive frames. The existence of some disturbances
may introduce incorrect outlier regions. Regression can help remove these ‘‘noise’’ center points to obtain
an accurate trajectory.

4.1. Wavelet transformation

Wavelet transformation is a practical technique that is widely used in signal analysis and image processing.
Wavelet transformation possesses several attractive features: (1) Multi-resolution: Wavelet transformation
examines the signal at different frequencies with different resolutions, using a wider window for low frequen-
cies and a narrower window for high frequencies. This feature works especially well for signals whose high
frequency components have short durations and low frequency components have long durations. Thus, wave-
let transformation is an effective tool with which to filter a signal and focus on specific scales. (2) Localization

of the frequency: In Fourier transformation, the frequency domain has no localization information. Thus, if
the frequency changes with time in the signal, it is hard to distinguish which frequency occurs within which
time range, although all the frequencies may be detected. In the real world, signals are usually complicated
and are non-stationary. If we want to know exact information for a variation, such as the frequency and
the location of a certain variation or the strength of the variation at a certain location, wavelet transformation
has an advantage over Fourier transforms.

In this paper, we use continuous wavelet transformation. For a wavelet function W(t), the continuous wave-
let transformation of a discrete signal Xi(i = 0, . . . ,N � 1) is defined as the convolution of X with scaled and
translated W
W ðn; sÞ ¼
XN�1

i¼0

xðiÞW� ði� nÞdt
s

� �
where (*) indicates the complex conjugate, n is the localization of the wavelet transformation and s is the scale.
The wavelet transformation can also be inversely transformed to (or used to reconstruct) the original data set
xi ¼
djdt1=2

CdW0ð0Þ
XJ

j¼0

Real W ðn; sjÞ
s1=2

j

where Cd is a constant for each wavelet function; W0 is the normalized wavelet function; and J is the maximum
scale index, which will be explained later. For more details of the wavelet transformation method, please refer
to [47].

Here, not all scales of the wavelet transformation are included in the reconstruction. In order to filter out
the non-related information, the data will be reconstructed based on the scales that are of interest. For exam-
ple, if the low frequency range of the variations in the data set is to be studied, a low pass data set may be
reconstructed in order to filter out the high frequency variations and make low frequency variations more vis-
ible. Many functions can be used as the base or mother function for wavelet transformations. Here, we use two
of the most widely used bases: the Morlet base and the Mexican hat base. The Morlet function is
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W0ðgÞ ¼ p�1=4ex0ge�g2=2
The Mexican hat function is
W0ðgÞ ¼
ð�1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cð5=2Þ

p d2

dg2
ðe�g2=2Þ
When performing the wavelet transformation, the scales are selected by S0 * 2j/2(j = 0,1, . . . ,J), where J is the
maximum scale index, which satisfies J 6 2log2ðN2Þ, and N is the length of the signal, in this case S0 = 2dx,
N = 360. We use j as the scale index; Scale 2 means the real scale is S020.5*2 = 4. Tables 1 and 2 provide
the relationship between the scale index, real scale, and the corresponding period of the Fourier transform
(here, since we are performing wavelet transformation on the spatial domain, it is in fact the wavelength of
the spatial variation) for the Mexican hat and Morlet wavelets. From the tables, it can be seen that as the scale
grows, the period (or wavelength) of the real object the wavelet focuses on also grows. However, the growth
rates are different for the two wavelets. For the Morlet wavelet, the period grows more slowly than it does for
the Mexican hat wavelet. Thus, the Morlet wavelet has a better frequency resolution than the Mexican hat
wavelet. This also implies that Morlet has a poorer localization resolution.

The Morlet wavelet is a complex wavelet and the Mexican hat wavelet is a real wavelet. The Mexican hat
model captures both the positive and negative variations as separate peaks in wavelet power, while the Morlet
wavelet power combines both positive and negative peaks into a single broad peak [47]. Figs. 2 and 3 show
examples of the two wavelet transformations. Fig. 2(a) is the original data water vapor distribution along a
particular latitude. Figs. 2(b) and (c) show the wavelet transformation power at two different scales for a Mex-
ican hat wavelet. Fig. 3 uses the Morlet wavelet and higher scale indices. From Figs. 2 and 3, we can see that
the power of the wavelet transformation can be used to depict the distribution or localization of the variation
at certain scales. The Mexican hat wavelet provides a better localization (spatial resolution), therefore we will
use the Mexican hat wavelet to perform the analysis.

4.2. Detection algorithms

The proposed algorithm has two major purposes: detecting a sequence of region outliers in consecutive
frames and tracking their movements. First, a wavelet transformation is performed on the image data to iden-
tify the regions with prominent spatial variations at certain scales. Then, segmentation is employed to extract
the largest outlier region and trace its trajectory. The algorithm is designed based on the following assump-
tions. First, the CPU speed is capable of processing at least a number k of data windows (k P 1). This means
that the algorithm can process the continuous data window by window. The size of the window can be
adjusted according to the arrival speed of the data sequence. Second, the data arrive in a specific sequence,
for example, in the order of latitude or longitude. Each arriving data element is thus spatially adjacent to
the previous data element.

The primary algorithm is Main, which invokes other sub-algorithms, including WaveletAnalysis, Segmen-

tation, and Trajectory. The input of the algorithm Main includes a sequence of continuously arriving data DS,
1
able for Mexican hat wavelet

0 1 2 3 4

2 2.83 4 5.65 8
7.95 11.23 15.9 22.47 31.79

2
able for Morlet wavelet

1 2 3 � � � 6 7 8

2.83 4 5.65 � � � 16 22.6 32
2.92 4.13 5.84 � � � 16.52 23.4 33.05



Fig. 2. A sample output of the Mexican hat wavelet (a: top, b: center, c: bottom).

Fig. 3. A sample output of Morlet wavelet (a:top, b: center, c:bottom).
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a set of selected scales S for wavelet transformation, a threshold h, a similarity level k for segmentation, and a
trajectory T of the outlier region in previous frames. The output is the largest outlier region Or for each image
frame and its updated trajectory T.

In the algorithm Main, a set of scales of interest must first be determined by domain experts. The contin-
uous and unbounded data sequence DS will be processed in each window, and the window size will be deter-
mined by the size of each data item and the memory capacity. We designate each window to represent an
integral view of the global meteorological data (180� by 360�) as one time frame. From the I/O buffer, a
sequence of data elements are fetched and stored in window W. Then, the algorithm WaveletAnalysis is per-
formed on W, and the filtered data wDomain is generated, which focuses on particular scales. Next, based on
wDomain, the algorithm Segmentation is employed to extract the outlier regions, which are connected compo-
nents with attribute values above a predefined threshold h. In particular, we focus on the largest connected
region whose attribute values exceed the threshold, that is to say, only one region outlier will be detected.
Finally, the boundary and center point of the outlier region can be calculated in order to trace the region’s
movement. Trajectory T will be recalculated and updated once a new region is added.

In fact, identifying the moving outlier region does not require processing the entire frame, as the locations
of the outlier region in adjacent frames are not likely to change dramatically. Thus, based on the region loca-
tion in the previous frame, the function getPredictedArea( ) can define the predicted area Rp, an approximate
rectangle which contains all the possible positions of the moving region but is much smaller than the whole
image wDomain. Instead of processing wDomain, we can obtain the outlier region by applying image segmen-
tation only to Rp. This way, the costs of region detection can be significantly reduced. The center of Rp can
be obtained by considering both the region center in the previous frame and its moving speed. Note
that for the first several frames, Rp is set to be wDomain and the whole image will be processed for segmen-
tation. This utilization of the predicted area will make the segmentation process four times faster if its size is a
quarter of the original frame. However, the area cannot be too small in order to maintain the quality of the
search.

Algorithm. Main

Input:
DS is a data sequence
S is a set of selected scales;
h is the threshold used for segmentation;
k is the similarity level for segmentation;
T is the trajectory of the outlier region in the previous frames;

Output:

Or is the set of points in the outlier region
T is the trajectory after appending the outlier region in the current frame

T = /;
/* continuously process the sequence window by window */
while (true) {

/* get a window of data from the sequence */
W = getWinFromBuf(DS);
/*Call algorithm WaveletAnalysis to process current window*/
wDomain = WaveletAnalysis(W,S);
/* Define the predicted area to speed the image segmentation */
Rp = getPredictedArea(wDomain, T);
/* Call algorithm Segmentation to obtain the largest region*/
Or = Segmentation(Rp,h,k);
/* Call algorithm Trajectory to track movement*/
T = Trajectory(T, Or);
/* output the detected region and its moving trajectory*/
Output(Or,T);}



The three sub-algorithms are discussed in detail as follows. The algorithm WaveletAnalysis is designed to
filter out unimportant information from the source image data. The input of this algorithm is a sequence of
data points W and a set of selected scales S. The output is the filtered image. Performing the wavelet trans-
formation and reconstructing data based on a particular subset of scales can help filter noise and identify pat-
terns with particular sizes. The algorithm first extracts the boundary of W. a1 denotes the beginning latitude or
longitude, and an denotes the ending latitude or longitude of the current window. Note that for meteorological
data, the wavelet transformation will be performed along latitude lines. We will discuss the justification for
this in the experimental section of this paper.

Algorithm. Wavelet analysis

Input:
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W is a data window from the sequence;
S is a set of selected scales;

Output:

wDomain is the wavelet power of the data window
/* get the minimum latitude(or longitude) of current window */
a1 = getMinBound(W);
/* get the maximum latitude(or longitude) of current window */
an = getMaxBound(W);
/*wavelet transformation and inverse transformation along all latitudes(or longitudes)*/
for(i = a1; i 6 an; i++) {

wDomain = WaveletTransform(W,S, i);}
/* output the filtered data window*/
Output(wDomain);

The algorithm Segmentation aims to extract the largest connected region above a threshold h. It contains
three input parameters: R, h, and k. The parameter R denotes the set of data points to be segmented; h is a
threshold to filter-out unwanted points (points whose values are less than h will not be processed); and k is
the similarity level. The value of h is determined by domain experts. Ordinarily, we will designate it as 75%
of the difference between the maximum value and the minimum value of the data set. The output is the largest
connected component in the data set, consisting of points with values greater than h and similarity levels
greater than k. First, the algorithm picks a point p0 from R whose value is greater than h and is not labeled
as ‘*’, which means ‘‘not processed’’. Then, p0 is added into QUEUE. For each point in this QUEUE, its
‘‘unprocessed’’ neighboring points will be examined to see if they have a similarity level greater than k. If
the condition holds, the corresponding neighboring point will be stored into QUEUE and marked as ‘‘pro-
cessed’’. Repeating the ‘‘marking’’ process for all the points in the QUEUE, we can obtain a result set S 0, con-
taining the connected part of R. Next, the number of points in S and S 0 will be compared. If S is smaller than
S 0, S will be replaced by S 0, ensuring that S maintains the largest component discovered so far. The loop
repeats until there is no ‘‘unprocessed’’ point with a value greater than h. Finally, S is returned as the largest
component discovered by the algorithm.

Algorithm. Segmentation

Input:
R: Set of data points
h: Threshold for the clip level
k: Similarity level

Output:
S: the largest connected component with value above h

R = ;; {
while (R contains unlabeled points)
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p0 = pickOneUnLabeledPoint(R,h);
L(p0) = ‘*’; /*labeling p0 as processed*/
/*insert p0 into a Queue*/
QUEUE = InsertQueue(QUEUE, p0);
while (not Empty(QUEUE)){

/*get an element from the head of QUEUE*/
p0 = RemoveQueue(QUEUE);
For each p that is adjacent to p0 {
if (L(p) 5 ’*’ and C(p,p0) P k)
QUEUE = InsertQueue(QUEUE,p);
L(p) = ‘*’;}}}

S 0 = {p:L(p) = 0}; /*S 0 is a k-connected component*/
if (S 0 has more points than S)

S = S 0; /* save the largest component to S*/
}
return(S);

The objective of the algorithm Trajectory is to track the moving direction and speed of a given region
and to determine the validity of the current detected region. The input parameters are the previously
recorded trajectory T, the newly detected region R, and the number K of the latest points in T. The data
structure of T includes the time, center, moving speed, and boundary of previous K regions. The detected
region R is from the output of the Segmentation algorithm. It is possible for a region to be erroneously
detected by the algorithm Segmentation due to errors in the raw data or an inappropriate segmentation
threshold. Therefore, a verification function is needed in order to determine the validity of R based
on the trajectory of the previous K regions. In the algorithm, the boundary point B is first extracted and
the center C of the region R is computed. Then, a verification procedure is performed to compare C with
the statistics of the past K center points along the trajectory. The mean l and standard deviation r of the
past K center points are calculated. If C is located within 2r from l, R is considered as a valid region
and C is appended to the trajectory T. Otherwise, R is flagged as a ‘‘noise’’ point that will be discarded.
The speed and moving direction of the region center can thus be obtained from two valid consecutive center
points. Finally, the new trajectory T will be updated and stored in permanent storage for a specified period of
time.
Algorithm. Trajectory

Input:
T: Previous trajectory;
R: Current detected region;
K: Number of latest center points along T;

Output:

T: Updated trajectory with R appended
/* extract boundary of in R */
B = getBoundary(R);
/* Calculate the central point of R */
C = getCenter(R);
/*Eliminate ‘‘noise’’ points*/
T = verification(T,C,K);
/*Compute the moving speed of center point*/
T = calculateSpeed(T);
/*Output the new trajectory*/
Output(T);
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4.3. Time complexity and memory usage
The water vapor attribute value of each point is represented by a 4-byte double. If one window contains all
the global water vapor data for a specific time (360 * 180 locations), it will take 260 K byte of memory. The
computation of the wavelet transformation is efficient. A fast wavelet transformation needs O(N) operations,
where N is the number of objects (locations). Its memory usage is also linear [28]. For each data window, the
time complexity of the WaveletAnalysis algorithm is O(m), where m refers to the window size (or number of
pixels in the image). The time complexity of identifying the largest k-connected part is O(m), because in the
search algorithm, each pixel will be visited twice. This also validates that the breadth-first based search tech-
nique is an efficient searching algorithm. For trajectory tracking, the time complexity is O(p + K) where O(p) is
used for extracting the boundary and center point of the outlier region (with an average of p points) and O(K)
is the cost of ‘‘noise’’ point elimination and speed calculation. Since p and K are very small compared to m, the
running time will be dominated by the wavelet transformation and image segmentation operations. The total
time complexity will correspond to the total number of objects N(the aggregation of m for all windows), that
is, O(N).
5. Experimental results

We used the NOAA/NCEP (National Oceanic and Atmospheric Administration/National Centers of Envi-
ronmental Prediction) global reanalysis data set, which provides multiple parameters with a resolution of
1� · 1�. This data set covers the entire globe and is updated four times a day, at 0AM, 6AM, 12PM, and
6PM. Our main objective was to trace hurricanes or tropical storms by studying water vapor data from sat-
ellites. Even though a hurricane is not defined by a high concentration of water vapor, it is always accompa-
nied by a high concentration of water vapor. Usually, the stronger the circulation wind, the lower the surface
pressure, the stronger the convection, and the higher the concentration of water vapor. Although surface wind
and surface air pressure are generally considered better indicators of a hurricane, these parameters are very
difficult to retrieve from satellite observation under cloud cover, especially for hurricanes, which have deep
convections and thick clouds. In contrast, the total water vapor (integrated from the surface to the top of
the atmosphere) is a well-validated satellite product which provides a good estimation of the situation even
under heavy cloud. Fig. 4 shows an image of global water vapor distribution on October 3, 2002. In most
cases, the tropical region is covered by high values for the water vapor. Our methodology can be used to iden-
Fig. 4. Global distribution of water vapor.
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tify high concentrations of water vapor that could be caused by hurricanes. The results need to be sent to
domain experts for further validation.

The human eye can visually identify and track this type of extreme weather phenomena. Actually, the cur-
rent weather forecast system is semi-automatic, mainly based on human recognition. However, when huge
amounts of meteorological data continuously arrive, even the most experienced expert will be overwhelmed.
Human eyes alone cannot handle a large number of data frames in a short period of time. In addition, humans
are prone to making mistakes due to many factors such as distractions, lack of experiences, operator errors,
and fatigue.

In order to automate accurate outlier identification and tracking, we proposed our systematic approach,
which can handle continuous data sequences. The wavelet transform can focus on particular spatial scales
and filter out the unnecessary and distracting information. Also, after the wavelet transformation, the differ-
ence between adjacent locations will be highlighted. Fast image segmentation algorithms can automatically
extract regions with extreme weather patterns within a short period of time. Tracking functionality quickly
reveals the movement of a weather pattern, with accurate information on its location, direction and speed,
which is impossible even for human experts to find. In summary, the ultimate objective is to provide an effi-
cient machine-based anomaly detection method to relieve weather forecasters and climate analyzers from
intensive and error-prone work.

In this section, we will demonstrate the experimental results of wavelet transformation, image segmenta-
tion, and trajectory tracking.
5.1. Wavelet transformation

We first performed a Mexican hat wavelet transformation on the data over all latitudes. Fig. 5 shows the
water vapor data for 26� North and its wavelet power. In Fig. 5(a), the solid line is the original data and the
dashed line is the filtered data (reconstructed with scales 2 and 3). Fig. 5(b) is the plot of the wavelet power of
the original data. Fig. 5(c) is the plot of the wavelet power of the filtered data. Fig. 5 shows that the variation
Fig. 5. Mexican hat wavelet power with locations and scales (a:top, b:center, c:bottom).



Fig. 6. Wavelet power distribution at scale index 3.
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exists on all scales and the power of the variation changes at different locations. This figure also shows that the
Mexican hat wavelet has a satisfactory localization resolution. We mainly focused on the anomalies with sub-
weather scales, that is with variations of 1000 km or 10� in longitude at the mid-latitude region. Fig. 6 shows
the global map of wavelet transformation power with the scale index 3. Clearly, there are some areas where the
power is especially high. In these areas, the spatial variations with the scale index 3 are prominent, and there-
fore these areas are viewed as suspected region outliers.

Comparing Fig. 6 with Fig. 4, in Fig. 4, the area over the Gulf of Mexico with a high value also has a high
wavelet power. However, the high vapor value areas near 160�W in the tropic region do not show strong wave-
let powers in Fig. 6, and the low value areas in South America show high wavelet powers in Fig. 6. Therefore,
a high value does not necessarily guarantee a high wavelet power. Here, we focus on the spatial variation, not
the value of the variable. Wavelet power mainly represents the variation of the signal in the spatial domain.
Another advantage of using a wavelet transformation is its multi-scale capability, as mentioned earlier: we are
able to focus only on the scales in which we are interested. This makes it easier to study the complicated vari-
ations in multi-scale meteorological data.

We performed the wavelet transformation in the X dimension along lines of latitude because for weather
systems, the scale is usually represented based on the latitude. For the basic atmospheric parameter distribu-
tion, there is a strong variation between different latitudes such as between the tropics and high latitude areas.
This variation is the normal pattern of the general atmosphere and is not an anomalous feature. Thus, when
detecting spatial variations, it is useful to focus on the variation along the latitude line (X-axis). Technically,
however, we can also perform a wavelet transformation along the longitude line (Y-axis). Fig. 7 shows the
reconstructed water vapor distribution using an inverse wavelet transformation along both the latitude line
and longitude line (X and Y). Fig. 7 reveals many more patterns than Fig. 6. However, these patterns are
caused by the normal variations along the longitude Y and are merely noise in most cases.

5.2. Image segmentation and tracking

In this experiment, we examined the water vapor data over the period of 9/17/2003–9/19/2003, during
which Hurricane Isabel landed on the east coast of the United States. Hurricane Isabel formed in the central
Atlantic Ocean on September 6th, 2003. It moved in a generally west–northwestward direction and strength-
ened to a category five hurricane by September 11th. Weakening began on September 16th as the hurricane
turned north-northwestward. On September 18th, Isabel made landfall on the outer banks of North Carolina



Fig. 7. Reconstruction on both XY dimension.
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as a category two hurricane, while portions of eastern North Carolina and southeastern Virginia experienced
hurricane-force winds. The experimental results for Hurricane Isabel demonstrate the effectiveness of our algo-
rithms in detecting abnormal meteorological patterns. Fig. 8 shows the wavelet image at 0AM on September
18th, 2003. When the boundary of Hurricane Isabel was extracted by the algorithm Segmentation, it showed
that the center is located at (32.54�N, 71.80�W). Fig. 9 shows another experimental result on September 18th,
2003, at 6:00AM. The boundary of Hurricane Isabel was clearly identified, showing the center was located at
(33.05�N, 72.28�W). During these six hours, the trend of Hurricane Isabel can be observed as it moves north-
westward overland.

Fig. 10 shows the 3D trajectory of Hurricane Isabel from September 17th, 2003 to September 19th, 2003.
Since the location of hurricane was measured every six hours, 12 regions are illustrated in this figure covering
these three days. The boundary of each outlier region is depicted by a dotted line and the center points are
connected so that its trajectory can be observed. As can be seen from the figure, region 4 is not consistent with
Fig. 8. Water vapor data at 0AM September 18th, 2003 with Hurricane Isabel identified.



–180
–160

–140
–120

–100
–80

–60

–40

–20

0

20

40

60

1

2

3

4

5

6

7

8

9

10

11

12

Longitude

←7←7

←8←8

←2←2

←1←1

←5←5

←6←6

←3←3

←9←9

←10←10

←11←11

←12←12

←4←4

Lattitude

T
im

es

Fig. 10. Trajectory of moving region with ‘‘noise’’ data.

Fig. 9. Water vapor data at 6AM September 18th, 2003 with Hurricane Isabel identified.
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the locations of the other regions. It is a ‘‘noise’’ outlier caused by other weather patterns or inappropriate
segmentation parameters. Region 4 is flagged by the verification procedure in the algorithm Trajectory.
Fig. 11 shows the new trajectory after eliminating the ‘‘noise’’ region. The northwestward movement of Hur-
ricane Isabel can be clearly observed. The latitude and longitude of the hurricane center are listed in Table 3.
‘‘Flag = 1’’ denotes that the region is correctly detected and ‘‘Flag = 0’’ denotes that the region is ‘‘noise’’ data
and is not recorded.

Table 4 shows the processing time of the proposed k-connectedness based image segmentation algorithm.
The size denotes the number of data frames, where each frame is made up of 180 · 360 data points, and the
time is measured in seconds. In this experiment, we used a Pentium4 (2.8 GHz) PC with 512 MB memory. The
experimental results show that our image segmentation algorithm can efficiently process a high speed meteo-
rological data sequence, taking only 0.218 s to process 64 image windows, each window containing 180 · 360
points.
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Fig. 11. Trajectory of moving region without ‘‘noise’’ data.

Table 3
The tracking data of hurricane center

SN Latitude Longitude Time Flag

1 35.27 �70.07 09/17/2003/0Z 1
2 34.41 �70.42 09/17/2003/6Z 1
3 33.31 �71.28 09/17/2003/12Z 1
4 �29.20 �167.82 09/17/2003/18Z 0
5 32.54 �71.80 09/18/2003/0Z 1
6 33.05 �72.28 09/18/2003/6Z 1
7 33.91 �72.34 09/18/2003/12Z 1
8 34.53 �72.70 09/18/2003/18Z 1
9 38.05 �74.86 09/19/2003/0Z 1

10 41.41 �76.52 09/19/2003/6Z 1
11 43.61 �78.68 09/19/2003/12Z 1
12 45.46 �78.97 09/19/2003/18Z 1

Table 4
The execution time of image segmentation

Data size (180 · 360) 1 4 9 16 64

Time (s) 0.003 0.017 0.030 0.048 0.218
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5.3. Comparison with other image segmentation methods

Image segmentation directly impacts the performance of region outlier detection in continuous data
sequences. To validate the efficiency and effectiveness of the proposed k-connectedness algorithm, two widely
used methods, K-Means and Maximum Entropy, were compared. Three key elements are considered in the
comparison: segmentation quality, stability, and running time. Stability measures the parameter variance
between consecutive images. For continuous data sequences, a stable segmentation method is preferred, which
has smaller parameter variance.

The three methods are conducted on two source images in the water vapor data which have been prepro-
cessed by wavelet. Fig. 12(a) shows Image 1, the data collected at 0AM Sept 17, 2003. Fig. 12(b) illustrates



Fig. 12. Two source images for image segmentation comparison. (a) Image 1: 0AM, Sept 17, 2003 and (b) Image 2: 6AM, Sept 18, 2003.
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Image 2, the data collected at 6AM Sept 18, 2003. The boundary of Hurricane Isabel is highlighted in white in
both images and the center is at (35.27�N, 70.7�W) and (33.05�N, 72.28�W), respectively. For K-Means image
segmentation, we experimented on various K values and demonstrated the results for K = 2, 4, and 8, respec-
tively. For the Maximum Entropy method, the results are recorded for both single threshold and two thresh-
olds. The k-connectedness approach is tested based on k = 0.95 and h = 45%.

5.3.1. Quality and stability comparison

5.3.1.1. K-Means. The results of the K-Means segmentation are illustrated in Fig. 13. Figs. 13(a) and (b) show
the results for K = 2, where Image 1 and Image 2 are segmented into 2 distinct gray levels, dark gray and
black. The largest connected component is marked within a white rectangle. For both figures, the results
are not satisfactory since the largest connected regions are not Hurricane Isabel. The results for K = 4 are illus-
trated in Figs. 13(c) and (d), where the images were segmented into four gray levels. In Fig. 13(c), Hurricane
Isabel is correctly identified as the largest connected component as shown by a white arrow. In Fig. 13(d), the
segmentation is not acceptable for Image 2. The region designated by a white arrow represents the location of
Hurricane Isabel. However, it is far from the largest connected component. For example, the region marked
by a white rectangle is apparently larger. When K = 8, the segments of the images are represented by eight
different gray levels as shown in Figs. 13(e) and (f). In both figures, the boundary of Hurricane Isabel is iden-
tified accurately with a white arrow. In summary, the K-Means method is not effective in segmenting the water
vapor data and locating the hurricane when K = 2 or K = 4. When K is increased to 8, the hurricane can be
identified accurately. However, the running time will increase significantly. Please refer to Section 5.3.2 for
details.

5.3.1.2. Maximum entropy. The Maximum Entropy method was tested on Image 1 and Image 2 as well. We
experimented with the segmentation using a single threshold and 2 thresholds. The results of single threshold
67 are demonstrated in Figs. 14(a) and (b). The threshold 67 is automatically calculated based on Image 1.
Based on this threshold, Fig. 14(a) shows that the segmentation of Image 1 is effective, with Hurricane Isabel
identified using a white arrow. However, as shown in Fig. 14(b), the threshold 67 is not suitable for Image 2:
the largest connected region centered at (44 �N, 90 �W) is marked with a white rectangle and it is apparently
not Hurricane Isabel, which is marked by a white arrow. Based on Image 2, another threshold value 140 can
be generated automatically. Fig. 15(a) shows that although this threshold can help determine the center of
Hurricane Isabel in Image 1, the boundary of the detected region is not accurate and the size of the region
is much smaller than the actual hurricane. As shown in Fig. 14(b), the threshold 140 is effective for Image
2, with the location of Hurricane Isabel accurately pinpointed by a white arrow. Nevertheless, one limitation
of the single threshold Maximum Entropy is that different images need different thresholds and these thresh-
olds vary significantly. This means that the threshold is not stable for continuous data sequences. The 2-
threshold Maximum Entropy image segmentation achieves satisfactory results (please refer to Fig. 16(a)



Fig. 13. The effectiveness of K-Means image segmentation: (a) K = 2 for Image 1; (b) K = 2 for Image 2; (c) K = 4 for Image 1; (d) K = 4
for image 2; (e) K = 8 for Image 1; (f) K = 8 for Image 2.
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and (b)), with the boundary of Hurricane Isabel identified accurately. The threshold values are (56,129) for
Image 1 and (58, 140) for Image 2. However, the running time of the two-threshold Maximum Entropy
exceeds 5 s, which may not be suitable for high-speed stream data processing. Please see Section 5.3.2 for
details.
5.3.1.3. k-connectedness. Fig. 17 demonstrates the results of the k-connectedness image segmentation. k was
selected as 0.95 and the clip parameter h was set to 45%. For both images, the location of Hurricane Isabel



Fig. 14. Maximum entropy image segmentation: single threshold. (a) Threshold = 67 for Image 1 and (b) threshold = 67 for Image 2.

Fig. 15. Maximum entropy image segmentation: single threshold. (a) Threshold = 140 for Image 1 and (b) threshold = 140 for Image 2.

Fig. 16. Maximum entropy image segmentation: two-threshold. (a) Thresholds = (56,129) for Image 1 and (b) thresholds = (58,140) for
Image 2.
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is accurately identified using a white arrow. The segmentation quality of the k-connectedness is comparable to
that of Maximum Entropy and the k-connectedness method has excellent stability: only one set of parameters
are required for all correlated images.



Fig. 17. k-connectedness image segmentation: (a) based on Image 1 and (b) based on Image 2.
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5.3.2. Running time comparison

The running time of the three methods were recorded for both testing images. Table 5 lists the running time
of the K-Means for K = 2, K = 4, and K = 8. When K = 2, the average image segmentation time is 62 ms and
47 ms for the two images, respectively. The efficiency may be acceptable for low-speed data streams but not
appropriate for high-speed data streams. When K = 4 and K = 8, the running time increases dramatically
(around 500 ms), which is apparently not suitable for fast image segmentation.

Table 6 shows the running time of the Maximum Entropy. The single threshold Maximum Entropy seg-
mented the two images in 63 ms and 16 ms, respectively, similar to the running time of K-Means when
K = 2. However, when two thresholds are employed, the running time jumps to 5 � 7 s, which is not suitable
for online processing of data sequences. Table 7 demonstrates the efficiency of the k-connectedness approach,
where k = 0.95 and h = 45%. Compared with the other two methods, it has the shortest processing time of
only 3 ms. In addition, the running time variation between different images is very small.
Table 5
Running time of K-Means

Image K = 2 K = 4 K = 8

Image 1: data at 0AM September 17, 2003 62 ms 219 ms 1094 ms
Image 2: data at 6AM September 18, 2003 47 ms 188 ms 485 ms

Table 6
Running time of maximum entropy

Image Single threshold 2 thresholds

Image 1: data at 0AM September 17, 2003 63 ms 7155 ms
Image 2: data at 6AM September 18, 2003 16 ms 5359 ms

Table 7
Running time of k-connectedness

Image k-connectedness

Image 1: data at 0AM September 17, 2003 3 ms
Image 2: data at 6AM September 18, 2003 3 ms
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Based on the above comparisons, we can see that the K-Means is not appropriate for data sequence pro-
cessing. When K = 2 and K = 4, the image segmentation quality can not be guaranteed. When K = 8, the qual-
ity is acceptable, but the efficiency is not satisfactory. The Maximum Entropy achieves satisfactory
segmentation quality. If the data arriving rate is not very high, the single threshold entropy method can be
used. However, it has a limitation in that both the threshold value and the running time vary significantly with
different images. The two-threshold Maximum Entropy provides excellent quality. Nevertheless, the long run-
ning time makes it not suitable for stream data processing. The k-connectedness method can support high pro-
cessing speed and render acceptable segmentation quality. Moreover, it provides excellent stability: for
different images, one single set of parameters can be used and the processing time is steady. Based on the above
considerations, the k-connectedness method was selected to perform the image segmentation.
6. Conclusions

In this paper, we propose a comprehensive approach for detecting and tracking spatial region outliers in
meteorological data. Our approach is based on wavelet transformation and image segmentation. First, wavelet
transformation is used to filter out noise and highlight spatial variation at specific scales. Then, an efficient
image segmentation technique, the k-connectedness method, is applied to extract the largest connected region
whose intensity is much higher than its neighbors. Finally, the trajectory of the outlier region is calculated for
a sequence of meteorological data frames. The proposed algorithms can be executed with linear time and are
suitable for use in identifying anomalies in continuous meteorological data sequences. The experiments on the
Hurricane Isabel data set validate the efficiency and effectiveness of our approach.

Our research will be extended in the following directions. First, we plan to study region outliers in three-
dimensional spatial space with multiple attributes, such as pressure, rainfall, cloud cover, and temperature.
Second, we will design algorithms to identify and track multiple moving outlier regions simultaneously. Fur-
thermore, we will seek to apply our algorithms to the real NOAA online database in order to reveal anoma-
lous meteorological patterns.
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