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Abstract The ever-increasing volume of spatial data has greatly challenged our
ability to extract useful but implicit knowledge from them. As an important branch
of spatial data mining, spatial outlier detection aims to discover the objects whose
non-spatial attribute values are significantly different from the values of their spatial
neighbors. These objects, called spatial outliers, may reveal important phenomena in
a number of applications including traffic control, satellite image analysis, weather
forecast, and medical diagnosis. Most of the existing spatial outlier detection al-
gorithms mainly focus on identifying single attribute outliers and could potentially
misclassify normal objects as outliers when their neighborhoods contain real spatial
outliers with very large or small attribute values. In addition, many spatial applica-
tions contain multiple non-spatial attributes which should be processed altogether
to identify outliers. To address these two issues, we formulate the spatial outlier
detection problem in a general way, design two robust detection algorithms, one for
single attribute and the other for multiple attributes, and analyze their computational
complexities. Experiments were conducted on a real-world data set, West Nile virus
data, to validate the effectiveness of the proposed algorithms.
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1 Introduction

Outlier detection is one of the major tasks of data mining that aims to identify
abnormal patterns (outliers) from large data sets. In different applications, outliers
have different names such as anomalies, deviations, exceptions, faults, and irregu-
larities. Although there is no consensus to describe outliers, Barnet’s definition is
accepted by many statisticians and computer scientists, which views an outlier as one
observation that appears to deviate markedly from other members of the sample in
which it occurs [4]. In the past decades, outlier detection has attracted substantial
attention and distinguished itself as an important branch of data mining. Traditional
outlier detection has many practical applications. For example, it can help identify
intrusions in computer networks [41], locate malfunctioned parts in a manufacture
streamline [10], pinpoint suspicious usages of credit cards [8], and monitor unusual
changes of stock prices [9].

In recent years, the existence of huge amount of spatial data calls for spatial outlier
detection methods to identify anomalies in the spatial context. A spatial outlier is a
spatially referenced object whose non-spatial attribute values are significantly differ-
ent from those of other spatially referenced objects in its spatial neighborhood [33]. It
is usually viewed as a local anomaly whose nonspatial attribute values are extreme to
its neighbors [7]. In contrast to traditional outliers, spatial outliers do not necessarily
deviate from the remainder of the whole data set. Informally, traditional outliers can
be called “global outliers” since they are based on global comparisons, while spatial
outliers can be called “local outliers” since they are derived from local comparisons.
Spatial outlier detection plays an important role in many applications. It can help
locate extreme meteorological events such as tornadoes and hurricanes [22], [43],
identify disease outbreaks [38] and tumor cells [28], and discover abnormal highway
traffic patterns [35]. In addition, spatial outlier detection can be potentially applied
to pinpoint significant military targets in satellite images, determine the locations of
potential gas/oil wells, and detect water pollution incidents.

Traditional outlier detection approaches may not be directly applied to extract
abnormal spatial patterns due to the special properties of spatial data. First, classical
outlier detection is designed to process numerical and categorical data, whereas
spatial data have more complex structures that contain extended objects such as
points, lines, and polygons. Second, traditional outlier detection does not separate
spatial relationships among input variables, while spatial patterns often exhibit
spatial continuity and autocorrelation with nearby samples. As indicated by the
geographical rule of thumb, “Everything is related to everything else, but nearby
things are more related than distant things [37].” In the identification of spatial
outliers, the attribute space is generally divided into two parts, non-spatial attributes
and spatial attributes. Spatial attributes record the spatial information such as lo-
cations, boundaries, and directions, which determine the spatial relationships among
neighbors. Based on the spatial neighborhood relationship, non-spatial attributes are
used to identify abnormal observations.

Several methods have been proposed for spatial outlier detection. However,
most of the existing spatial outlier detection algorithms mainly focus on identifying
single attribute outliers and could potentially misclassify normal objects as outliers
when their neighborhoods contain real spatial outliers with very large or small
attribute values. In addition, many spatial applications contain multiple non-spatial
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attributes which should be processed altogether to identify outliers. To address these
issues, we introduce two effective algorithms for the single-attribute and multiple-
attribute spatial outlier detection. These two algorithms are robust in the sense that
their performance is not subject to the number of outliers that exist in the data.
Experiments conducted on West Nile virus data demonstrate the effectiveness of
the proposed algorithms.

The contributions of this paper are: (1) formally define the problem of spatial
outlier detection; (2) design and implement one robust algorithm for the single-
attribute outlier detection; (3) develop one Mahalanobis-distance-based algorithm
to detect spatial outliers with multiple attributes; (4) evaluate the effectiveness of the
proposed algorithms by experimenting on the West Nile virus data.

The paper is organized as follows. Section 2 reviews related work. Section 3
provides a general framework on the single attribute outlier detection, discusses the
deficiency of the existing approaches, and proposes one algorithm to identify single
attribute spatial outliers. In Section 4, the algorithm for detecting spatial outliers with
multiple attributes is presented. Section 5 presents and analyzes the experimental
results. We conclude in Section 6 with directions for future work.

2 Related work

The existing traditional outlier detection algorithms can be classified into the follow-
ing categories: clustering-based, distribution-based, depth-based, density-based, and
distance-based. A few clustering-based algorithms have been designed to identify
outliers as exceptional data points that do not belong to any cluster [12], [26],
[42]. Since these algorithms are not specifically designed for outlier detection, their
efficiency and effectiveness are not optimized. Distribution-based methods use a
standard distribution to fit the data set so that data points deviating from this
distribution are defined as outliers [40]. The primary limitation of these methods is
that in many applications, the exact distribution of a data set is unknown beforehand.
Depth-based methods organize the data in different layers of k-d convex hulls where
data in the outer layers tend to be outliers [29], [32]. These methods are not widely
used due to their high computation costs for multi-attribute data. Density-based
algorithms define outliers in terms of their local reachability densities [6], [17]. Local
outlier factor (LOF) is a typical example of density based algorithms which evaluate
the outlierness of an object by comparing its density with those of its neighbors.
Distance-based methods may be the most widely used techniques which define an
outlier as a data point having an exceptionally far distance to the other data points
[18], [30].

The above methods for detecting outliers focus on low dimensional data. For
detecting outliers with numerous attributes, traditional outlier detection approaches
are ineffective due to the “curse of high dimensionality,” i.e., the sparsity of the data
objects in a high dimensional space [3]. It has been shown that the distance between
any pair of data points in a high dimensional space is so similar that either every
data point or none of the data points can be viewed as an outlier if the concept of
proximity is used to define outliers [1]. As a result, traditional Euclidean distance
cannot be used to effectively detect outliers in high dimensional data sets. Two
categories of research work have been conducted to address this issue. One is to
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project high dimensional data to low dimensional data [2], [3], [5], [16], and the
other is to re-design distance functions to accurately define the proximity relationship
between data points [1].

Traditional outlier detection algorithms can be applied to spatial data. However,
their performance is not assured since they treat spatial attributes and non-spatial
attributes equally. For spatial outlier detection, spatial and non-spatial dimensions
should be considered separately. The spatial dimension is used to define the neigh-
borhood relationship, while the non-spatial dimension is often used to define the
discrepancy quantity. A number of algorithms have been specifically designed to
deal with spatial data. These methods can be generally grouped into two categories,
namely, graphic approaches and quantitative tests. Graphic approaches are based
on visualization of spatial data which highlights spatial outliers. Examples include
variogram clouds and pocket plots [15], [27]. Quantitative methods provide tests
to distinguish spatial outliers from the remainders of the data set. Scatterplot [13]
and Moran scatterplot [23] are two representative approaches. A Scatterplot shows
the attribute value on the X-axis and the average of the attribute values over the
neighborhood on the Y-axis. Nodes far away from the least square regression line
are flagged as potential spatial outliers. A Moran scatterplot is a plot of normalized
attribute value against the neighborhood average of normalized attribute values. It
contains four quadrants where spatial outliers can be identified from the upper left
and lower right quadrants. Other work involving quantitative approaches includes
the graph-based outlier detection [35] and the locally adaptive statistical analysis [19].
Recently, some neighborhood-based approaches have been proposed to detect
spatial outliers with single or multiple attributes [20], [21]. These approaches mainly
work for data that do not contain a large number of outliers.

3 Detection of outliers with a single attribute

In this section, we define the problem of detecting spatial outliers with a single
attribute, discuss deficiencies of some existing detection methods, then introduce a
new detection algorithm. The computational complexity of the proposed algorithm
is also examined.

3.1 Problem formulation

Suppose there exists a set of spatial points X = {x1, x2, . . . , xn} in a space with
dimension p ≥ 1. An attribute function f is defined as a mapping from X to R (the
set of all real numbers) such that f (xi) represents the attribute value of spatial point
xi. For a given point xi, let NNk(xi) denote the k nearest neighbors of point xi. A
neighborhood function g is defined as a map from X to R such that for each xi, g(xi)

returns a summary statistic of attribute values of all the spatial points inside NNk(xi).
For example, g(xi) can be the average attribute value of the k nearest neighbors of
xi. To detect spatial outliers, the attribute value of each point xi is compared with
those attribute values of its neighbors in NNk(xi). Such comparison is done through
a comparison function h, which is a function of f and g. There are many choices for
the form of h. For example, h can be the difference ( f − g) or the ratio ( f/g). The
selection of h function depends on the properties of the practical applications. Let
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hi = h(xi) for i = 1, 2, . . . , n. Given the attribute function f , neighborhood function
g, and comparison function h, a point xi is a spatial outlier or simply S-outlier if hi is
an extreme value of the set {h1, h2, . . . , hn}. We note that the definition depends on
the choices of functions k, g, and h.

The definition given above is quite general. As a matter of fact, outliers in-
volved in various existing spatial outlier detection techniques are special cases of
S-outliers [34]. These include outliers detected by scatterplot [13], Moran scatter-
plot [23], and pocket plots [15], [27].

A straightforward method to detect S-outliers can be stated as follows. Assume
all k(xi) are equal to a fixed number, denoted as k. The neighborhood func-
tion g evaluated at a spatial point x is taken to be the average attribute value
of all the k nearest neighbors of x. The comparison function h(x) is chosen to
be the difference f (x) − g(x). Applying such an h to the n spatial points leads
to the sequence {h1, h2, . . . , hn}. A spatial point xi is treated as a candidate of
S-outlier if its corresponding value hi is extreme among the data set {h1, h2, . . . , hn}.
To identify the extreme values of this data set, we begin with standardizing the
data set {h1, h2, . . . , hn}. Let μ and σ denote the mean and standard deviation
of {h1, h2, . . . , hn}. The standardized value for each hi is zi = hi−μ

σ
. Clearly, hi is

extreme in the data set {h1, h2, . . . , hn} iff zi is extreme in the standardized data
set. Correspondingly, xi is a potential S-outlier if yi = |zi| is large. This algorithm
is described in [35]. We call it Z algorithm, since it is based on the Z -score hi−μ

σ
.

3.2 Deficiency of existing approaches

One drawback of the above Z algorithm is that regular spatial points could be
falsely detected as spatial outliers due to the presence of neighboring points with
very high/low attribute values. Thus the true spatial outliers could be ignored due to
falsely detected spatial outliers if the expected number of spatial outliers is limited.
We show these two problems using an illustrative example. In Fig. 1, each object

Fig. 1 A spatial data set.
Objects are located in the
X–Y plane. The height of
each vertical line segment
represents the attribute value
of the corresponding object
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Table 1 The X, Y, and Z
coordinates of S1, S2, S3, E1
and E2 in Fig. 1

Point X coordinate Y coordinate Z coordinate

S1 40 40 200
S2 60 40 100
S3 30 90 20
E1 30 50 10
E2 30 40 10

is located in the X–Y plane with its associate attribute value in the Z -coordinate.
In particular, the X, Y, and Z coordinate values of points S1, S2, S3, E1, and
E2 are listed in Table 1. Assuming the expected number of spatial outliers is 3
and k is chosen to be 3, then we can easily observe that points S1, S2 and S3 are
spatial outliers, since their attribute values are significantly different from those of
their neighbors. However, the obtained result from running the above Z algorithm
indicates that S1, E1 and E2 are spatial outliers, as shown in Fig. 2. This detection
error is mainly due to the large attribute value difference between point S1 and its
neighboring points. For example, since S1 is inside the neighborhood of E1, the
neighborhood function at E1 obtains a value much larger than the attribute value
of E1, so that E1 is erroneously marked as an outlier. In general, the Z algorithm
will lead to some true spatial outliers being ignored and some false spatial outliers
being wrongly identified. This disadvantage is also shared by other existing detection
approaches. For example, S1, E1, and E2 are detected as the top three spatial outliers
by the Moran scatterplot method, since these three points are located in the upper-
left and lower-right quadrants and are far away from the origin (0,0), as shown in
Fig. 3. E1, E2, and S2 are identified as the top three spatial outliers by the scatterplot
approach, since the distances of the three points to the regression line are larger than
the distances of other points to the regression line, as shown in Fig. 4. To remedy the
above mentioned defect of the Z algorithm, an appropriate neighborhood function

Fig. 2 Graphical illustration
of the Z algorithm. Data are
shown in Fig. 1 and Table 1.
The height of each vertical line
segment indicates the absolute
value of the Z -score. S1, E1,
and E2 would be claimed to be
the potential spatial outliers
since their absolute values of
the Z -scores are the largest
three
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Fig. 3 Moran scatterplot used
to detect the spatial outliers of
the data in Fig. 1. Here Z
score represents the
normalized attribute value.
Three best candidates of
outliers are S1, E1, and E2,
located in the upper left and
lower right quadrants
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needs to be selected. In the algorithm presented below, the median is used as the
neighborhood function. The use of median reduces the impact caused by the extreme
neighboring points.

Another drawback of the above Z algorithm is that the data set {h1, h2, . . . , hn}
is standardized using the sample mean μ and sample standard deviation σ . When
multiple outliers exist in the data, these quantities are usually the biased estimates

Fig. 4 Scatterplot used to
analyze the data in Fig. 1. E1,
E2, and S2 are the three best
candidates of spatial outliers
since their distances to the
regression line are the largest
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of the true population mean and standard deviation. As a result, some true spatial
outliers can escape the detection and regular objects can erroneously become
outliers. This is known as the problem of masking and swamping [14]. To resolve
this, robust estimates of the mean and standard deviation need to be used.

3.3 Detection algorithm

In this section, we present our detection algorithm, which can be viewed as an
improved version of the Z algorithm. Assume that all k(xi) are equal to a fixed
number k. [The algorithm can be easily generalized by replacing the fixed k by a
dynamic k(xi).] Under the framework of Section 3.1, outlier detection algorithms
depend on the choices of the neighborhood function g and comparison function h.
Selection of g and h determines the performance of the algorithm. In Algorithm 1
below, g(x) is taken to be the median of the attribute values of the points in NNk(xi)

and h(x) is chosen to be the difference between f (x) and g(x). Applying such an h to
the n spatial points leads to the sequence {h1, h2, . . . , hn}. A spatial point xi is treated
as a candidate of S-outlier if its corresponding value hi is extreme among the data set
{h1, h2, . . . , hn}. To quantify this extremeness, the following observation can be used.
If {h1, h2, . . . , hn} is distributed as N(μ, σ ), the data objects whose h value is far away
from the mean μ can be considered as outliers [11]. Our detection algorithm is stated
as follows.

Algorithm 1 (Median algorithm) Given a spatial data set X = {x1, x2, . . . , xn}, an
attribute function f , one positive integer number k, and α ∈ (0, 1),

1. Compute, for each spatial point xi, the k nearest neighbor set NNk(xi), the
neighborhood function g(xi) = median of the data set { f (x) : x ∈ NNk(xi)}, and
the comparison function hi = h(xi) = f (xi) − g(xi).

2. Let μ∗ and σ ∗ denote the robust mean and standard deviation estimates of
the data set {h1, h2, . . . , hn}. Standardize the data set and compute the absolute
values yi = | hi−μ∗

σ ∗ | for i = 1, 2, . . . , n.
3. xi is a candidate of S-outlier if yi ≥ zα/2, where zα/2 is the upper α/2 percentage

point of the standard normal distribution.

In Algorithm 1, μ∗ can be the median and σ ∗ can be the well-known median
absolute deviation (MAD), defined as

median{|h1 − median(H)|, |h2 − median(H)|, · · · , |hn − median(H)|}
with median(H) denoting the median of the set {h1, h2, . . . , hn}. In practice, α can be
chosen to be 0.001, 0.01, 0.05, or 0.10.

A quick illustration of Algorithms 1 is to apply it to the data in Fig. 1. Table 2
shows the results using the algorithm with the top three outliers, compared with
the existing approaches. As can be seen, Algorithm 1 accurately detects S1, S2,
and S3 as spatial outliers, but the Z algorithm, scatterplot, and Moran scatterplot,
incorrectly identify E1 and E2 as spatial outliers. In this table, the rank of the outliers
is defined in a straightforward manner. For both z and median algorithms, the rank
is determined by the size of y value, i.e., objects with larger y values receive higher
ranks. The rank of outliers from scatterplot is based on the magnitude of the distance
of the spatial point to the least square regression line. For Moran scatterplot, the rank
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Table 2 Top three spatial outliers detected by Z , median, scatterplot, and Moran scatterplot
algorithms

Rank Methods

Scatterplot Moran scatterplot Z algorithm Median algorithm

1 E1 S1 S1 S1
2 E2 E1 E1 S2
3 S2 E2 E2 S3

is determined by the magnitude of the difference between the normalized attribute
value and the corresponding neighborhood average.

3.4 Computational complexity

In the first step of the median algorithm, one needs to compute, for each object,
the k nearest neighbors (KNN query) and the median attribute value. There are two
choices to conduct a KNN query. We can use a grid-based approach, which processes
a KNN query in constant time if the grid directory resides in memory, leading to the
complexity of O(1). If an index structure (e.g., R-tree) exists for the spatial data set,
the spatial index can be used to process a KNN query, leading to a cost of O(log n).
It takes O(k) to compute the median attribute of k neighbors [24]. So the complexity
of the first step is O(n(1 + k)) for the grid-based structure or O(n(log n + k)) for the
spatial index structure. For the second step, it takes O(n) to compute the median,
O(n) to compute MAD, and O(n) to standardize. Thus the total cost is O(n). In
the third step, a cost of O(n) is required. The total complexity for the algorithm is
then O(n(1 + k)) + O(n) + O(n) = O(n) for the grid-based structure (if n � k), or
O(n(log n + k)) + O(n) + O(n) = O(n log n) for the spatial index-based structure (if
n � k). It is seen that the computation cost of this algorithm is primarily determined
by the KNN query.

4 Detection of spatial outliers with multiple attributes

In many applications, there may be more than one non-spatial attribute associated
with each spatial location. For example, in the Census data, each census track
contains several nonspatial attributes, including population, population density,
income, poverty, housing, education, and race. Detecting outliers from such spatial
data with multiple attributes will help demographists and social workers to identify
local anomalies for further analysis. In this section, we define the multi-attribute
spatial outlier detection problem, propose our detection procedure, and discuss its
corresponding computational complexity.

4.1 Problem formulation

Suppose q(≥ 1) measurements (attribute values) are made on the spatial object x.
We use a to denote the vector of these q values at x. Given a set of spatial points
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X = {x1, x2, . . . , xn} in a space with dimension p ≥ 1, an attribute function f is
defined as a map from X to Rq (the q dimensional Euclidean space) such that for
each spatial point x, f (x) equals the attribute vector a.

Let NNk(xi) denote the k nearest neighbors of point xi with k=k(xi) for i=1,

2, . . . , n. A neighborhood function g is defined as a map from X to Rq such
that the jth component of g(x), denoted g j(x), returns a summary statistic of the
jth attribute values from all the spatial points inside NNk(x). For the purpose
of detecting spatial outliers, all of the components of a at x should be com-
pared with the corresponding quantities from the neighbors of x. A comparison
function h is a function of f and g, whose domain is X and range is in Rr

with r ≤ q. Examples of h include h = f − g, a map from X to Rq with r = q,
and h = f1/g1, a map from X to R with r = 1. Denote h(xi) by hi. A point xi

is an S-outlier if hi is an extreme point of the set {h1, h2, . . . , hn}. The task of
designing algorithms for detecting spatial outliers with multiple attributes is formu-
lated as follows. Given a set of spatial points X = {x1, x2, . . . , xn}, a sequence of
neighborhoods NNk(x1), NNk(x2),. . ., NNk(xn), an attribute function f : X → Rq,
a neighborhood function g : X → Rq, and a comparison function h : X → Rr, design
algorithms to detect spatial outliers with multiple attributes.

4.2 Detection algorithm

Different choices of g and h may lead to different algorithms and thus potentially
different outliers. The criterion on the selection of g and h is that most of the resulting
outliers should possess practical meanings. For example, examining outliers should
often lead to causation investigations. When multiple attributes are present, spatial
outliers should be detected by using all the attribute values simultaneously.

In the algorithm described below, we choose g to be a vector of size q with each
component denoting a median. We then compute the difference between f and g,
e.g., h = f − g and then check the Mahalanobis distance from each point h(x) to
the center of the data set {h1, h2, . . . , hn}. The points that have distances larger than
a predetermined threshold will be returned as outliers. The Mahalanobis distance
provides a suitable way to identify points which are far from all of the others in a
multidimensional space. It has been widely used in discriminant analysis, clustering,
and principle analysis [25], [36], [39]. It has many advantages over Euclidian distance
when dealing with multivariate data. For example, the Euclidian distance treats each
variable as equally important in calculating the distance, while Mahalanobis distance
automatically accounts for the scaling of the coordinate axes.

As in the case of single attribute, the problem of masking and swamping may exist
for data with multiple outliers. This problem can be significantly alleviated by using
robust estimates of location and shape involved in the Mahalanobis distance. In this
paper, we will employ the MCD estimates of location and shape [14].

For the sample h(x1), · · · , h(xn) associated with n spatially referenced objects
x1, · · · , xn, the MCD is defined to be the mean and covariance matrix based on the
sample of size s (s � n) that minimizes the determinant of the covariance matrix.
That is,

MCD = (
μ∗

J, �
∗
J

)
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where

J = {
set of s points : |�∗

J | � |�∗
M|, ∀ set M s.t. |M| = s

}

μ∗
J = 1

s

∑

i∈J

h(xi)

�∗
J = 1

s

∑

i∈J

[
h(xi) − μ∗

J

] [
h(xi) − μ∗

J

]T
.

A large Mahalanobis distance indicates a possible outlier. To check whether or not
such a distance is large enough, we need a cut-off point, which is based on the follow-
ing observation. Suppose h(x) is distributed as Nq(μ,�), i.e., q-dimensional vector
h(x) follows a multivariate normal distribution with mean vector μ and variance-
covariance matrix �. Suppose the true parameters μ and � are approximated by the
MCD μ∗ and �∗, respectively. Let d2(x) denote (h(x) − μ∗)T�∗−1

(h(x) − μ∗), then
c(m−q+1)

qm d2(x) is approximately distributed as Fq,m−q+1, where Fq,m−q+1 is the F dis-
tribution with q and (m − q + 1) degrees of freedom, and the parameters m and c can
be calculated from the asymptotic formulas or simulations. Thus, the probability that
h(x) satisfies c(m−q+1)

qm d2(x) > Fq,m−q+1(α) is about α, where Fq,m−q+1(α) is the upper
(100α)th percentile of a F distribution with q and m − q + 1 degrees of freedom.
Then intuitively, if a point x satisfies the condition c(m−q+1)

qm d2(x) > Fq,m−q+1(α), then
x should be treated as an S-outlier candidate.

We now present the following algorithm, an improved version of the correspond-
ing spatial outlier detection algorithm reported in [20].

Algorithm 2 Given a spatial data set X = {x1, x2, . . . , xn}, an attribute function f ,
one positive integer number k, and α ∈ (0, 1),

1. For each spatial point xi, compute the k nearest neighbor set NNk(xi).
2. For each spatial point xi, compute the neighborhood function g such that g j(xi) =

median of the data set { f j(x) : x ∈ NNk(xi)}, and the comparison function
h(xi) = f (xi) − g(xi).

3. Compute the MCD-based vector μ∗ and matrix �∗ of the data set h(x1),

h(x2), . . . , h(xn).
4. Compute d2(xi) = (h(xi) − μ∗)T�∗−1

(h(xi) − μ∗).
5. If d2(xi) >

qm
c(m−q+1)

Fq,m−q+1(α), xi is treated as an S-outlier candidate.

4.3 Computational complexity

The complexity of Algorithm 2 is analyzed as follows. Step 1 is to compute the
neighborhood for each spatial point, in which a k nearest neighbor (KNN) query
is issued. The corresponding complexity is O(n) for the grid-based approach or
O(n log n) for the spatial indexed-based approach. In Step 2, the computation of
neighborhood function g and comparison function h takes O(qkn). For Step 3,
the time complexity of computing the MCD estimates depends on the specific
algorithms. The FAST MCD algorithm used here is a heuristic search algorithm with
the complexity of O(n) [31]. In Step 4, it is required to compute the Mahalanobis
distance for each spatial point. Each distance computation costs O(q3 + q2), where
O(q3) refers to the complexity of matrix inversion by using the Gaussian elimination
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algorithm [44], and O(q2) denotes the complexity of matrix manipulation. So the to-
tal complexity of Step 4 is O(q3n). For step 5, a cost of O(n) is required. In summary,
the total computational cost for Algorithm 2 is O(n) + O(qkn) + O(n) + O(q3n) +
O(n) for the grid-based structure, or O(n log n) + O(qkn) + O(n) + O(q3n) + O(n)

for the index-based structure. If n � k and n � q, the total time complexity is O(n)

for the grid-based structure, or O(n log n) for the index-based structure.

5 Experiment

In this section, we present experimental results on the West Nile virus (WNV) data
provided by the US Centers for Disease Control and Prevention (CDC), to illustrate
the effectiveness of our single and multiple attribute outlier detection algorithms.

Since its first appearance in 1937, WNV has been found in Africa, West Asia,
and the Middle East. The virus can infect birds, mosquitoes, horses, humans, and
some other mammals. The first outbreak of WNV in USA took place in New York
in 1999, and now the WNV cases have been reported in 45 states and the District
of Columbia. WNV is mainly maintained in birds. In the USA, American crows and
American robins are more likely to be infected by WNV. Thus, many local health
departments identify the emergence of WNV by investigating dead birds. WNV can
be transmitted to mosquitoes when they feed on infected birds. It may exist in the
mosquito’s salivary glands for several days before being injected into animals or
humans through blood-feeding.

Our WNV data set is based on the 3,109 counties that comprise the contiguous
United States. It reports the case numbers of wild birds, mosquitoes, and veterinaries
found within each county between January 1, 2001 and December 31, 2003. The
location of each county is determined by the “central” longitude and latitude
provided by the data. A case number in each year can be treated as an attribute. Since
the data contain three types of WNV cases in three consecutive years, there are nine
attributes available for each county: Bird-2001, Mosquito-2001, Vet-2001, Bird-2002,
Mosquito-2002, Vet-2002, Bird-2003, Mosquito-2003, and Vet-2003. Here Bird-2001
denotes the number of cases of WNV infected birds in the year 2001, Mosquito-2001
denotes the number of cases of WNV infected mosquitoes in the year 2001, and Vet-
2001 denotes the number of cases of WNV infected veterinaries identified in the

Table 3 Top seven spatial
outlier candidates detected by
Z and median algorithms

Rank Methods

Z alg. Median alg.

1 Allegheny Allegheny
2 Bucks Bucks
3 Montgomery Montgomery
4 Berks Westmoreland
5 Lancaster Berks
6 Armstrong Dauphin
7 Luzerne Luzerne



Geoinformatica (2008) 12:455–475 467

Fig. 5 Distribution of the values of attribute Bird-2002 in the vicinity of Allegheny, Bucks, and
Montgomery. The numerical numbers are the values of Bird-2002

year 2001. Other attributes are defined similarly. The purpose of the experiments is
to identify which counties are abnormal in terms of the WNV cases. In our analysis,
each county was treated as a spatial object, and the number of neighbors for each
county was chosen to be dynamic, i.e., the neighborhood of a county was chosen to
be the set of adjacent counties.

5.1 Single attribute outlier detection

As an illustration, in this section we report the results obtained by examining the
State of Pennsylvania, which has 67 counties. In the experiment, we used Bird-2002
as the attribute for each county. The median algorithm (Algorithm 1) was executed to
discover which counties had abnormal WNV infected bird cases for the year of 2002.
We set α = 0.05 and totally seven counties were returned as outlier candidates. To
compare our results with those from the Z algorithm, we also ran the Z algorithm.

Table 3 shows the seven spatial outlier candidates detected by both algorithms.
As can be seen, the top three candidates, Allegheny County, Bucks County, and
Montgomery County, are the same for both algorithms. They should be treated as
outlier candidates since they have much higher attribute values (162, 142, 142) than
their neighbors (far less than 100). See Fig. 5 for more details.

Fig. 6 Distribution of the values of attribute Bird-2002 in the vicinity of Berks, Lancaster, and
Westmoreland. The numerical numbers are the values of Bird-2002
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a  Dauphin Co. b  Armstrong Co. c  Luzerne Co.

Fig. 7 Distribution of the values of attribute Bird-2002 in the vicinity of Dauphin, Armstrong, and
Luzerne. The numerical numbers are the values of Bird-2002

The fourth and fifth spatial outlier candidates are the following three counties:
Berks, Westmoreland, and Lancaster. As shown in Fig. 6a, Berks should be treated
as an outlier candidate, since its attribute value is quite different from those of its
neighbors whose average is 58.6. Lancaster (Fig. 6b) should also be treated as an

Table 4 Top 50 spatial outlier candidates and their associated attribute values. The rank is based on
the magnitude of the Mahalanobis distance d2

Rank County Robust Bird-2002 Vet-2002 Bird-2003 Vet-2003
distance

1 Harris,TX 47,330.99 208.00 45.00 248.00 3.00
2 Fulton, GA 22,228.23 248.00 0.00 21.00 2.00
3 Suffolk, NY 21,537.95 180.00 4.00 173.00 3.00
4 Lancaster, PA 21,195.24 72.00 42.00 17.00 168.00
5 Tulsa, OK 20,887.80 154.00 37.00 158.00 7.00
6 Albany, NY 14,695.37 137.00 4.00 165.00 3.00
7 El Paso, CO 12,895.51 18.00 6.00 155.00 44.00
8 Hennepin, MN 11,512.54 86.00 35.00 145.00 3.00
9 New Castle, DE 10,420.65 180.00 4.00 29.00 0.00
10 Hartford, CT 9,833.03 181.00 0.00 105.00 4.00
11 Milwaukee, WI 8,450.96 157.00 0.00 2.00 0.00
12 Allegheny, PA 8,318.51 162.00 0.00 5.00 1.00
13 Middlesex, MA 8,031.91 203.00 0.00 95.00 1.00
14 Chester, PA 7,105.70 48.00 4.00 27.00 98.00
15 Davidson, TN 6,979.80 138.00 2.00 3.00 1.00
16 San Juan, NM 6,456.51 0.00 0.00 0.00 90.00
17 Larimer, CO 6,253.59 6.00 31.00 125.00 32.00
18 Bay, FL 6,077.66 7.00 2.00 108.00 10.00
19 Escambia, FL 5,858.14 124.00 39.00 76.00 3.00
20 Cobb, GA 5,829.41 119.00 1.00 57.00 0.00
21 Bucks, PA 5,282.78 142.00 5.00 6.00 34.00
22 Gwinnett, GA 5,161.84 50.00 0.00 93.00 0.00
23 District of Columbia, DC 5,160.79 175.00 0.00 2.00 0.00
24 Rockland, NY 5,067.30 138.00 0.00 36.00 1.00
25 DeKalb, GA 4,903.97 124.00 0.00 46.00 0.00
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Table 4 (continued)

Rank County Robust Bird-2002 Vet-2002 Bird-2003 Vet-2003
distance

26 Monmouth, NJ 4,693.65 157.00 4.00 46.00 18.00
27 Putnam, NY 4,123.20 13.00 0.00 109.00 0.00
28 Rockingham, NH 3,726.77 17.00 0.00 101.00 0.00
29 Middlesex, CT 3,536.28 31.00 0.00 55.00 0.00
30 Fairfield, CT 3,339.80 121.00 1.00 94.00 0.00
31 Cook, IL 3,255.73 101.00 20.00 34.00 0.00
32 Montgomery, PA 3,096.85 142.00 2.00 30.00 23.00
33 Oklahoma, OK 2,717.62 51.00 45.00 59.00 7.00
34 Henrico, VA 2,685.48 14.00 0.00 70.00 4.00
35 Lancaster, NE 2,564.99 85.00 20.00 32.00 2.00
36 Los Angeles, CA 2,455.29 0.00 0.00 65.00 0.00
37 Fremont, WY 2,416.72 1.00 4.00 10.00 52.00
38 Hamilton, TN 2,215.35 73.00 1.00 30.00 2.00
39 Shelby, TN 2,215.33 83.00 33.00 24.00 1.00
40 Mobile, AL 2,146.92 65.00 12.00 47.00 11.00
41 Goshen, WY 2,122.99 11.00 40.00 64.00 4.00
42 Teller, CO 2,121.21 0.00 0.00 1.00 0.00
43 Ramsey, MN 2,023.93 40.00 0.00 88.00 6.00
44 Holmes, OH 1,900.27 0.00 134.00 1.00 2.00
45 Morris, NJ 1,827.87 79.00 0.00 27.00 1.00
46 Weld, CO 1,806.45 18.00 99.00 39.00 52.00
47 Jefferson, KY 1,778.40 70.00 10.00 6.00 3.00
48 Jefferson, AL 1,773.78 49.00 1.00 51.00 0.00
49 Okaloosa, FL 1,731.70 4.00 2.00 58.00 4.00
50 Marion, FL 1,705.03 40.00 121.00 2.00 20.00

outlier candidate, since it has an attribute value of 72, and all the values from its
neighbors are less than 50. Note that Lancaster has other two neighboring counties
that do not show up in this figure. They are Harvard County and Cecil County,
with attribute values of 45 and 5, respectively. Westmoreland County is identified
by the median algorithm, while it does not appear in the result of the Z algorithm.
Westmoreland county should be treated as an outlier candidate, since the attribute
value of this county is much higher than most of its neighbors (see Fig. 6c). The
Z algorithm fails to detect it since its neighbor, Allegheny County, has such a high
attribute value (162) that the averaged value of the neighborhood of Westmoreland
is close to the attribute value of Westmoreland. The median algorithm does not have
this disadvantage since it uses the median value (11.5) to represent the “center” of
the values from Westmoreland’s neighbors (4, 5, 5, 5, 18, 19, 30, 162).

For the sixth outlier candidate, the median algorithm selected the county of
Dauplin. As shown in Fig.7a, Dauplin is selected since it has four neighbors which
have very small attribute values (3, 4, 6, 16). The z approach detected Armstrong
County. However, this county may not be an outlier candidate. Figure 7b shows that
Armstrong has six neighbors, four of which have values similar to that of Armstrong.
But the other two neighbors, Allegheny and Westmoreland, have much higher
values, which make the Armstrong County falsely detected as an outlier candidate.
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The seventh and final outlier candidate, Luzerne County, is the same for both
algorithms. As shown in Fig. 7c, it should be treated as an outlier candidate since it
has a much higher attribute value (34) than its neighbors (0, 0, 1, 1, 5, 5, 13).

The above example shows that the median algorithm can identify spatial outlier
candidates ignored by the Z algorithm and avoid detecting erroneous spatial outliers.
This conclusion is valid for all the experiments we have conducted.

5.2 Multiple attribute outlier detection

In conducting multiple attribute outlier detection, we considered all the 3,109
counties from the data. We conducted the experiment using Matlab 6.5. The robust
mean and covariance matrix estimates were generated by using the implementation
of the FAST MCD algorithm in a third party Matlab toolbox LIBRA [45]. Because
the use of all the nine attributes incurred a singular MCD covariance matrix, we
present here, as an illustration, the results based on the following four attributes
Bird-2002, Vet-2002, Bird-2003, and Vet-2003. The use of these four attributes will
lead to a nonsingular �∗.

As discussed previously,
( c(m−q+1)

qm

)
d2(x) is distributed approximately as Fq,m−q+1,

where Fq,m−q+1 is the F distribution with q and (m − q + 1) degrees of freedom. Since
four attributes were used, q = 4. The data have more than 3,000 objects, and there-
fore we calculated the parameters m and c by using the asymptotic formulas [31]:
m = 353.422 and c = 0.472. For our experiment, we chose α = 0.001. After running
the Algorithm 2, 563 counties were returned as outlier candidates, as partially shown
in Table 4.

Below we provide a brief discussion to show why Harris and Fulton (the first two
in Table IV) were selected as outlier candidates. As shown in Fig. 8a, the values of
2002-Bird , 2002-Vet, and 2003-Bird for Harris are 208, 45, and 248, respectively.
The medians of values of 2002-Bird, 2002-Vet, and 2003-Bird for the neighbors of
Harris are 0, 7, and 1 respectively. Harris was selected as an outlier candidate since
the difference between the value of each of these three attributes at Harris and the

a  Dauphin Co. b  Armstrong Co.

Fig. 8 Distribution of the values of attributes Bird-2002, Vet-2002, Bird-2003, and Vet-2003 in the
vicinity of Harris and Fulton. The four values in each vector are the values of these four attributes,
respectively
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associated median from the neighbors is large. Similarly, as displayed in Fig. 8b,
Fulton was selected as an outlier candidate since for the attributes 2002-Bird and
2003-Bird, the difference between an attribute value at Fulton and the corresponding
median from the neighbors is large.

A further examination coupled with specific knowledge of epidemiology of the
WNV can be conducted to indicate whether a detected county is a spatial outlier
candidate. However, this is beyond the scope of this paper and thus is omitted.

6 Conclusion

In this paper we propose two algorithms to detect spatial outliers. One median based
algorithm is developed for single attribute outlier detection, and one Mahalanobis-
distance-based algorithm is proposed for multi-attribute outlier detection. Robust
estimates are used to approximate the corresponding parameters involved in the
algorithms. This will significantly alleviate the well-known masking and swamping
effects that may exist in data with multiple outliers or groups of outliers. Illustrative
experiments have been performed on the West Nile virus data.

Future research activities can be conducted along several directions. First, in
developing our detection algorithms, we assumed the sequence of differences
h1, h2, · · · , hn are independent of each other. In practice, these differences are
usually dependent. In our future work, we will explore the effect of such dependence
on the performance of the proposed algorithms and consequently will study modified
detection algorithms. Our methods in this paper focus on processing “static” data.
The proposed algorithms can be extended to discover spatial outliers in continuous
geospatial data streams.
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