
C3: Concurrency Control on Continuous Queries over
Moving Objects

Jing Dai, Chang-Tien Lu
Virginia Polytechnic Institute and State University

7054 Haycock Road, Falls Church, VA 22043
{daij, ctlu}@vt.edu

Abstract - Moving object management approaches, especially
continuous query processing techniques, have attracted significant
research effort due to the broad usage of location-aware devices.
However, little attention has been given to designing concurrency
control protocols for continuous query processing. Existing
concurrency control protocols for spatial indices are based on a
single indexing tree, while popular continuous query processing
approaches require multiple indices. In addition, continuous
monitoring combined with frequent location updates challenges
the development of serializable isolation for concurrent index
operations. This paper proposes an efficient concurrent
continuous query processing approach C3, which fuses scalable
continuous query processing methods with lazy update techniques
on R-trees. The proposed concurrency control protocol, equipped
with intra- and inter-index protection, assures serializable
isolation, consistency, and deadlock-freedom. The correctness of
the proposed protocol is theoretically proven, and the experiment
results demonstrated its scalability and efficiency.

I. INTRODUCTION
The broad usage of location-aware devices, such as GPS and

RFID, has promoted the applications of moving object
management. The moving objects in the real-world need to be
modeled and organized to efficiently process different queries.
Examples of such applications include vehicle monitoring [1],
[2] and flight tracking systems [3], [4] that manage real-time
moving objects. To efficiently support these emerging
applications, several spatial/spatial-temporal access methods
have recently been proposed by accelerating frequent updates
with hashing [5] and lazy update techniques [6]-[8]. In
addition, continuous queries on moving objects have attracted
significant research efforts due to their potential applications
and the corresponding requirements on efficient data
management. An example of continuous queries could be
“tracking all ambulances within two miles to each patrol
vehicle.” To monitor a particular area of interest, it is
inefficient to continuously reissue these range queries while the
locations of ambulances and patrol vehicles keep changing.
Several solutions have been proposed to support efficient
continuous query processing via indexing both objects and
queries [9]-[11].

To apply frequent location update and continuous query
processing techniques in large scale multi-user systems,
specific concurrency control protocols have to be designed to
ensure the consistency of the database and the validity of query
results. As stated in the Lowell Report [12], “We face major
changes in the traditional DBMS areas, such as ..., concurrency
control, ..., technology keeps changing the rules. These
changing ratios require us to reassess storage management and
query processing algorithms.” Continuous query on moving
objects in multi-user environments raises the following
concurrency challenges: (1) Conflict from frequent movement:

Frequent location updates and searches can cause conflicts
when accessing spatial indices, and consequently can lead to
inconsistent results. (2) Conflict by continuous monitoring: The
conflicts could become even more serious while processing
continuous queries, because both the objects and queries have
to be monitored to refresh the results. (3) Inconsistency among
indices: As scalable continuous query processing requires
multiple indices, not only the consistency within an index, but
also among these indices, has to be assured. Otherwise, the
database may either miss queries or objects, or return incorrect
results.

Existing concurrency control protocols only protect
fundamental operations on a single indexing tree. Fig. 1
provides an example of inconsistent query results using these
protocols. In this example, a patrol helicopter Q keeps tracking
police vehicles within a given range of 0.5 mile. t1 and t2 are
two consecutive query report timestamps. A and B are two
police vehicles 1 mile away from each other, driving in the
same direction as the helicopter. We assume that all location
updates are submitted on time, and the query results are
retrieved every time after the location updates at that timestamp
have been submitted. Based on the existing spatial concurrency
control protocols, a location update in this system consists of
three atomic sub-operations: delete an old location, insert a new
location, and refresh query results. With random execution
orders of these sub-operations, location updates and query
reports may exhibit inconsistent status [13]. Possible query
result sets of Q at t2 include Ø, {A}, {B}, or {A,B}, within which
only {A} is correct. Further details are discussed in Section
III.B. Without proper serializable isolation, the above
inconsistent scenarios may occur and thus cause serious
consequences in critical applications, like flight control and
battlefield information systems, where the relative locations of
objects and queries are important. All these inconsistent
scenarios can be avoided by a well designed concurrency
control protocol for serializable continuous query processing.

Fig. 1 Inconsistency of Continuous Query with Atomic Sub-operations.

<Q, t1> <Q, t2>

<B, t1> <B, t2>

Correct result for Q at t2: A
Possible results if without concurrency control:

 Pseudo disappearance: on A or A&B � Ø, on B � {A};
 Back order: on A � Ø, on B � {A,B}, on A&B � {B};
 Pre-order: on A or B or A&B�{A}.

<A, t1> <A, t2>

978-1-4244-5444-0/10/$26.00 © 2010 IEEE ICDE Conference 2010121

The existing concurrency control protocols for spatial
indices primarily consider fundamental operations (including
searches, inserts, and deletes) on a single index. Record-
oriented transaction management approaches [14] can protect
complex operations. However, they are inefficient for
processing continuous queries because they either lock
resources until commit (2-phase locking) or result in a large
number of roll-backs (version-based approaches) in the moving
object scenario. Therefore, the lack of efficient concurrency
control protocols for continuous queries limits the applicability
of the moving object management systems in the real world.

This work proposes a Concurrency Control protocol for
Continuous queries (C3) based on an efficient spatial access
framework for continuous query processing. To the best of our
knowledge, this is the first approach that applies lazy update
techniques on scalable continuous query processing, and
provides efficient serializable isolation on operations involving
both on-disk and in-memory indices. Experiments
demonstrated 160 ~ 380% performance gain from different lazy
update buffers. Furthermore, the proposed concurrency control
protocol exhibited up to 78% improvement when compared
with existing index concurrency control integrated with record-
oriented protocols. The major contributions of this paper are as
follows:
� An efficient continuous query processing approach with

lazy update techniques for moving objects is proposed
based on R-trees.

� A sophisticated concurrency control protocol C3 is
designed to assure serializable isolation, consistency, and
deadlock-freedom for moving object indices.

� The correctness of the proposed concurrent operations is
formally proven by analyzing their locking sequences and
durations.

� The scalability and efficiency of the proposed framework
were validated by a set of extensive experiments on
benchmark datasets.

The rest of the paper is organized as follows: Section II
reviews the related work on concurrency control protocols and
moving object management. Section III illustrates the
application scenarios for the proposed approach, and introduces
the indexing structure and concurrency control protocol in this
framework. The detailed algorithms for the concurrent
operations are designed in Section IV. The correctness is
analyzed in Section V. Section VI evaluates the performance of
the proposed approach on benchmark datasets. Finally, Section
VII concludes our work and suggests future directions.

II. RELATED WORK
This section summarizes representative research

achievements on the concurrency control on R-trees, frequent
update for R-trees, and continuous query processing.

As one of the most popular multi-dimensional indexing
structures, the R-tree [14] provides a robust tradeoff between
efficiency and implementation complexity. Variants of the R-
tree [15], [16] have been designed to optimize the indexing
structure. To make the R-tree family applicable to real world
systems, concurrency control protocols have been proposed to
resolve the inconsistency in multi-user environments. The lock-
coupling based algorithms [17], [18] release the lock on the

current node only when the next node to be visited has been
locked while processing search operations. To prevent the
phantom update on the R-tree, the dynamic granular locking
(DGL) has been proposed [19], where the empty space in any
tree node can be locked as an external granule. For concurrent
operations in read-dominant applications, GLIP [20] has been
proposed to provide phantom protection on the R+-tree and its
variants.

R-trees are usually considered as costly for updating, which
makes them unsuitable for processing moving objects.
Techniques utilizing hashing and lazy update have been
designed to reduce the update cost of the R-tree and its variants.
Table I lists several approaches for efficient update on R-trees
and the corresponding techniques applied. The Frequent Update
R-tree (FUR-tree) [5] processes delete operations directly from
leaf nodes and simplifies insert operations if the location
change is small. Lazy update approaches utilize buffer memory
to reduce the I/O cost. The R-tree with update memos, RUM-
tree [8], applies main memory buffer to cache delete operations,
so that they can be processed later when the particular leaves
are accessed. Lazy group update on R-tree, LGUR-tree [7],
caches not only delete operations, but also insert operations.
Another approach, the RR-tree, constructs a memory-based
buffer tree in addition to the disk-based R-tree to perform the
lazy group update operations [6].

TABLE I. TECHNIQUES FOR EFFICIENT R-TREE UPDATE.
 FUR-tree [5] RUM-tree [8] LGUR-tree [7] RR-tree [6]
Leaf node Hashing �
Operation Buffer � �
In-memory Tree �
Continuous query is a common type of query that keeps

monitoring moving objects in a certain area. One of the most
challenging tasks in continuous query processing is to answer
moving queries over moving objects. Several approaches have
been proposed to tackle this problem by indexing both objects
and queries. SINA [9] applies hashing techniques to join in-
memory moving objects and queries, and performs further joins
with on-disk objects and queries. SINA processes location
updates in batches for optimal I/O costs. Another approach,
MAI [10], constructs motion-sensitive indices for objects and
queries, so that the update frequency can be reduced and
prediction queries can be supported. A generic framework for
continuous queries on moving objects [11] has been proposed
to optimize communication and query re-evaluation due to
frequent location updates.

Existing concurrency control protocols for the R-tree [19],
[20] are neither sufficient to protect scalable continuous queries,
nor suitable to handle the R-trees with lazy update buffers. The
former requires protection on two independent indices, whereas
the latter needs to assure the consistency on both in-memory
and on-disk indices. It is not a trivial task to fuse concurrency
control, continuous query, and lazy update techniques into a
real-world moving object management system. Concurrent
continuous query processing on moving objects has been
proposed on a B-tree-based framework [13]. But it does not
consider the operation protection over buffers. One potential
solution is to adopt record-oriented transaction management
techniques such as 2-phase locking (2PL) or versioning
approaches [21] on indices. However, the 2PL strategy tends to

122

lock the resources until the commit point, which performs
similarly to the sequential execution on indices. The versioning
approach requires a large number of different versions in
frequent update scenarios, and thus leads to frequent undo/redo
operations. The focus of this paper is to design an efficient
concurrent continuous query processing approach on the R-
tree-based access methods, such that frequent updates and
continuous moving queries on moving objects are supported.

III. PRELIMINARIES
This paper provides a solution for concurrent continuous

range queries on multi-dimensional moving object databases. In
this environment, each range query keeps monitoring a spatial
window and refreshing query results based on the object and
query movement. Concurrent operations supported in this
system include object location updates, query location updates,
and query reports. An object location update operation inputs
both the old and new locations of a spatial point, and updates
the object database, object index, and query results. Similarly, a
query location update operation inputs both the old and new
positions of a spatial query window, and updates the query
database, query index, and query results. A query report returns
a set of data objects that currently overlap with a given query.
These operations should not interfere with each other, and the
outputs of query report operations should reflect the current
consistent state of the database. Concurrent fundamental
operations including insert, delete, and search can be inferred
from the continuous query processing in C3.

To achieve scalability, three indices are utilized in this
design, for moving objects, moving continuous queries, and
query results, respectively. The index for query results is the
join of the indices of objects and queries, and is consistent with
the updates on these two indices. The consistency of these
indices is assured by a concurrency control protocol.

The proposed C3 works for the R-tree-based spatial access
methods with lazy updates. This access method comprises the
features of both the lazy group update and update memo
techniques, so the proposed protocol can work on those R-trees
with any of these techniques for both continuous and snapshot
queries. In order to focus on the concurrency control protocol,
the access method is generalized by only maintaining the
current locations of queries and objects. However, it is
convenient to extend the concurrency control protocol to
velocity-sensitive indices, such as MAI [10]. Furthermore, C3
can be generalized to a basic model that consists of three
indices, two independent indices and the third as the joint of the
first two. The updates on either one of the independent indices
will be reflected in the joint results. The proposed protocol can
be applied on this generalized structure for serializable
isolation.

To specify the problem to be solved, several assumptions for
the application environment are made:
� Point objects: Moving objects are represented by spatial

points; each object reports its new location to the database
during movement.

� Window queries: Moving queries are represented by their
query windows (spatial boxes); each query reports its new
query window to the database during movement.

� Lock manager: There exists a lock manager to support
different lock types and to maintain locks. It has a system
counter to assign a unique timestamp to each operation.

In addition, we assume that the operations submitted to the
database are processed without timeout restriction. The above
assumptions are practical in real-world applications. Some
previous work, such as SINA [9], adopted a different approach
that handles location updates in batches. With our assumptions,
new locations are updated immediately after being reported.
This work aims to assure the continuous consistency between
query results and movements; the relative positions of items are
important in many applications where concurrency control
should be applied. For these applications, our approach has the
advantage of handling updates without losing movement details
(e.g., missing trajectories of fast-moving objects/queries,
returning incorrect results due to aligned update time).
Meanwhile, using the generalized 3-index model, the proposed
concurrency control protocol can be integrated into a system
like SINA for concurrent operations in batches. Based on these
assumptions, the design of access methods and the
corresponding concurrency control protocol are introduced in
the following subsections.

A. Access Framework
The proposed concurrency control protocol is based on a

generalized spatial access framework that integrates the
existing techniques for frequent update and continuous query
processing. As summarized in Table II, the generalized access
method applies two R-trees with lazy group update for insert
operations and with update memo for delete operations. One R-
tree is constructed for indexing moving objects (O-tree, shown
in Fig. 2) and the other is for indexing moving queries (Q-tree,
shown in Fig. 3). The construction methods of O-tree and Q-
tree are exactly the same. In addition to O-tree and Q-tree,
there is a hash-based array, Q-result (shown in Fig. 4), to store
all the results for continuous range queries.

On both O-tree and Q-tree, the lazy group update requires
one insert buffer I-buffer (dashed boxes connected to each non-
leaf node in Fig. 2) for each non-leaf node. I-buffers temporally
store inserted objects or queries on an appropriate level, and if
full, push the largest group of inserted objects or queries down
to the particular I-buffer on the next level or to the leaf node
[7]. Each entry of an I-buffer has the form of (Oid/Qid, MBR,
target_child, timestamp).

TABLE II. COMPONENTS IN INDEXING STRUCTURE.
Component O-tree Q-tree Q-result
Function Index moving objects Index continuous

queries
Store continuous
query results

Implementation
techniques

I-buffer to cache
insertion;
D-buffer to cache
deletion

I-buffer to cache
insertion;
D-buffer to cache
deletion

Hash array

On the other hand, efficient updates need a delete buffer D-
buffer (dashed box beside the tree in Fig. 2) for each R-tree. D-
buffers cache the delete operations by recording the
object/query IDs, the number of obsolete records for that ID,
and their latest timestamps, and remove the obsolete records in
leaf nodes when processing garbage collection [8]. Each entry
of a D-buffer has the form of (Oid/Qid, #_obsolete, timestamp).

On either O-tree or Q-tree, a range search needs to traverse
the R-tree with I-buffer to locate records overlapped with the

123

search range. In this structure, search results can appear not
only in leaf nodes, but also in I-buffers. Before outputting the
objects, the D-buffer has to be checked to remove obsolete
objects from the results. An insert operation on either index tree
first tries to insert a given item into the I-buffer associated with
the root node of the R-tree. If the target I-buffer is full, it will
be re-organized by: 1) removing obsolete items by checking the
D-buffer; 2) executing lazy group update to push items into an
I-buffer on the next level, whose associated node is chosen to
include this item based on the R-tree insertion algorithm, or
into a leaf node if it reaches the leaf level of the R-tree. A
delete operation on either of these indexing trees only needs to
add this delete record to the D-buffer with the current
timestamp. A D-buffer can be cleaned by visiting the leaf nodes
to remove obsolete items. The sizes of the I-buffers and D-
buffers are much smaller than that of the trees. The impact of
buffer size on location updates has been studied in [7], [8].

Fig. 2 An Example of O-tree with I-buffers and D-buffer.

Fig. 3 An Example of Q-tree with I-buffers and D-buffer.

Q-result (shown in Fig. 4) is a hash-based array to store all
the results for continuous range queries. It is hashed by query
IDs, and each particular entry corresponds to a continuous
query. Each entry of Q-result is in the form of (Qid, obj_list),
corresponding to a query ID and the list of objects covered by
the query. The obj_list also contains the timestamp of each
object in the list. The instance of Q-result in Fig. 4 reflects the
data and query sets in Fig. 2 and Fig. 3 accordingly. For

example, the query Q2 covers the object D, therefore the entry
Q2 in the Q-result contains D. A query report on Q2 can
directly retrieve D from the Q-result without accessing the
indexing trees.

Fig. 4 Q-result for Objects in Fig. 2 and Queries in Fig. 3.

The continuous queries on this indexing framework are
processed via three operations, query report, object location
update, and query location update. The details of these
operations are discussed in Section IV.

B. Concurrency Control Protocol
Continuous query processing requires an appropriate

concurrency control protocol to ensure valid results. Take the
scenario in Fig. 1 as an example, inconsistent results are caused
by unserializable processing schedules. Suppose each
movement contains three atomic phases supported by existing
protocols: D for the deletion of an old location, I for the
insertion of a new location, and R for refreshing query results.
And the atomicity of each single phase is assured by an
appropriate concurrency control protocol in place. In addition,
let qRt2 denote the query report for Q at t2, which is also atomic.

The situation that returns empty set at t2 is called pseudo
disappearance, because the vehicle A seems disappeared in Q
during its movement. This happens when a processing
sequence contains …�A.Dt2�Q.Rt2�A.It2�qRt2�A.Rt2�…,
where A has been deleted from the database when Q updates its
results, and there are no more updates occur before the query
report for t2. The vehicle B will be returned at time t2 in a
scenario called back order, where the query seems staying at
its previous position while some objects have already updated
their locations. This occurs when a processing sequence
contains …�B.Rt2�Q.Dt2�qRt2�Q.It2�…. In this case, B
updates its location and adds itself to the result set of Q before
Q’s location is updated, and the query report is processed
before Q re-evaluates its results. Back order may also result in
an output {A,B} at t2, where only B is back ordered and A is in
normal status. Such a processing sequence may contain …B.Rt2
�Q.It2�A.Rt2�qRt2�Q.Rt2…. In contrast to back order,
another scenario is named pre-order, in which the queries are
updated while some location updates for objects are delayed. In
this example, pre-order on A, which may contain a processing
sequence like …Q.Rt2�A.Dt2�qRt2 …, will still output {A} as
the result of Q at t2, because in this situation, Q evaluates and
outputs its results before the new location of A is updated, and
both <A,t1> and <A,t2> intersect with <Q,t2>. All these

R0
R1

R2

R3
R4

R5

Q5

Q4

Q3

Q2

Q1

Q6

Q8

Q7

D-buffer
Q4 1 ts2

I-buffer
R0 R1

R2 R3 R4 R5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

 Q4

R0

R1 R2

R3

R4

R5

R6

A B

C

D

E

F

G

H

I
J K

L

R0 R1

R2 R3 R4 R5 R6

A B D E G H I J K L

C

F F

D-buffer
F 1 ts1

I-buffer

Q5

Q4

Q3

Q2

Q1

Q6

Q8

Q7

A B
C

D

E

F

G

H

I
J K

L

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

D C F H K K

Query:

Object:

124

inconsistent processing sequences have to be prevented by the
concurrency control protocol.

In this protocol, the lockable items include leaf nodes and
the external granules of nodes (defined in DGL [19]) on both
trees, entries in each D-buffer, and entries in Q-result. I-buffers
in both trees do not need specific locks, because they are
attached to certain internal nodes which can be locked by the
external granule. Following the convention of lock-coupling
approaches [19], the types of locks that are utilized in the
proposed protocol include S (shared lock), X (exclusive lock),
IX (Intention to set X locks), IS (Intention to set S locks), and
SIX (Union of S and IX lock).

In the proposed protocol, lock requests can be conditional or
unconditional for different purposes. A conditional lock request
means if the lock cannot be granted immediately, the requester
will cede the lock request. On the contrary, an unconditional
lock request means that the requester is willing to wait until the
lock can be granted. In the proposed concurrent framework,
most lock requests are unconditional. Only a small portion of
lock requests are designed as conditional to prevent
unnecessary process and avoid deadlocks.

In summary, the proposed concurrency control protocol
supports serializable isolation by providing protection from the
following issues: 1) inconsistency within each indexing
structure, 2) inconsistency among D-buffers, O-tree, Q-tree,
and Q-result, and 3) deadlock caused by accessing multiple
indices.

IV. CONCURRENT OPERATIONS
The proposed concurrency control protocol supports

concurrent operations for continuous query and moving object
management, including query report, object location update,
and continuous query location update. These operations can be
simultaneously processed without interfering with each other.
These concurrent operations are described in the following
subsections.

A. Query Report
The query report operation retrieves the moving objects

covered by a continuous query. This operation takes a query ID
as input and returns a set of object IDs. In the proposed
indexing framework, it reads the particular entry in the Q-result
and validates the results by looking up the D-buffer of O-tree,
because the Q-result is a hashed array that may contain
obsolete objects. In detail, with C3, the query report first places
an S-lock on the entry with a given query ID in the Q-result,
and reads the corresponding obj_list. After that, it requests S-
locks on the D-buffer of O-tree for all the objects that contained
in obj_list, and then removes obsolete objects from obj_list. At
last, this operation returns the remaining objects and releases all
the S-locks it has requested.

For example, based on the Q-result in Fig. 4, the query
report with the input Q5 requests an S-lock on the entry Q5 in
the Q-result and then finds the object H in the entry. An S-lock
is then requested on the entry of H in the D_buffer. After
validating H, the algorithm releases all these S-locks and
returns H as the final result. The algorithm of the query report
is illustrated in Algorithm 1. This operation can be requested by
clients or triggered by the corresponding Q-result updates.

Algorithm 1. Query Report.

B. Object Location Update
The object location update operation updates the location of

an object, as well as the results of affected queries. It takes the
new location of an object and performs a lazy update on the O-
tree and an update on the Q-result. There are three phases in
this operation, location update on the O-tree, point search on
the Q-tree, and update on the Q-result, as shown in Algorithm
2. The details of these phases are presented as follows.

Algorithm 2. Object Location Update.

Algorithm Object_Location_Update
Input: Oid: Object ID, loc_old: Old Location of Object, loc_new: New Location of
Object, O-tree: Index Tree of Objects, Q-tree: Index Tree of Queries, Q-result: Result
Sets for Queries
Output: Nil

ts = get_timestamp();
QList = Nil; //set of queries that cover the point

//Phase 1. O-tree location update
//delete old location
X-lock(O-tree. D-buffer.entry[Oid]; //avoid operations on same object
O-tree.D-buffer.Add(Oid, #_obsolete, ts);
//insert new location
X-lock(O-tree.root.ext);
curNode = O-tree.root;
Add (Oid, loc_new, ts) to curNode.I-buffer;
Enlarge curNode.MBR to cover loc_new;
While curNode.I-buffer is full and not curNode.isLeaf

nextNode = curNode.I-buffer.childForUpdate();
X-lock(nextNode.ext);
curNode.I-buffer.groupUpdate(); //push the largest group of contents to its

target child
Unlock(curNode.ext);
curNode = nextNode;

Unlock(curNode.ext);

//Phase 2. Q-tree point search
S-lock(Q-tree.root.ext);
curNode = Q-tree.root;
While not curNode.isLeaf

QListTmp = curNode. I-buffer.find(loc_new);
If (S-lock(Q-tree. D-buffer.entry[QListTmp], Conditional)) //conditional lock,

true if the lock is granted
X-lock(Q-result.entry[QListTmp]); //avoid operations on same query
QList.add(QListTmp);

nextNode = curNode.findEntry(loc_new);
S-lock(nextNode.ext);
Unlock(curNode.ext);
curNode = nextNode;

QListTmp = curNode.find(loc_new);
If(S-lock(Q-tree. D-buffer.entry[QListTmp], Conditional)) //conditional lock

X-Lock(Q-result.entry[QListTmp]); //avoid operations on same query
QList.add(QListTmp);

Unlock(curNode.ext);
QList = Q-tree. D-buffer.filter(QList); //remove obsolete queries in QList
Unlock(Q-tree. D-buffer.entry[QList]);

//Phase 3. Q-result Update
For each Qid in QList

Update Q-result.entry[Qid].obj_list by adding (Oid, ts);
Unlock(Q-result.entry[Qid]);

UnLock(O-tree. D-buffer.entry[Oid]);
Return;

Algorithm Query_Report
Input: Qid: Query ID
Output: S: Set of Objects

S-lock(Q-result.entry[Qid]);
S = Q-result.entry[Qid].obj_list;
For each pair (Oid, ts) in S

S-lock(O-tree.D-buffer.entry[Oid]);
If Oid in O-tree.D-buffer

If O-tree.D-buffer.entry[Oid].ts > ts
 S = S – (Oid, ts);

Unlock(O-tree.D-buffer.entry[Oid]);
Unlock Q-result.entry[Qid];
Return S;

125

Phase 1 - O-tree location update: It updates the O-tree by
inserting the new location and deleting the old location in a
lazy manner. It first requests an X-lock on the corresponding
object in the D-buffer of the O-tree to avoid conflict on
accessing the same object. This X-lock will be kept until the
end of this operation to avoid deadlock. After adding the delete
record in the D-buffer of the O-tree, the algorithm performs a
lazy group insertion on the O-tree, which attempts to insert the
new location into a higher level I-buffer. The locking strategy
for lazy group insertion is similar to the insertion in DGL,
except that once the external of a tree node is locked, the I-
buffer attached to it is also treated as locked.

Phase 2 - Q-tree point search: It queries the Q-tree using
the new location of the object to find all the queries that cover
this new location. The actual retrieval is performed on the
corresponding I-buffers and leaf nodes. A locking strategy
similar to the search in DGL is applied on the indexing tree.
Additionally, when a query is identified to cover the object, the
corresponding entry in the D-buffer of the Q-tree will be S-
locked and scanned to validate the query. Note that these S-
locks on the D-buffer of the Q-tree are unconditional, which
means if any of these queries is X-locked by other operations,
this object location update will cede that occupied query. This
is because if a query is locked by a query location update, it
will be re-evaluated based on its new location. So there is no
need to include this query in this object location update. This
unconditional lock can also prevent the deadlock between
object location updates and query location updates. Once the
affected queries are found, an X-lock will be requested on the
corresponding entries in the Q-result to avoid conflict accesses
on the same query. All the S-locks on the D-buffer of the Q-tree
are released by the end of phase 2 to allow accesses from other
concurrent operations.

Phase 3 - Q-result update: It adds the object and the
corresponding timestamp to the query results of all the queries
that have been found in phase 2. Because these entries in the Q-
result have been locked in phase 2, they can now be directly
updated. The locks on the Q-result and the D-buffer of the O-
tree are released at the end of this operation.

An example based on the objects and queries in Fig. 2 and
Fig. 3 can demonstrate this object location update. Suppose the
object C is moving into the region of node R4 and also covered
by the query Q5. The system first locks the entry of C in the D-
buffer of the O-tree, although there is no record for C yet. Then
an entry (C, 1, ts) is inserted into the D-buffer. C is then
inserted into the I-buffer of the root node in the O-tree with
timestamp ts. In phase 2, a point search is performed on the Q-
tree using the new location of C, and Q5 is retrieved. The entry
of Q5 in the D-buffer of the Q-tree is S-locked, and the entry of
Q5 in the Q-result is X-locked. After checking the D-buffer, Q5
is confirmed as the affected query by C. The obj_list of Q5 is
now updated to contain C and H. Finally, all the locks are
released.

C. Query Location Update
The query location update operation handles the location

change of a query. This change could be on the location or the
size of query window, or both. This operation takes the new
search window of a given query as input, and updates the Q-

tree and the Q-result accordingly. Similar to the object location
update operation, this algorithm consists of three phases,
namely, location update on the Q-tree, range search on the O-
tree, and update on the Q-result. Timestamp ts is assigned at
the beginning of the processing, so that the lazy update can
have a sequential order for the update records.

Algorithm 3. Query Location Update.

Phase 1 - Q-tree location update: It performs a lazy update
on the Q-tree. It first requests an X-lock on the D-buffer entry
of the Q-tree for that query, so that the conflict caused by
accessing the same query can be avoided. After that, this
operation adds the deletion record to the D-buffer of the Q-tree,
and performs a lazy group insertion on the Q-tree with the new
query window. The locking strategy applied for insertion on the
Q-tree is similar to phase 1 in the object location update. By the
end of phase 1, the corresponding entry in the Q-result is
exclusively locked, and the X-lock on the D-buffer of the Q-tree
is released, so that the particular query is always under
protection.

Phase 2 - O-tree range search: It queries the new query
window on the O-tree to retrieve all the objects that are covered.
This range search scans the nodes and their I-buffers on the
traversal path, and requests S-locks for the covered granules
and the corresponding entries in the D-buffer of the O-tree.

Algorithm Query_Location_Update
Input: Qid: query ID, loc_new: new query window, O-tree: object index tree, Q-tree:
query index tree, Q-result: results of the queries
Output: Nil

ts = get_timestamp();
OList = Nil; //set of objects that are covered by the new query

//Phase 1. Q-tree location update
//delete old window
X-lock(Q-tree. D-buffer.entry[Qid]); //avoid operations on same query
Q-tree. D-buffer.Add(Qid, #_obsolete, ts);
//insert new window
X-lock(Q-tree.root.ext);
curNode = Q-tree.root;
Add (Qid, loc_new) to curNode.I-buffer;
Enlarge curNode.MBR if needed;
While curNode. I-buffer is full and not curNode.isLeaf

nextNode = curNode. I-buffer.childForUpdate();
X-lock(nextNode.ext);
curNode. I-buffer.groupUpdate; //push the largest group of contents to its

target child
Unlock(curNode.ext);
curNode = nextNode;

Unlock(curNode.ext);
X-Lock(Q-result.entry[Qid]); //avoid conflict from update on same query occur in

middle
UnLock(Q-tree. D-buffer.entry[Qid]);

//Phase 2. O-tree range search
S-lock(O-tree.root.ext);
curNode = O-tree.root;
while not curNode.isLeaf

OListTmp = curNode. I-buffer.find(loc_new);
If(S-lock(O-tree. D-buffer.entry[OListTmp], Conditional)) //conditional lock

OList.add(OListTmp);
nextNode = curNode.findEntry(loc_new);
S-lock(nextNode.ext);
Unlock(curNode.ext);
curNode = nextNode;

OListTmp = curNode.find(loc_new);
If(S-lock(O-tree. D-buffer.entry[OListTmp], Conditional)); //conditional lock

OList.add(QListTmp);
Unlock(curNode.ext);
OList = O-tree. D-buffer.filter(OList);

//Phase 3. Q-result update
Q-result[Qid].OList=OList;
Unlock(Q-result.entry[Qid]);
Un-lock(O-tree. D-buffer.entry[OList]);
Return;

126

Note that the S-locks on the D-buffer of the O-tree are
unconditional, which means if these objects are X-locked by
other operations, this query location update will cede those
objects. This is because if an object is locked by object location
update, it will be added to the corresponding queries based on
its new location. So there is no need to include this object in the
Q-result update. This unconditional lock can also prevent the
deadlock between object location update and query location
update.

Phase 3 - Q-result update: It replaces the particular entry of
the Q-result with the new set of objects that have been found as
the results. The X-lock on the entry of the Q-result and the S-
locks on the corresponding entries of the D-buffer of the O-tree
are released immediately after the update is completed. The
details of the algorithm are shown in Algorithm 3.

The algorithm of query location update can be illustrated
using an example based on Fig. 2 and Fig. 3. Assume the query
Q8 is moving upward within R1 and covers the object L with its
new window. It can still be included in the extended leaf node
R5. The algorithm first locks the entry of Q8 in the D-buffer of
the Q-tree, although there is no record for Q8 yet. Then an
entry (Q8, 1, ts) is inserted into the D-buffer and Q8 is inserted
into the I-buffer of the root node in the Q-tree. An X-lock is
requested on the entry for Q8 in the Q-result before releasing
the lock on the D-buffer of the Q-tree. In phase 2, a window
search is performed on the O-tree using the new query window
of Q8, and the object L is retrieved. The entry of L in the D-
buffer of the O-tree is S-locked before checking its validity.
After L is confirmed as an object covered by Q8, the obj_list of
Q8 is replaced by L. Finally, all the locks are released.

D. Garbage Clean
Garbage clean for the proposed framework consists of two

procedures, I-buffer clean and D-buffer clean. An I-buffer clean
is a straightforward process. It pushes the valid items in an
overflowed I-buffer to the next level on the tree. The
concurrency control protocol requests X-locks on the external
granules of the corresponding tree nodes involved in the I-
buffer clean procedure.

A D-buffer clean procedure maintains the size of D-buffers.
It compares the timestamps of the entries in leaf nodes or I-
buffers with the corresponding entries in a D-buffer, and
removes the obsolete items in leaf nodes/I-buffers. Meanwhile,
the corresponding deletion records in D-buffers are updated.
This can be triggered by updating a leaf node/I-buffer or
moving a token. The proposed concurrency control protocol
protects this D-buffer by requesting X-locks on the involved
leaf nodes/I-buffers and the items in the D-buffer before
comparing their timestamps. If the item in a leaf node/I-buffer
is obsolete, the operation deletes the entry in the leaf node/I-
buffer and updates the entry in the D-buffer. After the clean
process of that item is completed, both locks will be released.

V. CORRECTNESS
The proposed concurrency control protocol C3 assures

serializable isolation, consistency, and deadlock-freedom on the
generalized access framework. Serializable isolation means the
results of any set of concurrent operations equal to those from
the sequential processing of the same set of operations.

Consistency refers to the feature that the results always reflect
the current committed status. Deadlock-freedom means any
combination of the concurrent operations does not cause any
deadlock. The correctness of this concurrency control protocol
is discussed as follows by analyzing the lock sequences and
durations of each operation.

Fig. 5 Lock Durations for Concurrent Operations.

Fig. 5 abstracts the order and duration of the locks requested
in each operation, including object location update, query
location update, query report, and garbage clean in D-buffers.
The garbage clean in I-buffers only processes inside an R-tree,
so it does not cause any correctness issue with inter-structure
operations. The abbreviations in Fig. 5 indicate the locks on
different structures. The items ON and QN are the locks inside
the R-trees, while the items OD, QD and QR are the locks for
the inter-structure protection. Objects and their corresponding
O-tree nodes are locked in ON and OD, while queries and their
corresponding Q-tree nodes are protected in QN, QD and QR.
The horizontal span of each bar represents the time period that
the lock is granted. Based on the algorithms, search operations
request S-locks, and update operations request X-locks. The
object location update and query location update will not
request S-locks on the same substructure. The query report only
requests S-locks, while garbage clean in D-buffers places X-
locks. Among these locks, ON and QN are gradually requested
by traversing the tree; the other locks for each bar are granted at
almost the same time.

Serializable isolation: The proof of serializable isolation
contains two parts, serializable isolation on the single tree and
among the O-tree, Q-tree, and Q-result. The serializable
isolation on a single R-tree has been proved [19]. A similar
proof can show that O-tree and Q-tree are internally
serializable, because the sub-operations on each single tree (ON
and QN) are protected like on an R-tree, except that the locks
on tree nodes cover the associated I-buffers.

On the other hand, the serializable isolation among the O-
tree, Q-tree, and Q-result can be proved based on the theory
that a group of transactions are serializable if and only if their
conflict graph has no cycles [22]. We prove this in the
following lemma.

Lemma 1: Object location updates (OLU), query location
updates (QLU), query reports, and garbage cleans are
serializable given that any sub-operations involve a single
indexing tree are serializable.

Proof: We prove this lemma using induction. Given that any
sub-operations involve a single index tree are serializable,
because of the conditional lock applied in the algorithm, the
sub-operations on index tree nodes and I-buffers are serializable
to each other. Therefore, we only need to consider the sub-

ON � locks for O-tree nodes; QN � locks for Q-tree nodes;
OD�locks for O-tree.D-buffer; QD�locks for Q-tree.D-buffer; QR�locks for Q-results

Object Location Update: Query Location Update:

 Query Report: Garbage Clean in D-buffer:

 orON

OD
QN
QD

OD
QR

OD
QD

QR

ON QN
ODQD

QR

QN ON

127

operations corresponding to OD, QD, and QR. Fig. 6 illustrates
the major steps of the proof.

Step 1 - acyclic between two operations: to prove a conflict
graph with any two operations in this framework is acyclic.
Based on the lock durations illustrated in Fig. 5, obviously a
conflict graph with any two same operations is acyclic.
Considering two different operations, a query report or a
garbage clean cannot cause a cycle in a conflict graph with
another operation, because the locks requested by a query
report or a garbage clean are maintained until its commit point.
Based on Fig. 5, an OLU and a QLU can cause potential cycle
in a conflict graph, because these two operations may involve
the same object and query. However, because of the conditional
locks applied in the algorithms, if an OLU realizes that the
query affected by the object is locked by a QLU, it will not
access that query or update the corresponding query result. The
same rule applies to the potential conflict on objects in a QLU.
Because if two operations conflict on objects, they must
conflict on queries too; no edges for object locations can be
drawn between an OLU and a QLU. Therefore, in a conflict
graph contains an OLU and a QLU, the only edge, if exists, can
be drawn either from the OLU to the QLU or from the QLU to
the OLU for query locations and query results. In other words,
no cycle could occur in a conflict graph that consists of two
operations.

Step 2 – acyclic among n operations: to prove given that a
conflict graph with n operations (OP1, … OPn) is acyclic, the
conflict graph with operations (OP1, …, OPn, OPn+1) is also
acyclic. Based on the proof in Step 1, if OPn+1 is a query report
or garbage clean, it will not cause any new edges in the graph.

Suppose OPn+1 is an OLU, a possible edge from OPi
(1<=i<=n) to OPn+1 can be drawn for query results if OPi is
another OLU, or drawn for query locations and query results if
OPi is a QLU. Similarly, a possible edge from OPn+1 to OPj
(1<=j<=n, j!=i) can be drawn for query results if OPj is
another OLU, or drawn for query locations and query results if
OPj is a QLU. Now we prove there is no path from OPj to OPi
by contradiction. Assume there exists any path Pji from OPj to
OPi, because the locks on one lockable structure are granted at
the same time, Pji cannot contain any edge drawn for query
locations and query results. However, based on the analysis in
Step 1, the edges between any two operations can only be query
locations and query results. This contradiction shows that the
existence of Pji is impossible. Therefore, in case OPn+1 is an
OLU, the conflict graph with operations (OP1, …, OPn, OPn+1)
is acyclic.

Similarly, if OPn+1 is a QLU, a possible edge from OPi to
OPn+1 and a possible edge from OPn+1 to OPj can be drawn for
query locations and query results. Assume there is a path Pji
from OPj to OPi, Pji cannot contain any edge drawn for query
locations and query results. From the analysis in Step 1, if there
is a path between OPj and OPi, all the edges on this path have
to be drawn for query locations and query results. Because this
contradiction shows that the existence of Pji is impossible, the
conflict graph with operations (OP1, …, OPn, OPn+1) is acyclic
if OPn+1 is a QLU. Therefore, given that a conflict graph with n
operations is acyclic, the conflict graph with n+1 operations is
acyclic, too.

Based on the above two steps, we can conclude that the
concurrent operations supported in the proposed approach are
serializable.

Q.E.D.

Fig. 6 Conflict Graphs for Two Operations and n+1 Operations.

Consistency: For either O-tree or Q-tree, the DGL approach
(ON and QN in Object Location Update and Query Location
Update) has been proved to protect the consistency on the R-
tree. Furthermore, from the above serializable isolation analysis,
each proposed operation keeps locking its target items
(object/query) throughout the process, which ensures that the
intermediate status between any two phases will not be
accessed by other operations. Because the query report locks
the query (QR in Query Report) and objects (OD in Query
Report) from initiation to termination, only the results of all the
operations committed before its initiation will be accessed. This
guarantees the continuous query results are consistent with the
current database.

Deadlock-freedom: Deadlock-freedom is assured as long as
common sources are not accessed in opposite orders. Each
indexing tree is deadlock-free internally with the protection of
granular locking (ON and QN in Object Location Update and
Query Location Update). The operations among multiple
indices are proven to be deadlock-free in the following lemma.

Lemma 2: Object location updates (OLU), query location
updates (QLU), query reports, and garbage cleans are
deadlock-free given that any sub-operations involve a single
indexing tree are deadlock-free.

Proof: Because query reports and garbage cleans only
request locks at the beginning and release them at the commit
point, these operations do not cause any deadlock with any
other operations. We discuss OLU and QLU by observing the
lock durations in Fig. 5 from the aspects of accessing objects,
queries, and objects and queries.

Objects – Because in OLU, ON is placed together with OD,
and in QLU, ON is placed before OD and released during OD,
locks on the O-tree nodes and the D-buffer of the O-tree are not
granted in opposite orders. Therefore, locks on objects are
deadlock-free.

Queries – Similarly to locks on objects, QN is granted with
QD in QLU, and QN is placed before QD and released during
QD in OLU. In addition, QD always occurs before QR and is
released during QR. Therefore, locks on the Q-tree nodes, the
D-buffer of the Q-tree, and the Q-results are not requested in
opposite orders. In other words, locks on the queries are
deadlock-free.

OLU OLU

QLU

QLU

OLU

QLU

OLU QLU

query results

query locations
query results

query locations
query results

query locations
query results

OPi OPj

OPn+1

query locations
query results

query locations
query results

object locations?

 Step1: two operations

Step2: n+1 operations

128

Objects & queries - Note that OLU accesses objects before
queries, while QLU accesses queries before objects. Therefore,
the O-tree and the Q-tree are accessed in these operations in
two opposite orders. However, based on the algorithms,
conditional locks are requested on the second indexing tree
accessed in both OLU and QLU. Once a conflict occurs on the
second tree access, this tree access will be cancelled to
eliminate the conflict. Therefore, the possible deadlocks caused
by accessing two trees in opposite orders are prevented by the
conditional locks that cede the conflicted objects or queries.

Based on the above analysis, the proposed concurrency
control protocol is deadlock-free, given that any sub-operation
on a single index is deadlock-free.

Q.E.D.
Summarizing the above, this concurrent access framework

provides serializable isolation, consistency and deadlock-
freedom. Therefore, it works correctly from the view of
concurrency control.

VI. EXPERIMENTS
To evaluate the performance of the proposed framework,

experiments on benchmark datasets have been conducted by
measuring the throughput (number of concurrent operations
processed in a second). The experiment design is illustrated in
Fig. 7. The benchmark datasets were simulated by a network-
based moving objects generator [23] using the road network of
the City of Oldenburg. We set three classes of moving objects
and queries to represent vehicles, bicycles, and pedestrians.
Half of the initial moving objects generated by the generator
were used as moving objects, and the second half of the objects
were expanded to range queries. Based on the moving object
set and moving query set, two 3-level R-trees were constructed
with a fanout of 100. Meanwhile, the object movements
simulated by the generator were translated into object location
updates and query updates. These location updates and a set of
random query report operations were submitted to the system
as a multi-thread batch job. The overall execution time for each
batch job was collected, and the system throughput was
recorded by averaging the throughput of twenty batches of
concurrent operations.

Fig. 8 Lock Durations for TD.

For performance comparison, one approach that fuses the
record-oriented 2-phase locking transaction management
approach with DGL on the R-tree [19] for concurrent
operations, namely TD, has been implemented. Another
approach integrates a record-oriented versioning approach with

DGL, namely VD, has also been developed. TD and VD follow
the continuous query processing approach in C3, except that the
operations in TD/VD are executed using the 2-phase
locking/versioning strategy among indices and DGL within the
R-trees. The lock durations of object location update and query
location update in TD are illustrated in Fig. 8. It inherits the
complete indexing framework from C3, including O-tree, Q-
tree, D-buffer, I-buffer, and Q-result. Therefore, its number of
I/O accesses is as optimal as C3. Similarly, VD follows the
same query processing algorithms as C3, except it requires redo
operations when conflictions are detected. The conditional
locks requested in location updates result in less redo
operations in VD than pure versioning protocols, because they
allow the operations continue to commit. In other words, TD
and VD are both advanced approach for concurrent continuous
query processing, which can achieve the same performance as
C3 in single-user environments. Because there is no existing
concurrent continuous query processing approach in literature,
TD and VD are appropriate baselines with serializability for
comparison. In addition, simplified versions of C3 without
operation buffers have been developed to evaluate the impact
of the I-buffer and D-buffer. Specifically, three versions,
including C3 without I-buffer (NIBF), C3 without D-buffer
(NDBF), and C3 without any buffer (NBF), were adopted for
comparison.

In the experiments, five parameters varied to simulate
different application scenarios and to demonstrate their
respective impacts. These parameters are listed as follows.
� Data_size: the number of initial moving objects and moving

queries. It represents the number of moving objects plus the
number of continuous queries.

� Q_size: the side length of query window for each moving
query. It simulates query ranges in different applications.
The default value was 5.

� Mobility: the total number of concurrent location updates
for objects and queries in a batch. It corresponds to the
frequency of object/query location updates. The default
value was 2K.

� OM_ratio: the percentage of object location updates in
Mobility. It reflects the relative update frequency between
objects and queries. The default value was 50%.

� QR_ratio: the portion of query reports compared to
Mobility. It shows the frequency of query report operations.
The default value was 5%.

The proposed framework was implemented using JDK 1.5,
based on the R-tree code from [24]. The experiment system
was built on a Windows Server 2003 with two Duo-Core 2.4
GHz CPUs and 2 GB memory. Three sets of initial moving
objects and moving queries were used in all the experiments,
with the data_size 300K, 200K, and 100K, respectively. The
performance gain of C3 is largely determined by the number of
CPU cores. The more CPU cores are available, the more

Object Location Update: Query Location Update:

 OD

QD
QR

ON

QN
OD

QD

QR

QN

ON

QR_Ratio

Proposed C3
2PL+DGL (TD)

Versioning + DGL (VD)

Fig. 7 Experiment Design.

Object set
Query set

R-trees with Lazy Update
R-trees w/o I-Buffer (NIBF)

R-trees w/o D-Buffer (NDBF)
R-trees w/o Buffer (NBF)

Object Movements
Query Movements

Fanout

Benchmark Data Sets Performance MeasureMovement Simulation Index Construction Concurrency Control

Data_Size Q_Size

Throughput

Mobility OM Ratio

129

simultaneous operations can be processed, and consequently,
the more opportunity for increased performance by C3.

A. Throughput vs. Buffers
Experiments were conducted to evaluate the effectiveness of

the I-buffer and D-buffer in the framework. Location updates
and continuous queries were processed on the original C3,
NIBF, NDBF, and NBF, respectively. The size of each I-buffer
is 20 items (about 1KB), and the size of each D-buffer is 400
items (about 20KB). For the 300K dataset, there were less than
100 internal tree nodes. Therefore, the size of buffers in the
experiments was less than 150KB. Similarly, given a 3MB
buffer, this setting can support more than 10 million moving
objects. Since the mobility and OM_ratio are expected to have
significant impacts on the system throughput, these two
parameters were varied to analyze the impacts of the buffers.

a) Impacts of Buffers over Mobility

b) Impacts of Buffers over OM_ratio

Fig. 9 Throughput vs. Buffers.

Fig. 9 a) shows the throughput of C3 on the three datasets
and that of the simplified C3 on the 100K dataset when the
mobility increased from 2K to 10K. The x-axis shows the
mobility, and the y-axis indicates the throughput. Generally,
deactivating any operation buffer significantly increased I/O
operations for tree updates. On the other hand, the increased
updates on the R-trees caused additional locks and lengthened
the lock durations. As shown in both figures, by deactivating I-
buffers, the system throughput decreased by more than 62% for
the 100K dataset. When D-buffers were deactivated, the system
lost about 65% of the performance. When there was no
operation buffer applied, the system throughput degraded more
than 79% from the original C3 for the 100K dataset. As
observed from the above results, D-buffers promoted the
system performance slightly more than I-buffers. This is
because the insertions with I-buffer need to traverse the R-tree,
although only the higher levels for most of the time, and the I-

buffers close to the R-tree root may become bottlenecks. On the
other hand, the deletions with D-buffer do not require tree
traversal in most cases.

The comparison among different versions of C3 when the
OM_ratio gradually increased is illustrated in Fig. 9 b), where
the x-axis represents the OM_ratio and the y-axis shows the
throughput. Following the trend of the original C3 on the 100K
dataset, these simplified versions of C3 increased along with
the OM_ratio. In addition, the NIBF outperformed the NDBF,
and the NBF always had the lowest throughput.

Compared to the R-trees with buffers for frequent updates
[7], [8], the C3 handles concurrent continuous query processing
with seemingly lower throughput. It is because that each
transaction in C3 consists of a location update, a result update,
and a costly search, whereas a transaction in the related work
contains only one operation which is usually an inexpensive
update (costs less than 15% I/O of a search [8]). Considering
this fact, C3 achieved comparable performance to the popular
location update approaches. Furthermore, serializable isolation
usually significantly degrades the system performance with its
restricted locking policy, and C3 handled this efficiently.

B. Throughput vs. Mobility
In this set of experiments, the mobility of the objects and

queries varied from 2K to 10K updates per batch, while the
OM_ratio, QR_ratio, and Q_size were set to their default
values. The throughput of the framework was measured on
three datasets with different sizes, from 150K objects with
150K queries to 50K objects with 50K queries. The throughput
of TD and VD on the same datasets and movements was also
collected. The experiment results are shown in Fig. 10, where
the x-axis represents the mobility and the y-axis shows the
throughput. For clear comparison, the charts in the rest of this
paper set the minimal x-value to 60. The throughput on all
datasets decreased linearly when the mobility increased. These
results are considered as reasonable because a higher mobility
indicates more location update operations in the processing
queue, and a longer queue leads to longer waiting time for each
operation.

Fig. 10 Throughput vs. Mobility.

The throughput of C3 on both the 200K and 300K datasets
reduced about 3% when the mobility changed from 2K to 10K.
However, the decreasing rate on the 100K dataset was
negligible with the increasing of the mobility. This suggests
that mobility affects less on the smaller datasets than the larger
ones. It is because concurrent operations on a smaller dataset
may be processed quickly enough before causing conflicts.

130

Compared to the throughput of C3, TD on the three datasets
processed 43~52 less operations every second, and VD
processed 40~51 less operations. Specifically, the throughput
on the 200K and 300K datasets lost about 38~44% by applying
TD, and lost 34~39% by applying VD. The throughput on the
100K dataset dropped about 33% for TD and 36~39% for VD.
Among the three approaches, TD decreased its performance
most significantly when the mobility increased, because a
frequently updated dataset benefits more from reduced lock
durations. Compared to VD, TD performed worse on the large
datasets. On the other hand, the decreasing rates of VD’s
throughput were higher than those of C3. The low throughput
of VD was caused by the large number of redo operations
during frequent updates, and these redo operations may
consequently cause additional conflictions.

Interestingly, C3 on the 300K dataset performed about 3%
better than on the 200K dataset. These results demonstrated the
scalability of the R-tree and the advantages of the lazy group
update technique. The lazy group update approach minimizes
the cost of R-tree update operations, and concurrent operations
are facilitated by the finer lockable granules on the R-trees with
larger datasets. These advantages compensated the increased
storage and overlaps among the tree nodes of the 300K dataset.

C. Throughput vs. OM_ratio
In this set of experiments, three datasets with data_size 300K,

200K, and 100K, were used to evaluate how the OM_ratio
affects the system throughput. Fig. 11 illustrates the throughput
of C3, TD, and VD, with the OM_ratio varied from 10% to
90%. The x-axis indicates the OM_ratio, and the y-axis
represents the throughput. In most cases, when the portion of
the object location updates in simultaneous operations
increased, the throughput increased too. This is because an
object location update usually costs less than a query location
update. An object location update, based on the algorithm,
performs a point insertion and a point query. On the other hand,
a query location update inserts a window and processes a
window query on the R-tree. Therefore, a query location update
requires more I/O accesses and index locks.

Fig. 11 Throughput vs. OM_ratio.

Furthermore, from this figure, it is clear that the 200K and
100K datasets benefited more from increasing the OM_ratio.
The throughput of the 200K and 100K datasets raised 5% by
increasing the OM_ratio, while that of the 300K dataset slightly
decreased when the OM_ratio gradually increased from 50% to
90%. This difference was caused by the fact that in a larger
dataset, the increased number of object location updates

resulted in more conflicts with X-locks on the O-tree, which
compensated the benefit from fewer range query and update
operations. These results show that the performance of location
management on a small dataset can be significantly improved
by increasing the OM_ratio. Similar to the previous set of
experiments, the throughput of the 300K dataset was slightly
better than the 200K dataset most of the time.

The throughput of TD and VD approaches in the figure
shows significant performance degrade from C3. On all the
three datasets, the throughput of TD was about 45 operations
per second lower than C3, and VD lost 40~48 per second from
C3. On all the datasets, the performance of TD and VD
followed the trends of the corresponding C3 performance. The
TD and VD on the 300K dataset decreased the throughput after
the OM_ratio reached 50%, because write-write conflicts on
the O-tree were increased, which caused longer waiting in TD
and more re-do operations in VD. On the other hand, the
performance of VD was lower than TD on the 100K datasets
and better than TD on the 200K and 300K. This illustrated that
VD had better scalability than TD, although performed worse
on small datasets.

D. Throughput vs. QR_ratio
This set of experiments examines the relationship between

the QR_ratio and the system throughput. The throughput was
measured while the QR_ratio increased from 5% to 25%. The
results are illustrated in Fig. 12, where the x-axis indicates the
QR_ratio and the y-axis shows the throughput. Generally, a
higher QR_ratio decreases the system performance, because
more query reports are issued to consume the system resources.
As shown in the figure, the throughput of C3 on the three
datasets decreased by 0~2 operations per second when the
QR_ratio increased from 5% to 25%. These results suggest that
the cost for query report operation is relatively low, so that it
can be efficiently processed without significantly blemishing
the system performance. This is the benefit from the design of
this concurrent continuous query processing, because the Q-
result always stores the correct results, and the query report
operation only requests S-locks on the corresponding Q-result
entry and the D-buffer entries of the O-tree.

Fig. 12 Throughput vs. QR_ratio.

Similarly, although the number of query report operations in
each batch increased from 100 to 500, there was no significant
change on the throughput of TD and VD. As shown in the
figure, C3 improved the performance by 50~55% from VD,
and by 47~63% from TD.

131

E. Throughput vs. Q_size
This set of experiments varies the Q_size to study how the

query window size affects the system performance. The
experiment results are plotted in Fig. 13, where the x-axis
shows the Q_size and the y-axis represents the throughput. The
throughput of C3 on all the three datasets slightly and linearly
decreased by about 7 when the Q_size increased from 5 to 25.
Once the Q_size increases, each continuous query may cover
more objects, and each object movement may affect more
queries. Therefore, not only the tree access cost, but also the
number of requested locks will increase. Following the trend in
the previous experiment results, the 300K dataset performed
better than the 200K dataset under C3 due to its fewer lock
conflicts.

Fig. 13 Throughput vs. Q_size.

Similar to C3, the performance of TD slightly degraded
when the Q_size increased from 5 to 25. C3 on each dataset
achieved a significant performance improvement against TD.
C3 on the 100K dataset improved the throughput by 47~44%
from TD, 56~62% on the 200K dataset, and 58% on the 300K
dataset. Compared to VD, C3 improved the performance by
53% on the 100K dataset, 45~52% on the 200K dataset, and
about 50% on the 300K dataset.

The experiment results demonstrated that the performance of
the proposed concurrent continuous query processing approach
is efficient and scalable. As an interesting observation, in all
these experiments, the 300K dataset outperformed the 200K
dataset in C3, which demonstrated the scalability of the
proposed approach in terms of data_size. Meanwhile, the
OM_ratio, mobility and Q_size had noticeable impacts on the
system throughput, whereas the QR_ratio did not significantly
affect the performance. In addition, C3 gained substantial
benefits by applying optimal lock durations and utilizing the
operation buffers in the framework.

VII. CONCLUSION
This paper proposes C3, a concurrency control protocol for

continuous queries, on an R-tree-based indexing structure. It is
the first concurrency control protocol that protects the
concurrent continuous query processing with lazy update
techniques. It is proved to achieve serializable isolation,
consistency, and deadlock-freedom for continuous queries over
moving objects. Extensive experiment results on benchmark
datasets have validated the efficiency and scalability of the
proposed framework. This work provides an effective solution
for continuous query processing and promotes its applicability
in multi-user systems.

Concurrent operations involving a large portion of data, such
as continuous kNN search and spatial join, still lack for
efficient solutions. Future efforts could focus on extending C3
for these operations, and for indexing structures with velocity
information for continuous query processing.

REFERENCES
[1] (2008) Ride Finder. [Online]. Available: http://labs.google.com/ridefinder.
[2] (2008) Smart Trek. [Online]. Available:

http://www.its.washington.edu/projects/strek.html.
[3] (2008) Flight Tracker - Real Time Airline Flight Tracking Software.

[Online]. Available: http://www.airnavsystems.com/.
[4] (2008) ADS Aerospace Limited. [Online]. Available:

http://www.adsaerospace.com/products/track.html.
[5] M. L. Lee, W. Hsu, C. S. Jensen, B. Cui, et al., "Supporting Frequent

Updates in R-Trees: A Bottom-Up Approach," in Proc. International
Conference on Very Large Data Bases, pp. 608-619, 2003.

[6] L. Biveinis, S. Saltenis, and C. S. Jensen, "Main-memory Operation
Buffering for Efficient R-tree Update," in Proc. International Conference
on Very Large Data Bases, pp. 591-602, 2006.

[7] B. Lin and J. Su, "Handling Frequent Updates of Moving Objects," in
Proc. ACM International Conference on Information and Knowledge
Management, pp. 493-500, 2005.

[8] X. Xiong and W. G. Aref, "R-trees with Update Memos," in Proc. IEEE
International Conference on Data Engineering, pp. 22-31, 2006.

[9] M. F. Mokbel, X. Xiong, and W. G. Aref, "SINA: Scalable Incremental
Processing of Continuous Queries in Spatio-Temporal Databases," in
Proc. ACM SIGMOD International Conference on Management of Data,
pp. 321-330, 2004.

[10] B. Gedik, K.-L. Wu, P. S. Yu, and L. Liu, "Processing Moving Queries
over Moving Objects Using Motion-Adaptive Indexes," IEEE
Transactions on Knowledge and Data Engineering, vol. 18, No. 5, pp.
651-668, May 2006.

[11] H. Hu, J. Xu, and D. L. Lee, "A Generic Framework for Monitoring
Continuous Spatial Queries over Moving Objects," in Proc. ACM
SIGMOD International Conference on Management of Data, pp. 479-490,
2005.

[12] S. Abiteboul, R. Agrawal, P. Bernstein, M. Carey, et al., "The Lowell
Database Research Self-Assessment," Commun. ACM, vol. 48, No. 5, pp.
111-118, May 2005.

[13] J. Dai, C.-T. Lu, and L.-F. Lai, "A Concurrency Control Protocol for
Continuously Monitoring Moving Objects," in Proc. International
Conference on Mobile Data Management, pp. 132-141, 2009.

[14] A. Guttman, "R-trees: A Dynamic Index Structure for Spatial Searching,"
in Proc. ACM SIGMOD International Conference on Management of
Data, pp. 47-57, 1984.

[15] N. Beckmann, H. P. Kriegel, R. Schneider, and B. Seeger, "The R*-tree:
An Efficient and Robust Access Method for Points and Rectangles," in
Proc. ACM SIGMOD International Conference on Management of Data,
pp. 322-331, 1990.

[16] T. Sellis, N. Roussopoulos, and C. Faloutsos, "The R+-tree: A Dynamic
Index for Multi-dimensional Objects," in Proc. International Conference
on Very Large Data Bases, pp. 507-518, 1987.

[17] J. K. Chen, Y. F. Huang, and Y. H. Chin, "A Study of Concurrent
Operations on R-Trees," Information Science, vol. 98, No. 1, pp. 263-300,
May 1997.

[18] V. Ng and T. Kamada, "Concurrent Accesses to R-Trees," in Proc.
Symposium on Large Spatial Databases, pp. 142-161, 1993.

[19] K. Chakrabarti and S. Mehrotra, "Dynamic Granular Locking Approach
to Phantom Protection in R-trees," in Proc. IEEE International
Conference on Data Engineering, pp. 446-454, 1998.

[20] C.-T. Lu, J. Dai, Y. Jin, and J. Mathuria, "GLIP: A Concurrency Control
Protocol for Clipping Indexing," IEEE Transactions on Knowledge and
Data Engineering, vol. 21, No. 5, pp. 714-728, May 2009.

[21] R. Elmasri and S. Navathe, Fundamentals of Database Systems, 5 ed.:
Addison Wesley, 2007.

[22] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control
and Recovery in Database Systems: Addison-Wesley, 1987.

[23] T. Brinkhoff, "A Framework for Generating Network- Based Moving
Objects," Geoinformatica, vol. 6, No. 2, pp. 153-180, Jun. 2002.

[24] (2005) The R-tree Portal. [Online]. Available: http://www.rtreeportal.org.

132

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	No Other Manuscripts by the Authors
