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ABSTRACT
A spatial outlier is a spatially referenced object whose non-
spatial attributes are very different from those of its spatial
neighbors. Spatial outlier detection has been an important
part of spatial data mining and attracted attention in the
past decades. Numerous SOD (Spatial Outlier Detection)
approaches have been proposed. However, in these tech-
niques, there exist the problems of masking and swamping.
That is, some spatial outliers can escape the identification,
and normal objects can be erroneously identified as outliers.
In this paper, two Random walk based approaches, RW-BP
(Random Walk on Bipartite Graph) and RW-EC (Random
Walk on Exhaustive Combination), are proposed to detect
spatial outliers. First, two different weighed graphs, a BP
(Bipartite graph) and an EC (Exhaustive Combination), are
modeled based on the spatial and/or non-spatial attributes
of the spatial objects. Then, random walk techniques are
utilized on the graphs to compute the relevance scores be-
tween the spatial objects. Using the analysis results, the
outlier scores are computed for each object and the top k
objects are recognized as outliers. Experiments conducted
on the synthetic and real datasets demonstrated the effec-
tiveness of the proposed approaches.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications-
Data Mining, Spatial Databases

General Terms
Algorithms, Design

Keywords
Spatial outlier detection, Random Walk, Data mining

1. INTRODUCTION
With the ever-increasing volume of spatial data, identify-

ing hidden but potentially interesting patterns of anomalies
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has attracted considerable attentions, particularly from the
areas of data mining experts and geographers. Spatial out-
lier analysis, which aims at detecting abnormal objects in
spatial context, becomes one of the important spatial data
mining branches. The identification of spatial outliers can
help extract important knowledge in many applications, in-
cluding meteorological data analysis, traffic control, satellite
image analysis and hotspot identification.

Barnet [4] defines that ”an outlying observation or outliers
in statistics, is one that appears to deviate markedly from
other members of the sample in which it occurs.” During
the past decades, numerous traditional outlier detection al-
gorithms have been proposed [2, 5, 13, 14, 19]. Traditional
outlier is determined by global differences. Such techniques
sometimes can’t be satisfactory with the spatial context.
First, spatial objects have more complex structures. Sec-
ond, traditional approaches do not consider spatial relation-
ship when identifying anomaly patterns. As the geographic
rule of thumb, ”Nearby things are more related than distant
things [28]” requires more considerations on spatial autocor-
relation in spatial analysis.

The attributes of a spatial object can be categorized into
two different groups, namely, spatial and non-spatial at-
tributes. Spatial attributes are related to spatial informa-
tion, such as longitude, latitude and directions, which are of-
ten used to formalize the spatial relationships. In this sense,
spatial outliers can be recognized as a local outlier since it
is determined by local comparisons. To detect the degree of
the differences between a spatial object and its neighbors,
the spatial outlier score is normally evaluated by differenti-
ating their non-spatial attribute values. Spatial observations
with higher outlier scores are more likely to be outliers and
they will be ranked higher in the final ranking list.

Recently, some SOD approaches [1, 3, 6, 10, 15, 16, 24, 25,
27] have been proposed. However, most of them have three
issues: 1) masking problems: the normal objects may be
misclassified as outlier; 2) swamping problem: some true
outliers may be missed; and 3) ranking lists: without cor-
rect outlier scores, the outlier list may not be identified cor-
rectly. Identifying the relevance score between two spatial
objects is one of the fundamental building blocks to resolve
these three issues. Among several approaches to the prob-
lem of computing the relevance scores, Random Walk (RW)
based algorithms have been proven very effective.

RW based techniques have been widely used for varieties
of data mining tasks, including clustering[9, 11] and out-
lier detection [12, 18, 26]. In this paper, we investigate the
benefits of RW techniques on spatial outlier detection and



then propose two novel SOD methods, RW-BP (Random
Walk on Bipartite graph) and RW-EC (Random Walk on
Exhaustive Combination). Both these two approches con-
sider using the concept of RW to compute the similarities
or differences among objects. First, two different weighted
graphs, a BP (Bipartite graph) and an EC (Exhaustive Com-
bination), are constructed based on the spatial and/or non-
spatial attributes. Within the frameworks, RW techniques
are utilized to compute outlierness (the differences between
spatial objects and their spatial neighbors) for each spatial
object, and the top k objects with higher scores are identi-
fied as the spatial outliers. The main contributions of the
paper are as follows:

1. Model of two different weighted graphs based
on spatial and/or non-spatial attributes. BP is
a bipartite graph in which two independent sets of ver-
tices correspond spatial objects and clusters generated
from non-spatial attributes. EC consists of all the spa-
tial objects and the edges among them, and each edge
value is computed by the spatial and non-spatial at-
tributes.

2. Design of two RW based SOD algorithms. By
operating the RW techniques on the weighted graphs,
RW-BP and RW-EC algorithms are designed to accu-
rately identify spatial outliers.

3. Extensive experiments to validate the effective-
ness and efficiency. RW-BP and RW-EC methods
were applied to hundreds of synthetic datasets (ran-
dom generated) and one real dataset (US Housing
dataset). The experiment results demonstrated their
effectiveness.

The paper is organized as follows. Section 2 reviews the
related work on outlier detection methods and data min-
ing techniques with RW. Section 3 and 4 study the detailed
techniques and algorithms for RW-BP and RW-EC methods,
respectively. Section 5 evaluates the performance of the pro-
posed approaches on synthetic and real datasets. Section 6
concludes our work.

2. RELATED WORK
In this section, we briefly review related work, which can

be categorized into three classes: 1) TOD (Traditional Out-
lier Detection) methods; 2) SOD (Spatial Outlier Detection)
methods; 3) RW (Random Walk) related methods.

TOD methods. The TOD approaches can be cate-
gorized into four groups: statistical-based, distance-based,
clustering-based and density-based. In traditional statisti-
cal outlier detection methods [4], probabilistic frameworks
are modeled based on the standard probability distributions.
If the object does not fit the framework, it is identified
as an anomaly. Traditional distance-based methods[2, 14]
calculate the distances between data objects and recognize
those that are exceptionally far away with others as out-
liers. Clustering-based methods [8, 19] identify outliers as
exceptional observations which do not belong to any cluster.
Density-based algorithms [5, 13] define outliers based on the
local densities. TOD method treats spatial and non-spatial
attributes equally. However, these two types of attributes
should be considered separately in the spatial context.

SOD methods.During the past decades, a number
of algorithms have been proposed to identify outliers in
the spatial databases. There are three basic categories,

namely, visualization, statistic and graph-based approaches.
Visualization-based approaches utilize visualization tech-
niques to highlight outlying objects. Representative algo-
rithms include scatterplot [10] and Moran scatterplot [3].
Statistic-based approaches execute statistical tests to mea-
sure the local inconsistencies. Typical methods include Z-
value [24], Median-based and iterative-Z [16] approaches.
Graph-based approaches [15, 25] detect spatial outliers by
designing a function to compute the difference between an
observation and its neighboring points. Other works studied
the special property of spatial data. Zhao et al. proposed a
wavelet-based approach to detect region outliers [29]. Cheng
et al. presented a multi-scale approach to detect spatial-
temporal outliers [6]. Adam et al. proposed an approach
that considers both the spatial and semantic relationship
among neighbors [1]. A local outlier measure [27] was pro-
posed by Sun and Chawla to capture the local behavior of
data in their spatial neighborhood.

RW related techniques. Random walk technique is
one of the important building blocks in many applications,
including pagerank, keyword extraction, and content-based
image retrieval. In these methods, a graph is constructed to
represent the data. And a random walk is performed along
all the paths on the graph to evaluate the relevance scores
of each object. PageRank method [20] is based on the
model where a random walker traverses the hyperlinks of a
Web graph. Keywords and sentence extraction [17] studies
a TextRank model to vote and recommend the important
vetices. Recently, random walk method has been explored
in data mining research. Hagen et al. [9] proposed a random
walk-based method to perform circuit clustering in the
netlist graph. Harel and Koren [11] proposed to decompose
the data into arbitrarily shaped clusters of different sizes
and densities. Moonesinghe et al. [18] introduced an
algorithm, called Outrank, to detect outliers by random
walk models. Sun et al. [26] constructed a bipartite graph
based on random walks with restart to address two issues:
neighborhood formation and anomaly detection. Janeja
et al. proposed a random walk based Free-Form spatial
scan statistic (FS3)[12] to construct a weighted Delaunay
Nearest Neighbor Graph (WDNN) to capture spatial
autocorrelation and heterogeneity. These applications of
random walk methods showed that it can provide an accu-
rate relevance scores between two nodes in a weighted graph.

3. RANDOM WALK ON BIPARTITE
GRAPH (RW-BP)

Intuitively, a spatial outlier is an observation that is ex-
ceptionally different from its neighbors. One of the most
fundamental issues is how to accurately compute the rele-
vance scores among the observations. In this section, RW-
BP method is designed to compute such scores by operating
RW techniques on a weighted bipartite graph. The main
steps of RW-BP are described as follows.

1. Bipartite graph construction. The vertex sets in
the bipartite graph correspond to the spatial objects
and the clusters generated from the non-spatial at-
tributes of the objects in the spatial database.

2. Similarity computation between spatial ob-
jects. Random walk is performed on the bipartite
graph to compute the similarities of the non-spatial
attributes between any pair of the spatial objects.



Figure 1: Voronoi-based neighborhood formulation

3. Neighborhood formulation and outlierness
computation. The spatial neighbor sets for each ob-
ject can be formed using the Voronoi diagram or kNN
method. And the outlierness for each object is com-
puted as the differences between itself and its neigh-
borhood.

4. Outlier identification. Finally, the outliernesses are
ranked in an ascending order and the top k objects are
identified as spatial outliers.

3.1 Modeling Weighted Bipartite Graph
In RW-BP method, the weighted bipartite framework is

denoted as G = 〈P ∪ C,E〉, where P is the set of spatial
objects, C is the set of clusters generated from the non-
spatial attributes of the spatial objects, and E is the set of
weighted edges between the spatial objects and the clusters.
P and C are two independent sets such that E only ex-
ists between them. Constructing such a weighted bipartite
graph consists of three fundamental steps. First, non-spatial
attributes of the spatial objects are clustered using cluster-
ing method. Second, the bipartite graph is constructed in
which the left vertex set consists of the spatial objects and
the right one consists of the cluster sets. Finally, the edge
value is computed based on the non-spatial attributes of the
spatial objects and the centroid values of the clusters.

Figure 2: Bipartite Framework. The two partitions
correspond to spatial objects and clusters

Considering the sample spatial dataset with 18 spatial ob-
jects in Figure 1, the K value (i.e., the number of clusters)
equals to 5. Therefore, the cluster set is C1(10), C2(20),
C3(100), C4(200), C5(300). There are 18 spatial objects
and 5 separate clusters, and its bipartite graph can be con-
structed as shown in Figure 2. In particular, the cluster sets
are calculated using K-means method in the non-spatial at-
tribute space. The main disadvantage when using K-mean

lies in the fact that the optimum K value must be pre-
specified. To address this issue, a practical approach pro-
posed by Ray et al. [22] is used to experiment with dif-
ferent values of K to identify the values that better suit
the data set. To generate more accurate results, the non-
spatial attributes can be clustered h times. And the K value
at each time is slightly different with that of at the other
time, i.e., K1,K2, · · · ,Kh. The final cluster set in the right
part is the union of cluster sets generated individually, i.e.,
C = 〈C1 ∪ C2 ∪ · · · ∪ Ch〉. Therefore, in the right part of
the bipartite graph, there are m(= (K1 + K2 + · · · + Kh))
clusters. For each spatial object pi in the left part, there
will be m edges that connect it with all clusters.

In RW-BP method, the edge value in the bipartite graph
is defined as the similarities between the spatial object and
the cluster, which is shown as follows.

E 〈Pi, Cj〉 =
1

e|Atr(Pi)−Ctr(Cj)|α
, 0 < α ≤ 2 (1)

where, Atr(Pi) is the non-spatial attribute of the spatial
object and Ctr(Cj) is the centroid value of the corresponding
cluster. α helps compute more accurate edge value, and is
decided by range distribution of the non-spatial attribute
values of the whole data set. Normally, when the data values
are in a smaller range, α has a larger value, and vice versa.

3.2 Similarity Computation Between Spatial
Objects

To compute the similarities between spatial objects, RW
techniques can be directly applied to the weighted bipartite
graph. A random walk means that it starts from node i,
and iteratively transmits to its neighborhood with certain
probability. At each step, it has the probability c to return
to the original node. Random walk with restarts can be
defined as Equation(2)[21]:

~Sp = (1− c)Wp
~Sp + c~ep (2)

Where Wp is the NAM (Normalized Adjacency Matrix)

of point p. ~ep is an (n + m)−by−1 starting vector. ~Sp is
the steady-state probability vector which can describe the
similarity scores between point p and the other points
in the data set. c is known as the damping factor and is
normally predefined as 0.1. Based on Equation (2), ~Sp can
be computed as follows.

~Sp = (1− c)(I − cWp)−1~ep (3)

Obviously, NAM is a critical factor to compute more accu-
rate solution about vector ~Sp. In the following, the proce-
dures of NAM generation are studied step by step.

Normalized Adjacent Matrix (NAM) Construc-
tion

The information illustrated by the BP can be stored in
a n−by−m matrix M , where each entry, M(i, j), is the
weight of the edge 〈i, j〉. The bipartite graph in Figure 2
can be represented as follows (α= 1/2).

M18×5 =



1 e−101/2 e−901/2 e−1901/2 e−2901/2

1 e−101/2 e−901/2 e−1901/2 e−2901/2

··· ···
··· ···

e−101/2 1 e−801/2 e−1801/2 e−2801/2

e−101/2 1 e−801/2 e−1801/2 e−2801/2

··· ···
··· ···

e−901/2 e−801/2 1 e−1001/2 e−2001/2

e−1901/2 e−1801/2 e−1001/2 1 e−1001/2

e−2901/2 e−2801/2 e−2001/2 e−1001/2 1





As shown in this matrix, the row nodes correspond to the
spatial objects and the column ones to the clusters. In-
tuitively, if two nodes always belong to the same clusters,
they have higher similarities. Otherwise, they are very dif-
ferent with each other. Based on the relationship matrix
Mn×m, we can construct the adjacent matrix Mp, which is
an (n+m)× (n+m)matrix for any spatial object p.

Mp =

(
MT

n×m 0m×m

0n×n M(n×m)

)
(4)

Suppose a walker visits the bipartite graph starting from
a random spatial object pi, the probability of traversing the
edge < pi, pj > should be in direct proportion to the weight
values of all the outgoing edges originating from point pi.
We use the Equation 5 to normalize it.

Wp(i, j) = Mp(i, j)/

m+n∑
k=1

Mp(k, i) (5)

After normalization, the sum of each column in ~Wp is
equal to 1.

Similarity Computation
After constructing the NAM, vector ~Sp can be directly com-
puted using Equation (1). Before that, we need to define
the vector ~ep. Generally, it is constructed with 1 in the ith

row and 0 in the others. Here p is the ith spatial object in
Mn×m matrix, then

~ep = 〈01, · · · , 1i, · · · , 0n, · · · , 0m+n〉T (6)

Here, the subscript character of each entry represents the
location of the entry in the vector. For example, 01 means
that the first entry of the vector is 0. Similarly, 1i represents
that the ith entry of the vector is 1. For the object p3 in
the Figure 2, the corresponding starting vector ~e3 can be
represented as

~e3 = 〈0, 0, 1, 0, · · · , 0n, · · · , 0m+n〉T

There, the relevance vector for any specified point pi can
be computed by using the Equation(2)or (3), that is ~Sp.
After deriving the relevance vectors of all the points, we can
compute the similarities between any pair of spatial objects
using Cosine correlation, as shown in Equation(7).

Sim(pi, pj) =
(~Spi ,

~Spj )√
(~Spi ,

~Spi) •
√

(~Spj ,
~Spj )

(7)

Table 1: Similarity Computation in RW-BP
10 20 100 200 300

10 1 0.7475 0.0091 1.250e-004 4.658e-006
20 0.7475 1 0.0098 1.305e-004 4.793e-004
100 0.0091 0.0098 1 0.0017 0.0017
200 1.250e-004 1.305e-004 0.0017 1 2.940e-005
300 4.658e-006 4.793e-004 0.0017 2.940e-005 1

3.3 Spatial Outlier Identification
Table 2: Outlier Rank in RW-BP

Object Similarities Rank

C 4.7251e-005 1
B 1.2772e-004 2
A 0.0091 3
... ... ...
... 0.0134 ...
... ... ...
... 1 18

Computing the outlier score of any spatial object is to
identify the similarity between a specified object and its

neighbors. In the example in Figure(1), we use Voronoi
diagram to determine the spatial neighborhood for each
object. Given a set of n points p1, p2, · · · , pn in the
spatial dataset, the Voronoi diagram can be constructed
such that each object in the region surrounding the spe-
cific object is the closest to that object than any oth-
ers. For example, for the query point, A, we only need
to consider those points whose representative regions bor-
der the region of A. Therefore, the neighborhood set of A
is {n1(10), n2(10), n3(10), n4(10), n10(20)}. Using Equation
(2) and (7), we can identify the similarity between each point
and its neighbor. Finally, we can use the geometric mean
or arithmetic mean of all the similarity values as the outlier
scores for each spatial object. Consider the sample spatial
dataset shown in Figure 1. Clearly, object A, B, and C are
outliers and the rest ones correspond to normal objects. Us-
ing RW-BP approach, the non-spatial similarities between
each pair of points can be computed. Table 1 shows the de-
tailed results.
With the results in Table 1, we can determine the rele-
vances(outlierness) between any object and its neighbor-
hood. For example, the outlierness of point C can be com-
puted using the geometric mean value, shown as follows.

OutScore(C) = ((4.658e− 006)3 ∗ (4.793e− 004)3)1/6

= 4.7251e− 005

Repeatedly, we can compute the outlierness values for the
other spatial objects. The final outlier scores and the rank-
ing list are described in Table 2.

3.4 RW-BP Algorithm
Based on the above proposed idea, we generalize the

RW-BP algorithm to identify spatial outliers with single
attributes in a weighted bipartite graph. The proposed
algorithm has 7 input parameters, which are described in
Table 3.

Table 3: Main Parameters in RW-BP and RW-EC
Para. Description

X A dataset storing the spatial attributes.
Y A dataset storing the non-spatial attributes.
k The optimal number of clusters.
r The pre-defined number of requested outliers.
h The number of clustering operations on set

Y .Generally, h ≤ 10.
n The number of spatial objects in the dataset.
c The damping factor.

For each data object xi, the first step is to identify its
spatial neighbors, Neighbors(X,xi). Next, using K-means
method, we conduct several clustering on the set of Y . At
each loop, we get corresponding cluster set Ci. The overall
cluster set is the union of cluster sets, C. We construct
a bipartite graph, G =< X,C,E(X,C) >, between the
spatial datasets and the cluster sets. The edge values be-
tween them are computed by the non-spatial attributes and
the centroid values of the clusters. With the relationship
matrix corresponding to the bipartite graph, we deduce
the normalized adjacent matrix which is used in Equation
(2) to compute the similarity matrix. Cosine similarity
equation is also used to compute the final relevance scores
between any pair of spatial objects. Finally, outlierness
scores OutScores are computed as the differences between
the specified objects and their neighbors and the top r
objects with the lowest values are detected as the outliers.



Algorithm 1 RW-BP SOD Approach

1: for i = 1 to n do {Calculate the neighborhood for each object}
2: Neighbors(xi) = kNN(X, xi)
3: end for
4: for i = 1 to h do {Calculate the cluster sets of nonspatial at-

tribute set Y}
5: Ci = K −mean(Y, ki)
6: end for
7: C =

⋃h
i=1 Ci{Get the overall cluster sets.}

8: G = 〈X,C,E(X,C)〉{Construct Bipartite Graph}
9: for i = 1 to n do {Construct the relation matrix of the bipartite

graph}
10: for j = 1 to |C| do
11: M(i, j) = 1/e|Yi−Ctr(Cj)|

α

12: end for
13: end for

14: M =

(
MT
n×m 0m×m

0n×n M(n×m)

)
{Construct adjacent matrix}

15: W(n+m)×(n+m) = ColumnNorm(M(n+m)×(n+m)){Normalize
the adjacent matrix}

16: for i = 1 to n do {Compute similarity vector for each object}
17: ~Si = (1− c)(I − cW(n+m)×(n+m))

−1~ei
18: end for
19: for i = 1 to n do {Compute the relevance scores between speci-

fied object and its neighbors}
20: for j = 1 to k do
21: nb = Neighbor(i, j) {Get Current Neighbor}
22: Sim(i, nb) = (~Spi ,

~Spnb )/(
√

(~Spi ,
~Spi ) •

√
(~Spnb ,

~Spnb ))

23: end for
24: end for
25: for i = 1 to n do {Compute the Outlierness for each spatial

object}
26: OutScoresi = f(Simn×n, Neighbors(X, xi))
27: end for
28: RankList = RankQueue(OutScores){Rank the objects with

the similarities}
29: Or = MaxOutlier(RankList, r){Mark the outliers}

Time Complexity. To form the neighborhood, it
will take O(NlogN) for Voronoi diagram and O(logN)for
kNN (Space partitioning). When we conduct the cluster-
ing on the non-spatial attributes, the time complexity of
K-mean method is linear in all relevant parameters: it-
erations H, number of clusters M, and number of spa-
tial objects N, i.e., O(IMN). Constructing the normalized
adjacent matrix has time complexity of O(NM). Calcu-
lating the relevance vector for each spatial object costs
O(NlogN). Finally, computing the similarity between spec-
ified object and its neighbor costs O(kN2). In sum-
mary, assuming N>>M, N>>k and N>>I, the total time
complexity of RW-BP approach is O(N2)(=O(logN)(or
O(NlogN))+O(IMN)+O(NM)+O(NlogN)+ O(kN2)).

4. RANDOM WALK ON EXHAUSTIVE
COMBINATION (RW-EC)

RW approach is an efficient graph-based technique. It is
very powerful to identify the relationship among the points
once the graph is well-constructed. In this section, we con-
tinue investigating the benefits of RW techniques on spa-
tial outlier detection. Using the spatial and non-spatial at-
tributes of points, we propose another different graph, EC
(Exhaustive Combination). The operation of RW techniques
on EC constructs another different algorithm, RW-EC (Ran-
dom Walk on Exhaustive Combination) to identify the spa-
tial outlier. The main steps of RW-BP are described as
follows.

1. Construction of the weighted EC graph. In EC
graph,the vertex set composes of all the spatial objects
in the dataset and there is an edge between each pair
of spatial objects.

2. Similarity computation between spatial ob-
jects. Random walk is performed on the EC graph
to compute the similarities between any pair of the
spatial objects.

3. Neighborhood formulation and outlierness
computation. Similarly, the spatial neighbor sets are
formed by the Voronoi diagram or kNN method. And
the outlierness for each object is computed as the sim-
ilarities between itself and its neighborhood.

4. Outlier identification. Finally, the top k objects in
the ranked-outlierness list are identified as the spatial
outliers.

Actually, RW-EC and RW-BP methods are both the ap-
plication of RW techniques on the spatial outlier detection
based on different weighted graph.They share the same idea.
In the following, we introduce the different steps: modeling
of the weighted EC graph and construction of normalized
adjacent matrix (NAM).

4.1 Modeling Weighted EC graph
Given a spatial dataset, the EC graph is constructed with

the information of the spatial and non-spatial attributes.
For any pair of objects, there is one edge which connects
them and the edge value can be computed using Equa-
tion(8).

E 〈Pi, Pj〉 =
1

e|Atr(Pi)−Atr(Pj)|α
∗ 1

dist(Pi, Pj)

0 < α ≤ 2 and i 6= j (8)

Normally, dis(Pi, Pj) is decided by the Euclidean Dis-
tance. If there is a very large data set, we can consider
only construct partial edges for the sake of efficiency (like
20 % |E|).

4.2 Normalized Adjacent Matrix Construc-
tion

In RW-EC method, adjacent matrix is an n−by−n
matrix, where each entry, M(i, j), is the weight of the edge
E 〈pi, pj〉. pi and pj are two spatial objects. For example,
the first row of the adjacent matrix for the EC graph in
Figure 3 can be represented as follows (α= 1/2).

M1,1 =



0
(1/dis(2,1))

...

...

(e−(101/2)/dis(10,1))
...
...

e−(901/2)/dis(16,1))

e−(1901/2)/dis(17,1))

e−(2901/2)/dis(18,1))



T

In the adjacent matrix in RW-EC, both the row and
column nodes correspond to the spatial objects. The
NAM is an n−by−n matrix and directly constructed by
column-normalizing the adjacent matrix.

In the same way, we use Equation (2) to compute the
similarity vector for each object and then use Equation (7)
to get the final outlier scores for all spatial objects. Given
the same example, the similarities matrix and outlierness
vector computed by RW-EC method are given in Table 4
and 5.

4.3 RW-EC Algorithm



Table 4: Similarities Computation in RW-EC
10 ... 20 ... 100 200 300

10 1 ... 0.5207 ... 0.7629 0.6200 0.5363
10 0.9076 ... 0.5213 ... 0.7624 0.6204 0.5367
... ... ... ... ... ... .... ...
20 0.5207 ... 0.5213 ... 0.7924 0.6477 0.5596
20 0.5131 ... 0.5213 ... 0.7888 0.6452 0.5574
... ... .. ... ... ... .... ...

100 0.7629 ... 0.0.7924 ... 1 0.7808 0.6759
200 0.6200 ... 0.6477 ... 0.7808 1 0.9332
300 0.5363 ... 0.5596 ... 0.6759 0.9332 1

Table 5: Outlier Rank in RW-EC
Object Similarities Rank

C 0.5478 1
B 0.6337 2
A 0.7687 3
... ... ...
... 0.8756 ...
... ... ...
... 0.9180 18

RW-EC algorithm is generated in this part and its main
input parameters are illustrated in Table 3.

Algorithm 2 RW-EC SOD Approach

1: for i = 1 to n do {Construct the EC Graph and Calculate the
neighborhood}

2: for j = 1 to n do

3: E(i, j) = 1/e|Yi−Yj |
α
∗ 1/dis(Xi, Xj)

4: end for
5: Neighbors(xi) = kNN(X, xi)
6: E
7: end for
8: for i = 1 to n do {Construct the relation matrix of the EC graph}
9: for j = 1 to n do
10: M(i, j) = E(i, j)
11: end for
12: end for
13: Wn×n = ColumnNorm(Mn×n){Normalize the adjacent ma-

trix}
14: for i = 1 to n do {Compute similarity vector for each object}
15: ~Si = (1− c)(I − cWn×n)−1~ei
16: end for
17: for i = 1 to n do {Compute the relevance scores between speci-

fied object and its neighbors}
18: for j = 1 to k do
19: nb = Neighbor(i, j) {Get Current Neighbor}

20: Sim(i, nb) = (~Si, ~Snb)/(
√

(~Spi ,
~Spi ) •

√
(~Snb, ~Snb))

21: end for
22: end for
23: for i = 1 to n do {Compute the Outlierness for each spatial

object}
24: OutScores(i) = f(Simn×k, Neighbors(X, xi))
25: end for
26: RankList = RankQueue(Sim(X)){Rank the objects with the

similarities}
27: Or = MaxOutlier(RankList, r){Mark the outliers}

In RW-EC algorithm, we compute each edge value dur-
ing forming the kNN neighbors (linear search). And then,
the adjacent matrix is constructed based on the edge val-
ues. Actually, if the size of the dataset is very large, we
can only consider 20-50%|E| edges. That is, the weights of
the first 20-50 % neighbors are still decided by the spatial
and non-spatial attributes, but that of the rest edges is all
defined as 0. After normalizing the adjacent matrix, we use
the RW techniques to derive the relevance vector for each
objects on which the similarities between specified object
and its neighbors are computed using the Cosine Similarity.
Finally, ranking the outlierness help generate the top r out-
liers.

Time Complexity. To form the neighborhood, it will
take O(N2)for kNN (Linear search, which helps construct
the EC graph). Constructing the normalized adjacent ma-
trix has the time complexity of O(N). Calculating the rel-
evance vector for each spatial object costs O(NlogN). Fi-
nally, computing the similarity between specified object
and its neighbor costs O(kN2). In summary, assuming
N>>k,the total time complexity of RW-EC approach is
O(N2)(=O(N2)+O(N)+O(NlogN)+ O(kN2)).

5. EXPERIMENT RESULTS AND ANALY-
SIS

We conducted an extensive simulation and real datasets
to compare the performance among the proposed RW-BP,
RW-EC methods, and other related SOD methods proposed
in [3, 10, 15, 24, 27].

5.1 SIMULATIONS
This section studies the extensive simulations to compare

the performance between the RW based methods and other
related SOD methods. The experimental study followed the
standard statistical approach for evaluating the performance
of 7 kinds of SOD methods.
Simulation Settings.
Data Set: The simulation data were generated based on a
standard statistical model [23] with the decomposition form:

Z(s) = β + ω(s) + ε(s) (9)

where β ∼ N(0, 1), ω(s) refers to a Gaussian random field
with covariogram model C(h; θ), and ε(s) refers to measure-
ment error or white noise variation. We considered a popular
exponential covariogram model. The exponential model is
defined as

C(h; b, c) =

 b if x ≥ 0
b(1− exp(−h

c
)) if 0 < h ≤ c

0 if h > c

where h refers to the spatial distance between two sample
objects si and sj , the parameter b refers to a constant vari-
ance for each Z(s), and c refers to a valid distance range for
nontrivial dependence (or covariance). For the white noise
component, we employed the following standard model[7]:

ε(s) ∼
{
N(0, σ2

0) with probability 1− α
N(0, σ2

C) with probability α

There are three related parameters σ2
0 , σ2

C and α. σ0
2 is

the variance of a normal white noise, σ2
C is the variance

of contaminated error that generates outliers, and α is used
to control the number of outliers. Note that it is possi-
ble that the distribution N(0, σC

2) generates some normal
white noises. All true outliers must be only identified based
on standard statistical test by calculating the conditional
mean and standard deviation for each observation[23]. In
the simulations, we tested several representative settings for
each parameter, which were summarized in Table 6.

Table 6: Combination of Parameter settings
Variable Settings

N N ∈ 100, 200. Randomly generate n spatial loca-
tions si(i ∈ [1,N])in the range [0,25] × [0,25]

b,c b=5; c =5,15,25
β β1 N(0,1) and βi = 0, i = 2, ..., 5
σ0, σC σ0

2 = 2, 10;σC
2 = 20

α α = 0.05, 0.10, 0.15
K K = 5, 10



Figure 3: Outlier ROC Curve Comparision (the same setting; n =100, b=5, c=5)



Outlier detection methods: We compared our meth-
ods with the state of the art local based SOD methods,
including Z -test [24], Scatterplot [10], MoranScatterplot [3],
SLOM -test[27]and POD [15] approach. Our proposed meth-
ods are identified as RW-BP and RW-EC approach. The
implementations of all existing methods are based on their
published algorithm descriptions.

Performance metric: We tested the performance of all
methods for every combination of parameter setting in Table
6. For each specific combination, we ran the experiments
ten times and then calculated the mean of accuracy for each
method. To compare the accuracies of each method, we used
the standard ROC curves. For RW-BP approach, the non-
spatial attribute set was clustered 6 times (k=6,7,8,9,10,11,
respectively). The dumping factor c was set as 0.9 and α
was set as 2 in both RW-BP and RW-EC.

Detection Accuracy. We compared the outlier detec-
tion accuracies of different methods based on different com-
binations of parameter settings as shown in Table 6. Six
representative results are displayed in Figure 3. Obviously,
RW-EC and RW-BP have very preceding performance in-
creases. RW-based methods achieved 20-30 % improve-
ment over POD and SLOM methods, 40-50 % over Moran-
Scatterplot method and 60-70 % over Scatterplot method.
Compared with RW-EC, RW-BP is slightly more outper-
forming.

Meanwhile, Z -value test has also very impressive perfor-
mance on the simulation. Z -value is under the null hypoth-
esis stating that the data fits a normal distribution. It com-
putes the mean and standard deviation of the entire dataset
to compute the outlierness for each object. As mentioned
above, since our simulation data is just generated from stan-
dard normalized distribution, there is no doubt that Z -value
is one of the most appropriate methods for the simulation
data. Figure 3 depicts that ROC curves derived from RW-
based methods have very similar trend with that of Z -value
method. In a sense, RW based approach can accurately
detect the outliers in the dataset with normal distribution
although they don’t make such hypothesis.

When being utilized into a real dataset with unknown
distribution, Z -value may not shown such outperforming
performance since many datasets do not conform to nor-
mal distribution. By contrast, RW based technique is more
practical since it doesn’t need to assume any distribution
of the data. Its effectiveness has been shown in varieties of
real applications [9, 11, 12, 17, 18, 20, 26]. In the follow-
ing, we will demonstrate their competitive performances by
applying them into a real dataset.

5.2 Experiments on Real Dataset
In this section, we present the experimental results on

the real datasets to further demonstrate the accuracy of the
proposed RW-based approaches.

The Real Dataset: The Fair Market Rents data was
used for outlying objects identification, which we aimed to
find counties whose rental prices were very different from
counties in its neighborhood. The Fair Market Rents data
was provided by the Policy Development and Research, U.S.
Department of Housing and Urban Development (PDR-
DHUD). It included the rental prices for apartments of
different kinds varying from one-bedroom to four-bedroom
apartments in 3000+ counties of the US. The location of
each county was determined by the longitude and latitude

of its center. The neighboring counties were determined by
the kNN method.

Parameter Setting in RW-BP approach: The
dataset was clustered for 6 times (h = 6) with six differ-
ent k values: 8, 10, 12, 14, 16 and 18, respectively. The
dumping factor (c) was set to 0.9, a value which was com-
monly used by other approaches [17, 20, 26], and α was set
to 1/2.

Parameter Setting inRW-EC approach: The dump-
ing factor (c)was set to 0.9 and α was set to 1/2.

Detection of spatial outliers. We applied seven dif-
ferent algorithms to the Fair Market Rent data, including
Z-Value, Scatterplot, Moran-Scatterplot, POD, SLOM and
RW-EC, RW-BP approaches. For all the methods, k was
set to 10 to compute the neighborhoods. Table 7 depicts the
top ten outlying counties based on the one-bedroom rent in
2005.

As shown in Table 7, POD, RW-BP and RW-EC out-
perform other approaches. They identify the true outliers
(like Blaine(ID), Fairfield(CT), Summit(UT), etc) although
the outliers are not ranked in the same order. Compared
with these three methods, Z-value tends to miss some true
outliers, like ST.Mary’s(MD)(as shown in Table 8) and Fair-
Field(CT), etc.

ST. Mary’s (MD) is identified as the 8th outlier by
RW-BP. Table 8 gives the rental prices of the county and its
neighbors. As we can see, the rents of some neighbors (such
as, Calvert(1045) and Charles(1045)) are much higher and
the others(Westmoreland(496),Richmond(196), Northum-
berland(496), etc) are much lower. Intuitively, the rent
in ST.Mary’s is very different with those of its neighbors.
However, such outlying behavior cannot be detected by
Z-Value, SLOM, scatterplot and Moran scatterplot. This
is due to their intrinsic properties when identifying the
outlying behavior. For example, Z-Value identifies the
outliers by normalizing the difference between a spatial
object and the average of its spatial neighbors. Moran
scatterplot detects the spatial outliers by normalizing
the attribute values against the average values of the
corresponding neighborhood. Averaging the rents of
the neighbors neutralizes such significant differences. RW-
based approaches address this issue since they accurately
compute the similarities among spatial objects on which
the outlierness is identified. SanBenito(CA) being identified
as the 10th by RW-EC and Rockingham being identified as
the 10th by RW-BP are the same case and the information
is shown in Table 9 and 10.

RW based methods can also avoid identifying the false
outliers. As can be seen from Table 7, 80 % outliers
identified by RW-BP and RW-EC are also identified by
other approaches. Put differently, what RW based methods
identified are true outliers. On the contrary, SLOM,
Scatterplot and Moron-Scatteplot not only miss some true
outliers, but incorrectly recognize some not very outlying
points as true outliers. For example, Yellowstone(MT)
(Table 11) by SLOM approach and Dorchester(MD) (Table
12) by Moran-Scatterplot approach.

Take county Dorchester(MD) as an example, most of its
neighbors have nearer value. Therefore, it should not be
identified as a spatial outlier. It is identified as outlier by
Moran-Scatterplot approach mainly because Calvert(MD),



Table 7: Top 10 spatial outliers with single attribute detected by six different approaches
Z-Value SLOM ScatPlot M-ScaPlot POD RW-BP RW-EC

1 Nantucket(MA) Blaine(ID) KingGeorge(VA) Blaine(ID) Blaine(ID) Blaine(ID) Nantucket(MA)
2 Pitkin(CO) Teton(WY) Plymouth(MA) Teton(WY) Teton(WY) Summit(UT) Blaine(ID)
3 Summit(UT) Lubbock(TX) Blaine(ID) Elbert(CO) Summi(UT) Teton(WY) Suffolk(MA)
4 Orange(CA) Summit(UT) Caroline(VA) Surry(VA) Suffolk(MA) Suffolk(MA) Teton(WY)
5 Blaine(ID) Pennington(SD) Howard(MD) LaPaz(AZ) Coconino(AZ) Fairfield(CT) Fairfield(CT)
6 Clarke(VA) Hughes(SD) Kern(CA) Kanabec(MN) Fairfield(CT) Coconino(AZ) Summit(UT)
7 Suffolk(MA) Dane(WI) Teton(WY) Dorchester(MD) Nantucket(MA) Nantucket(MA) Mono(CA)
8 Frederick(MD) Boone(MO) Summit(UT) Sumter(FL) Dane(WI) Pitkin(CO) St.Mary’s(MD)
9 Coconino(AZ) Yellowstone(MT) SanJoaquin(CA) Blanco(TX) Pitkin(CO) Dane(WI) Coconino(AZ)
10 Ventura(CA) Codington(SD) Worcester(MA) Sussex(VA) Eagle(CO) Rockingham(NH) SanBenito(CA)

Table 8: ST.Mary’s county
CountyName Rent Latitude Longitude

St.Mary’s(MD) 702 -76.5976 38.2939
Calvert(MD) 1045 -76.5177 38.5061

Westmoreland(VA) 496 -76.8321 38.1556
Richmond(VA) 496 -76.733 37.9266
Charles(MD) 1045 -76.9723 38.5221

Northumberland(VA) 496 -76.3721 37.8674
Essex(VA) 496 -76.9066 37.9162
King(VA) 611 -77.1525 38.2918

Lancaster(VA) 496 -76.4502 37.6974
Dorchester(MD) 451 -75.9839 38.5466

King(VA) 496 -76.8984 37.7005

Table 9: SanBenito county
CountyName Rent Latitude Longitude

SanBenito(CA) 824 -121.2888 36.7458
Monterey(CA) 931 -121.529 36.4507

Santa(CA) 1111 -121.9738 37.0023
Merced(CA) 536 -120.6741 37.2458
Santa(CA) 1107 -121.9128 37.3065

Stanislaus(CA) 645 -120.9588 37.6138
San(CA) 635 -121.2813 37.946

Alameda(CA) 1132 -122.0962 37.7167
Madera(CA) 556 -120.0324 37.0351

San(CA) 1305 -122.3319 37.531
Fresno(CA) 556 -119.9035 36.6384

one of its neighbors, has higher rent {1045} and significantly
raises the average rent of the neighborhood. Random walk
based method can avoid such problem since it considers not
only the relationship with neighborhood when generating
the relevance vectors, but the non-spatial attribute distri-
bution of the whole dataset.

Another important issue of existing approaches is the way of
identifying the outlierness. They compute the inconsisten-
cies between each object and its neighbors without consid-
ering the values of identified object and its neighbors, which
may lead to an inaccurate ranking list. The typical method
is POD approach which first constructs a graph by assign-
ing the non-spatial attribute differences as edge weights, and
then continuously cuts high-weight edges to identify isolated
points. Figure 4 depicts such issue by comparing two county
Eagle(CO) and St.Mary’s(MD). Actually, St.Mary’s(MD)
is ranked as 17th by POD. If we evaluate their outlier-
nesses only by considering the direct differences between
the detected object and its neighbors as POD method does,
county Eagle will have a little more higher value than
county St.Mary’s since [Diff(Eagle) = Avg(117 + 366 +
262 + 199 + 295 + 250) = 256] > [Diff(St.Mary′s) =
Avg(343 + 206 + 206 + 206 + 206 + 191) = 226]. How-
ever, intuitively, county St.Mary’s is more outlying since
most non-spatial attributes of itself and its neighbors are
not high ([400, 750]). By contrast, those of Eagle is higher
([600, 950]). The difference around 200 makes St.Mary’s
more outlying and it should be ranked higher than county
Eagle. This issue may also result in identifying false out-
liers sometimes. In this regard, RW based approaches do

Table 10: Rockingham county
CountyName Rent Latitude Longitude

Rockingham(NH) 750 -71.0776 42.9629
Strafford(NH) 648 -70.9761 43.2583

Essex(MA) 878 -70.9708 42.6355
Hillsborough(NH) 605 -71.5827 42.8956
Middlesex(MA) 884 -71.2756 42.4591

Suffolk(MA) 1120 -71.0735 42.3349
York(ME) 577 -70.6632 43.4458

Merrimack(NH) 624 -71.6373 43.2777
Belknap(NH) 592 -71.4361 43.5152
Norfolk(MA) 914 -71.1544 42.1992
Carroll(NH) 564 -71.1816 43.8226

Table 11: Yellowstone county
CountyName Rent Latitude Longitude

Yellowstone(MT) 452 -108.4607 45.8165
Musselshell(MT) 398 -108.3922 46.5546

Carbon(MT) 405 -109.0876 45.3132
Golden(MT) 398 -109.1253 46.3904

Stillwater(MT) 398 -109.3663 45.6301
Big(MT) 398 -107.4838 45.5101

Petroleum(MT) 398 -108.2901 47.0005
Treasure(MT) 398 -107.2915 46.2544

Big(MT) 417 -108.0671 44.5374
Park(MT) 428 -108.999 44.569
Sweet(MT) 398 -109.9178 45.8554

better than other methods, including POD. This is because
they utilize the Cosine similarity to identifying the outlier-
ness, which means it takes the relationship between these
two points and all other points into consideration. Actually,
RW-BP does even better than RW-EC since RW-BP also
integrates the relationship between any specified object and
the clusters into the construction of adjacent matrix before
deriving the relevance vector. Although POD performs as
well as RW-BP and RW-EC in the real data, the worse re-
sults influenced by such issue have been demonstrated by
the simulations.

6. CONCLUSION
In this paper, we propose two spatial outlier detection

approaches based on RW techniques: RW-BP and RW-EC
approaches. In these methods, two kinds of weighted graphs,
a Bipartite graph and an Exhaustive combination, are con-
structed based on the spatial and/or non-spatial attributes
of the spatial objects in the dataset. Secondly, RW tech-
niques are utilized on the graphs to compute the outlierness
for each point. The top k objects with higher outlierness are
recognized as outliers. The proposed algorithms have three
major advantages compared with the existing SOD methods:
capable of avoiding the masking and swamping problems and
detecting identifying more correct ranking lists. The exper-
iments conducted on the synthetic and real datasets demon-
strated the RW based methods significantly outperformed
other approaches.



Table 12: Dorchester county
CountyName Rent Latitude Longitude

Dorchester(MD) 451 -75.9839 38.5466
Talbot(MD) 575 -76.1138 38.769

Caroline(MD) 513 -75.8308 38.8752
Wicomico(MD) 576 -75.5945 38.3773
Somerset(MD) 460 -75.7688 38.1057

Queen(MD) 750 -76.0995 39.0478
Calvert(MD) 1045 -76.5177 38.5061
Sussex(DE) 548 -75.3423 38.6514

St.Mary’s(MD) 702 -76.5976 38.2939
Kent(DE) 598 -75.5603 39.0927
Kent(MD) 558 -76.0537 39.2605

Figure 4: Example of two spatial objects
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