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Abstract— Geographic feature expansion is a common task in 
Geographic Information Systems (GIS). Identifying and integrating 
geographic features is a challenging task since many of their 
spatial and non-spatial properties are described in different sources. 
We tackle this expansion problem by defining semantic footprints 
as a measure of similarity among features. Furthermore, we 
propose three quantifiers of semantic similarity: spatial, 
dimensional, and ontological affinity. We show how these measures 
dilute, concentrate, harden, or concede the feature space, and 
provide useful insights into the semantic relationships of the spatial 
entities.  Experiments demonstrate the effectiveness of our 
approach in semantically associating the most appropriate spatial 
features.  
 
Keywords-spatial; geographic information system, spatial 
database, system integration, semantic reasoning 

I.  INTRODUCTION 
For Geographic Information Systems (GIS), one major 

challenge has been interoperability: the capacity for 
understanding different data sources in spite of syntactic and 
semantic differences in language. Several organizations have 
attempted to mitigate this problem with standardized 
specifications. The Open Geospatial Consortium (OGC), for 
instance, has proposed a set of frameworks in an attempt to 
bring uniformity to spatial data processing [6]. In general, 
these frameworks use standard grammars such as Extensible 
Markup Language (XML) for data transport. Google and 
Yahoo! often use KML (Keyhole Markup Language) in their 
mapping APIs. Government agencies often use Geography 
Markup Language (GML) for data exchange [9]. One 
advantage of XML is its hierarchical structure which lends 
itself well to object orientation that is so prevalent in modern 
computing.  

Consider the two GML examples depicted in Figure 1: 
Data Source 1 describes a geometryProperty named Leon Dept 
of Housing, whereas Data Source 2 describes another 
geometric object called Hope Apartments. What is the 
relationship between these two geographic features/objects? A 
quick look at their attributes provides some hints: they are 
within close proximity of each other (lines 1-3), both are urban 
structures (line 6), and one object occupies similar but less area 
than the other (lines 7-9). Based on these observations, the 
following possibilities arise: (1) Hope Apartments is part of the 
Leon Dept of Housing; (2) They are the same entity since Leon 
Dept of Housing was renamed Hope Apartments and moved 
across the street from its original location into a smaller 

facility; (3) They are two independent facilities that are 
coincidentally co-located. Without further contextual 
considerations, only domain experts can make a complete and 
necessary determination of the relationship between these two 
geographic features.  

 
                        Figure 1. Example GML Data Sources 

 
The discussion above illustrates the challenges in reasoning 

on disparate data sets. Work in this field of research proposes a 
wide variety of approaches to handle data disparity: value 
comparisons, word distances, disambiguation, look-ups on 
gazetteers, and others  that at times introduce complexity to the 
analysis [19]. Our work aims to reduce this complexity by 
proposing a semantic framework which exploits spatial 
relationships built into the geographic features. The framework 
helps elicit hidden and useful semantic information about the 
geographic features and their neighbors. Our goal is not only to 
determine possible matches, but also to determine whether 
geographic features can be deemed complementary (or 
irrelevant) to one another. We would like to determine if Leon 
Dept of Housing and Hope Apartments are the same building or 
just similar facilities.  We are also interested in measuring their 
physical proximity and then combine their associated 
descriptions so that a higher authority (i.e., the domain expert) 
may make a final decision based on his/her own constraints.  

We propose a method of semantic footprints based on three 
relational concepts: the spatial affinity within the data space; 
the dimensional affinity within the XML hierarchy; and the 
ontological similarity based on the feature’s class label. In 
addition, we describe an approach that utilizes the above 
measures to associate and link disparate geographic features. 
Because the number of geographic features is potentially large, 
we devise the concepts of dilution, hardness, concentration, and 
concession as a means to efficiently and effectively perform 
semantic analysis on the data. These concepts provide criteria 
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<gm l:coordina t es>
-56.3159,
52.5168
</gm l:coordina t es>
</gm l:Point >
</ogr:geom et ry Propert y >
<ogr:bu ilding>
<ogr:A REA >
5.000
</ogr:A REA >
<ogr:PERIMET ER>
25.010
</ogr:PERIMET ER>
<ogr:NA ME>
Leon Dept  of Hou sing
</ogr:NA ME>
<on t : l iv in g spa ce/>
<ogr:LA T >
543831
</ogr:LA T >
<ogr:LONG>
56100

<gm l:coordina t es>
-56.3101,
52.5199
</gm l:coordina t es>
</gm l:Point >
</ogr:geom et ry Propert y >
<ogr:bu ilding>
<ogr:A REA >
3.932
</ogr:A REA >
<ogr:PERIMET ER>
22.882
</ogr:PERIMET ER>
<ogr:NA ME>
Hope A pa rt m ent s
</ogr:NA ME>
<on t : a pa rt m ent />
<ogr:LA T >
523300
</ogr:LA T >
<ogr:LONG>
52449

            Data Source 1                      Data Source 2
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to evaluate the ongoing progress of our analysis and help 
answer the following questions: are geographic features/objects 
being found in close proximity to the initial geographic feature 
query? If so, do these geographic features add sufficient 
relevant information to the initial geographic feature query? 
Here, relevance is defined as a general notion that is a function 
of the spatial, non-spatial, and ontological properties of the data 
objects. If the user is initially seeking only k number of 
features, then are the current ones sufficiently relevant or 
should the process continue to search for others that may be 
more relevant?  

This paper is organized as follows: In Section II, we give 
related approaches to feature reconciliation and object 
matching. Section III gives the general problem statement, 
expands on our theoretical approach to Semantic Footprints, 
and elaborates on a semantic analysis approach. Experiments 
are described in Section IV and conclusion is provided in 
Section V. 

II. RELATED WORK 
Current literature in semantic information processing can be 

classified into one of the following categories: 
Schema Matching: Rahm et al. proposed the decomposition 
of complex schemas into simpler sets [1,11]. Doan et al. used 
a set of semantic mappings to learn new mappings using 
machine learning techniques [5]. Islam et al. proposed a 
method to determine the semantic similarity of words and 
another for word segmentation [3]. We depart from the above 
works by considering the spatial characteristics of objects, 
which is not in the scope of any of the above works.  
Object Consolidation: The difficulty of combining objects 
described in different sources is addressed by Beeri et al [8]. 
They extend the one-sided nearest neighbor join into mutually 
nearest neighbors. As described by Bleiholder et al., data 
fusion can also be performed at a query language level [10]. 
Seghal et al. proposed entity resolution primarily as a function 
of locations [12]. We differ from these approaches by 
extending our work beyond object fusion and propose methods 
to evaluate semantic relationships within the attribute and 
ontological spaces.  
Ensemble Reasoning: This technique combines both schema 
matching and object consolidation. They tend to be more 
effective in applications in which prior knowledge of the 
schemas is available. Fazzinga et al. proposed a query 
language to combine partial answers from different sources on 
the basis of limited knowledge about the local schemas in 
XML documents [2]. Leitao et al. proposed a method to detect 
duplicate objects in XML data using Bayesian networks [4]. A 
schema matching approach, Protoplasm, is an aggregation of 
several existing methods to reconcile named entities [7]. 
Unlike our proposed framework, these studies do not consider 
the spatial component of an object and rely primarily on non-
spatial textual content. 
     Table 1 provides a summarized view of the literature in   
semantic feature analysis. The last row gives a snapshot of 
how our work differs from existing approaches. Our proposed 
framework is unique in several ways. First, we take a 
qualitative view of feature expansion by avoiding explicit 

comparisons on data values. Second, we extend the notion of 
spatial co-location to include the most semantically relevant 
nearby features which are not necessarily the closest in 
geographic space. For example, if a source describes several  
buildings and water bodies, nearby houses are possibly more 
relevant to a query originating from a house than a water body. 
Third, our framework is oriented towards data sources of 
similar application domains. As an illustration, consider the 
marketing realm. In its context, nearby stores and malls would 
most likely provide more relevant information than, for 
instance, weather data. We propose spatial proximity, 
dimensional affinity, and ontological similarity to improve the 
efficiency of our semantic analysis by limiting the number of 
geographic features or objects under consideration. 

TABLE 1. Summary of Semantic Information Processing Approaches 

 

III. PROBLEM DEFINITION: SPATIAL FEATURE EXPANSION  
Given: 
• Set D = {d1,…,di,,…,dn} where di is a semi-structured 

hierarchical data source (e.g., GML file). 
• Geographic feature set fgeo (di) = {g1,…,gj,,…,gm} where the 

gj’s are all the geographic features or objects of data source 
di and m = |di| is the number of geographic features in di. 

• Set G = Ui=1...n fgeo (di) is the union of all geographic features 
in all data sources d1…dn. 

• Attribute set fatt (gj) = {a1,…,ak,,…,aq} where the ak‘s are all 
element/attribute types of the geographic feature gj. 

 
Objectives: 
1. From a starting geographic feature gs (initial query), find the 

set Gclose(gs) = {gj | gj,ϵ G and dualÅff (gs , gj) ≥  ξclose} where 
dualÅff  is a measure of the degree of spatial closeness and  
ξclose is a user-defined threshold. 

2. From a starting geographic feature gs, find the set   Gdim(gs ) 
= {gj  |  gj,ϵ  Gclose(gs) and dimÅff (gs , gj) ≥  ξdim} where Gdim 
is a measure of attribute similarity and ξdim is a threshold 
based on the ranking order of dimÅff (gs , gj). 

3. From a starting geographic feature gs, find the set Gont (gs )= 
{gj  |  gj,ϵ  Gclose(gs)  and ontÅff (gs , gj) ≥  ξont} where Gont is a 
measure of ontological similarity and ξont is a threshold 
based on the ranking order of ontÅff (gs , gj). 

4. From a starting geographic feature gs, find an ordered set 
Gfinal(gs)= {gj  |  gj,ϵ  Gclose(gs) and (i < j → Semφ (gs , gi) ≥ 
Semφ (gs , gj) } where Semφ  is a measure of similarity based 
on dimÅff  and ontÅff.     

A. Concept of Semantic Footprints 
Hierarchical structures encapsulate a rich set of relationships 
not always visible to the naked eye. Names do not always 
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match, locations are ambiguous, and characteristics may range 
wildly. While some systems attempt to match features by 
introspecting their properties [13], we avoid exhaustive 
attribute comparisons as they tend to increase computational 
complexity when many geographic features are present. To 
establish an efficient and effective representation of semantic 
relationships, we define semantic footprints and their 
components in the subsections below. 

B. Spatial Affinity Within the Data Space 
Geographic features are commonly described in terms of 

their locations and hence, we give our first definition for 
describing spatial closeness:  

 
Definition 1: Geographic feature gi is said to be locally-fit 
(LF) in data source di if its minimum bounding rectangle 
(MBR) is explicitly provided in the data source. 
 
      For example, given five locally-fit geographic features 
g1…g5 residing in data sources d1…d5, respectively, we 
investigate whether g1, the starting query feature, has any 
spatial significance to g2…g5. We give the spatial significance, 
namely dual affinity, by:  

( ) ( )
( ) ( )jiji

jiji
j ,ggMinDist,ggMaxDist

,ggMinDist,ggDist
 - ggDualÅff

−
−

= 1),( i
        (1) 

     Equation 1 defines dual affinity as the degree of spatial 
closeness between two features. The Dist function can be 
generalized to any appropriate spatial distance, for example, 
the geodesic distance for latitudinal and longitudinal 
coordinates. Other distances such as Euclidean or Manhattan 
distances can also be used. Furthermore, the choice of 
locations of spatial extents can be approximated by the 
centroids of their maximum bounding rectangles (MBR), 
which is an acceptable approach in many types of application. 
For example, Dist(gi, gj) may use the centroids of gi‘s and gj‘s 
MBRs as their representative locations. The functions MinDist 
and MaxDist represent the shortest and longest possible 
distances between two geographic features respectively.   

 
Figure 2. MinDist and MaxDist for Two MBRs 

 
For example, in Figure 2 the geographic features are described 
by their MBRs, therefore the MaxDist between any two 
objects is the length of the segment AB and MinDist is zero 
since the MBRs overlap. From a spatial point of view, two 
features have maximal affinity when their locations are the 
same, i.e., dualÅff=1. Hence, to achieve Objective 1, Gclose(gs) 
can be determined by collecting all features whose dualÅff  is 
higher than a given ξclose. We build upon DualÅff to define the 
spatial footprint of a geographic feature:  
   
Definition 2: The footprint φ of a geographic feature gs is 
given by the set of all attributes of all geographic features in 
Gclose(gs).  

The footprint represents the maximal collection of attributes 
types within the set of Gclose(gs). This maximal set will impose 
a bound on the computational complexity of the proceeding 
semantic operations. 

C. Dimensional Affinity in the Data Space 
One attractive aspect of XML is its ability to define class 

relation in a hierarchical fashion. This idea gives rise to 
dimensional affinity and applies to all geographic features, 
whether they are locally-fit or do not have an explicit location. 
In these cases, we observe the dimensions of the feature (its 
attributes/elements), while relying on the location of its parent. 
In Figures 3 and 4, the five features (the circles) are within 
some MBR not of their own, indicated by the encompassing 
squares covering an area larger than the features themselves.                 
In Figure 3, only the location of the parent is available 
(locally-displaced feature), and Figure 4 has no location but 
the bounds of the data set (globally-displaced). While these 
two cases do not have an explicit location, they can still be 
useful to establish a semantic footprint.  

Figure 3. A set of 5 locally-displaced features in 5 data sets

Figure 4.  A set of 5 globally-displaced features in 5 data sets 
 

      Dimensional affinity gives the ability to measure how 
similar two geographic features are in relation to their 
elements and attributes. We define dimensional affinity as 
follows:  

Հ݂݂݉݅ܦ ሺ݃௦, ݃ሻ ൌ |ሺ ݂௧௧ሺ݃௦ሻ ת ݂௧௧ ሺ݃ሻ||߮ሺ݃௦ሻ|  

where gs, gk є Gclose(gs). 

 
(3) 

 
DimÅff gives the ratio of common attributes between two 
geographic features, gs and gk, in relation to its total number of 
attributes, i.e., its footprint. Hence, the dimensional affinity is 
dependent upon the spatial proximity of features in Gclose(gs) 
and attribute types they share. If Leon and Stellar together 
have 22 attributes, but only 5 in common, then 
DimÅff(Leon,Stellar) = 5/22= 0.23 and if the ξdim, is met, the 
geographic features can later be utilized in the analysis of the 
complete semantic footprint. Objective 2 is then achieved by 
forming Gdim(gs ) as the rank ordered set of all geographic 
features with dimensional affinity  ≥ ξdim. 

D. Ontological Class Affinity 
Ontologies represent a classification scheme to group 

similar objects and are commonly used in a wide range of 
fields, from medicine  to the data sciences [14,15]. We show a 
method to compute the hierarchical ontological distance 
among features as the third component of our semantic 

( ) ( )( )∪ |)(|..1
 

sclose
gi iatts G

gfg
=

=ϕ   where  gi є Gclose(gs)          (2) 
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footprint. We define the class distance between two nodes in a 
common hierarchical ontology as follows [18]:  

Class_d(gs,gk)  = d(LCA(gs, gk), gs) + d(LCA(gs, gk), gs)    (4) 
 

where d(gi, gj) is the edge length between the classes of gi and 
gj  and LCA(gi, gj) is the Lowest Common Ancestor defined as 
the farthest node from the root that is the most immediate 
ancestor of both gi and gj. From the class distance measure 
above, we define the ontological class affinity OntÅff as 
follows: 
 
Definition 3:  The ontological class affinity  OntÅff(gs, gk)  is 
the degree of similarity between the classes of gs and gk from a 
common hierarchical ontology:   ܱ݊ݐÅ݂݂ሺ݃௦, ݃ሻ ൌ  11  Classୢሺ౩,ౡሻ (5) 

Hence, if geographic features gs and gk are of the same 
class, OntÅff(gs,gk) = 1. For example, if Leon is classified as 
an “apartment” and Stellar is a “house”, assuming these two 
classes are two hops apart in the ontology, then their ܱ݊ݐÅ݂݂ ൌ ଵଵାଶ ൌ 0.333. Objective 3 can then be achieved by 
creating Gont (gs ) as the sorted set of all geographic features 
with ontological class affinity ≥ ξont.  

Combining the measures of OntÅff and DimÅff, we 
propose semantic footprint Semφ as a total measure of the 
semantic similarity between two geographic features of 
Gclose(gs). Formally, semantic footprint Semφ is defined as 
follows: 

 
Definition 4:  The semantic footprint between two geographic 
features gs and gk is given by: ܵ݁݉߮ሺ݃௦, ݃ሻ ൌ ,Å݂݂ሺ݃௦݉݅ܦ ݃ሻ  ,Å݂݂ሺ݃௦ݐܱ݊ ݃ሻ2  (6) 

Because OntÅff and DimÅff apply to elements of Gclose, 
Semφ inherits the spatial similarity constraint (via DualÅff) of 
the geographic features. Hence, Semφ provides a similarity 
measure between geographic features based on spatial, 
dimensional, and ontological affinities. From our example in 
Figure 1, the semantic footprint between Leon and Stellar is 
Semφ(Leon,Stellar)= (0.23 + .33)/2 = 0.28. Equation 6 helps 
us achieve Objective 4 by establishing a ranking criterion for 
Gfinal (gs) as the set of all geographic features starting from gs. 

E. Progressive Dilution, Hardness, Concentration, and 
Concession 
Using the concepts of our approach, we present a method 

to evaluate the progression of the relevant features from a 
starting geographic feature gs as more geographic features g1… 
gm become available for processing. The goal is to observe the 
changes in semantic footprint as more geographic features are 
analyzed, and determine to which extent DimÅff and OntÅff 
are contributing to the semantic footprint Semφ. For this 
purpose, we present four definitions also referred to as density 
sets: 

Definition 5: The set Gdilution(gs) = {gj | gj,ϵ  Gclose(gs) and 
DimÅff(gs,gj) ≤  tdim and Semφ(gs,gj) ≥  ξsem}, where ξsem is a 

user-defined threshold for high semantic footprint and tdim is a 
user-defined threshold that establishes a low level for 
dimensional affinity.  

      Dilution is the set of features with high semantic footprint, 
but low dimensional affinity. It is indicative of features that do 
not share many attributes.  In such cases, a high Semφ is 
mostly dependent on OntÅff, the second component of the 
semantic measure. 

Definition 6: The set Ghardness(gs) = {gj | gj,ϵ  Gclose(gs) and 
OntÅff(gs,gj) ≤  tont and Semφ(gs,gj) ≥  ξsem}, where ξsem is a 
user-defined threshold for high semantic footprint and tdim is a 
user-defined  threshold that establishes a low level for 
ontological affinity.  

       Hardness defines a set of features with high semantic 
footprint, but low ontological affinity. When the features are 
not similarly-typed (i.e., far in the ontological classification), a 
high Semφ must rely primarily on DimÅff.  

Definition 7: The set Gconcentration(gs) = {gj | gj,ϵ Gclose(gs) and 
DimÅff(gs,gj) > tdim and OntÅff(gs,gj) > tont and Semφ(gs,gj) ≥  
ξsem}, where ξsem is a user-defined threshold for high semantic 
footprint and tdim, tont are thresholds for minimum values of  
for dimensional and ontological affinities respectively. 

Concentration is the set of features that yield a high 
semantic footprint from both a high number of shared 
attributes and close ontological proximity. It balances a mix of 
geographic features that are not only similar in attribute 
commonality, but also similar in attribute types. 

Definition 8: The set Gconcession(gs) = {gj | gj,ϵ Gclose(gs) and gj ב 
(Gconcentration(gs )  U  Gdilution(gs )  U  Ghardness(gs ))  

Concession is the set of features that cannot be classified 
as any of the types in Definitions 5-7. Practically, they 
represent geographic features with low affinity in general, 
both dimensional, ontological, and as a consequence, have a 
low semantic footprint.  

Thresholds tont, tdim, and ξsem can be manipulated to 
accommodate the application requirements.  For instance, if 
dimensional affinity (i.e., common attributes) is more 
desirable than type matching (i.e., ontological proximity), the 
application should explore a hardness set (and vice-versa for a 
dilution set).  When both factors are important, a concentration 
set provides a more suitable mix. It is also possible to provide 
an initial and automatic determination of tont, tdim, and ξsem by 
using the centroid of the semantic footprints of the geographic 
features in Gfinal.  

Algorithm 1 shows a method that uses Definitions 5, 6, 7, 
and 8. First, the semantic components are calculated in Lines 3 
and 4, and combined as the total semantic footprint in Line 5.  
Lines 6-12 apply simple logic to determine if the current 
geographic feature falls under dilution, hardness, 
concentration, or concession. Each feature is stored into its 
appropriate set for later examination. Complexity analysis of 
the concepts discussed above can be found in the extended 
version of the paper [20]. 
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IV. EXPERIMENTS 
Given a starting geographic feature, our goal is to find other 

related features within one or more data sources. Our datasets 
are composed of features of the cities of Frankfurt, 
Leverkusen, and Konigswinter [16]. For the ontology, we used 
NASA’s SWEET [17], which we extended with urban 
structure concepts of home, apartment, hotel, building, 
warehouse, and construction.  

Our first step is to extract features from the first available 
data source and calculate their semantic footprint (DualÅff, 
DimÅff, OntÅff). Subsequently, regions of dilution, hardness, 
concentration, and concession can be identified, allowing their 
respective sets to be populated according to Algorithm 1. 

In terms of measurement, we are interested in: (a) obtaining 
Gfinal(gs) when different parameters  are considered; (b) 
identifying sets of dilution, hardness,  concentration, and 
concession related to the starting geographic feature.  

Table 2.  Evaluation Queries 

 
Table 2 summarizes three representative queries selected 

from the experiments. We desire to find features located 
within ξclose =100 km of the starting geographic feature 
(gs=Geb537) that are considered “most related” in terms of 
their semantic footprint. The features in this data set have 
anywhere from 12 to 40 attributes (or elements) and have a 
variation of labels in the ontology (e.g., house, apartment, 
construction, warehouse, etc…). 
     High Overall Semantic Footprint (Semφ): Query I sets the 
starting geographic feature at Geb537 with 30 total attributes, 
and labeled as a “house”. For the target features, the number 
of shared attributes varies considerably from 5 to 30. The 
ontological distance varies from zero hops (i.e., Class_d) for 
one feature and all the way to 25 for others. Figure 5 gives a 
visual representation of the top 10 elements in Gfinal(Geb537) 
with arrows pointing in the direction of the 10 geographic 
features and labels for the semantic footprint values. 
Interestingly, the most related geographic features are not 
necessarily the closest ones. In fact, Figure 5 shows that even 
though Geb537 is surrounded by nearby buildings, its 
footprint is composed of several farther away buildings. 

High Dimensional Affinity (DimÅff):  Query II targets the 
same geographic starting point considering 20 total attributes. 
Of those, 10 are shared across all features. This configuration 
has the effect of setting an equal dimensional affinity across 
the data set [20]. Elements are as close as one hop apart in the 
ontological hierarchy, and as far as 29 hops away. Figure 5 

shows the top 10 most related elements, most of which have 
high dimensional affinity.  

Figure 5.  Top 10 Highest Semantic Footprint Features related to Geb537
     High Ontological Affinity (OntÅff): Still using Geb537 as 
gs, Query III operates on features that share many attributes 
(i.e., high dimensional affinity on 18 shared attributes). The 
ontological distance, in addition, is low for most elements, 
varying from 10 to 38 hops. While ontological affinity is very 
low, the semantic footprint remains somewhat constant at ~ 
0.6 since dimensional affinity is the same across the data set.  

 
A. Dilution, Hardness, Concentration, and Concession Sets 
      Using Algorithm 1, we generate Table 3 to list how 
variations in DimÅff and OntÅff create sets of dilution, 
hardness, concentration, and concession.  We set both tdim and 
tont  at 0.3 to designate our minimum cutoff requirements for 
dimensional and ontological affinity. If the domain expert has 
a strict demand for both attribute and type similarity, Table 3 
identifies four features in Gconcentration(Geb537) that are 
comprised of those characteristics. The 10 features in Gdilution 
(Geb537) group elements with high ontological/low 
dimensional affinity, whereas the 7 features in Ghardness 
(Geb537) provide the converse. Figure 6 gives a plot of the 
geographic features obtained in Query I. The three cases above 
underscore the importance of exploratory tasks in semantic 
data analysis. Understanding how features compare with and 
complement one another promotes good information 
extraction and knowledge discovery.   

Table 3.   Feature sets in Gdim(gs) and Gont(gs) for Geb537 

 
Figure 6 – Sets of Concentration, Dilution, Hardness, and Concession 

B. Discussion 
From a mathematical perspective, semantic footprint is a 

measure of similarity between two geographic features. But in 
practice, we would like to understand its qualitative aspect, 
i.e., how similar the features are or how related they may be 
according to their natural characteristics.  Looking closer at 
Query I (Table 2) and according to Geb537’s semantic 
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footprint (Figure 5), its most related element is Geb855: they 
share many attributes in addition to being the same type of 
feature in the ontology (“houses”). For example, their shared 
attributes include appearance, rgbTexture, image, 
ambientIntensity, and diffuseColor, among others. This 
scenario depicts an ideal case where semantic footprint is high 
from both a dimensional and an ontological perspective. As 
the number of shared elements decreases, so does the 
dimensional affinity values. Several elements still maintain a 
high semantic footprint due to the fairly high dimensional 
affinity. Geb645 finds a feature much farther in the ontological 
space (Class_d=25), causing the semantic footprint to drop as 
compared to others. These results force the semantic footprint 
to fluctuate as expected and demonstrate that semantic 
footprint is as an effective measure of relatedness. For further 
details on the experiment results, please see the extended 
version of this paper [20]. 

For geographic features with far-apart types, the behavior 
of the semantic footprint can have a different connotation. For 
instance, Geb537 and Geb645 are 25 hops apart. The traversal 
path goes through “house private residence living 
Space …,…  construction  building  private  
warehouse”. The framework punishes the relationship 
between these two elements as possibly “unrelated” due to the 
different nature between house and warehouse. In spite of that, 
the semantic footprint is still kept high to reward their high 
number of shared attributes. The implication of this behavior 
reflects possible real-life scenarios whether the domain expert 
is looking for a house-house or a house-warehouse correlation. 
The semantic footprint is flexible enough to allow these 
adjustments to occur without dismissing one or the other as 
unrelated.  In terms of density sets, the framework provides 
interesting insights. First, geographic features originating in 
the same data set tend to be highly concentrated, i.e., their 
semantic footprint is fairly balanced from both an attribute and 
ontology perspective. While this is not exactly surprising, 
variations in application domain often give rise to diluted and 
hardened sets even when the sources are the same or different, 
but from the same provider. We observed this behavior after 
processing geographic features (buildings in general) from 
Koenigswinter and Leverkusen. Some of the data sources 
come in different levels of detail which are hard to compare 
due to the differences in attributes, but are common in 
CityGML format. In addition, attempts to relate applications 
of different domains (e.g., marketing and health) may easily 
yield concession sets, where the semantic footprint suffers 
significantly from a lack of common attributes and the fact 
that the same ontology may not always be the same for each 
source. In our study, we do not propose ontology merging or 
disambiguation, as it is outside of our scope. However, our 
framework still operates correctly by placing a lower premium 
on geographic features for which no common ontology is 
applied. 

V. CONCLUSION 
In this study, we approach spatial data analysis from an 
exploratory perspective. Our work proposes semantic 

footprints as a framework for geographic feature expansion 
based on three concepts: spatial, dimensional, and ontological 
affinity. These concepts reason over attributes and types to 
uncover the most related geographic features to a starting 
point. In addition, they show the dilution, concentration, 
hardness, and concession of the feature space.  Future work 
will include temporal analysis as well as region-based 
semantic processing of geographic features.  
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