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Abstract—Spatial kriging is a widely used predictive model
for spatial datasets. In spatial kriging model, the observations
are assumed to be Gaussian for computational convenience.
However, its predictive accuracy could be significantly compro-
mised if the observations are contaminated by outliers. This
deficiency can be systematically addressed by increasing the
robustness of spatial kriging model using heavy tailed distribu-
tions, such as the Huber, Laplace, and Student’s t distributions.
This paper presents a novel Robust and Reduced Rank Spatial
Kriging Model (R3-SKM), which is resilient to the influences
of outliers and allows for fast spatial inference. Furthermore,
three effective and efficient algorithms are proposed based
on R3-SKM framework that can perform robust parameter
estimation, spatial prediction, and spatial outlier detection with
a linear-order time complexity. Extensive experiments on both
simulated and real data sets demonstrated the robustness and
efficiency of our proposed techniques.

Keywords-Robust Estimation; Laplace Approximation; Out-
lier Detection;

I. INTRODUCTION

With the increasing public sensitivity and concern on

environmental issues, as well as the development of remote

sensing technologies, huge amounts of spatial data have been

collected from location based social network applications

to scientific data, and the volume keeps increasing at fast

pace over recent decades. As one of the major research

issues, the prediction of spatial data has attracted signifi-

cant considerations. Illustrative applications include climate

prediction, environmental monitoring, molecular dynamical

pattern mining, and infectious disease outbreak prediction.

Spatial prediction is the process of estimating the values

of a target quantity at unobserved locations. Given the large

volume of spatial data, it is computationally challenging to

apply traditional prediction methods in either an allowable

memory space limit or an acceptable time limit, even in

supercomputing environments. Efficient prediction for large

spatial data has therefore become one of the emerging chal-

lenges in data mining fields. Most existing spatial prediction

methods have the time complexity of O(n3). Recently, a

number of approximate methods have been proposed to

tackle the “Big N” problem using different techniques, such

as kernel convolutions [1], low rank basis functions or

splines [2], moving averages, likelihood approximation [3],

and Markov random field [4]. Recent advance by Banerjee

et al. [5] proposed a reduce rank spatial kriging approach

that projects the spatial process onto a subspace generated

by realizations of the original process at a specific set of

locations named as knots. All these methods assume that

the observations follow a multivariate Gaussian distribution.

However, a well-known limitation with the above Gaus-

sian observation model is non-robustness. The estimations

of the mean and variance-covariance matrices are sensitive

to outliers due to the well-known masking and swamping

effects [6]. In addition to the impacts on parameters es-

timation, outliers also significantly reduce the accuracy of

spatial predictions. For example, a single corrupted obser-

vation will deviate the posterior expectation of predictions

at unobserved locations far away from the level described

by the other observations. As demonstrated by Figure 1, the

kriging prediction result is heavily distorted by the existence

of 5 outliers (in the dark red areas in Figure 1(b)). This

limitation can be properly addressed by considering robust

statistics techniques.

(a) Original Data (b) Contaminated Data

Figure 1: Impacts of spatial outliers on prediction

Currently, a number of robust methods have been pro-

posed for different learning problems, including multivariate

regression, Kalman filtering and smoothing, clustering, and

independent component analysis. The majority of these

methods can be summarized by using a probabilistic frame-

work [6] in which the measurement error is modeled by a

heavy tailed distribution, such as the Huber, Laplace, Stu-

dent’s t, and Cauchy distributions, instead of the traditional

Gaussian distribution. The prediction problem can then be

reformulated as a Maximum-A-Posterior (MAP) prediction

problem conditional on observations. However, employing

heavy tailed distributions makes the prediction process ana-

lytically intractable. Although stochastic simulation methods
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have been applied to estimate an approximate posterior

distribution, for example, via MCMC or particle filtering [7]

, these versatile methods are very computationally intensive.

Jylanki et al. [8] presented an efficient expectation propaga-

tion algorithm for robust Gaussian process regression based

on the Student’s t distribution, while Svensn and Bishop [9]

proposed a variational inference approach to robust Student’s

t mixture clustering. Gandhi and Mili [10] proposed a

robust Kalman filter based on the Huber distribution and

the iterative reweighted least squares (IRLS) method. An

efficient Kalman smoother was presented by Aravkin et

al. [11] based on the Laplace distribution and the convex

composite extension of the Gauss-Newton method.

This paper aims to address the robust prediction problem

for large spatial dataset. It considers the same probabilistic

framework as that was used in existing robust methods.

Specifically, a Robust and Reduced-Rank Spatial Kriging

Model (R3-SKM) is formulated, and then efficient algo-

rithms are proposed by utilizing Laplace approximation to

perform parameter estimation, robust spatial prediction, and

spatial outlier detection.

To the best of our knowledge, this is the first statistical

approach that can perform robust spatial prediction in linear

time. The main contributions can be summarized as follows:

• Formulation of the R3-SKM model. A Robust and

Reduced Rank Spatial Kriging Model is proposed in

which the measurement error is modeled by a heavy

tailed distribution, and a Bayesian hierarchical frame-

work is integrated to support priors on model parame-

ters.

• Design of an approximate algorithm for robust pa-
rameter estimation. The posterior distribution of latent

variables conditional on parameters and observations

is estimated via Gaussian approximation. Furthermore,

the posterior distribution of parameters conditional on

observations is estimated via Laplace approximation. It

has time complexity of O(n).
• Development of robust inference algorithms. R3-

SP (Robust and Reduced Rank Spatial Prediction) and

R3-SOD (Robust and Reduced Rank Spatial Outlier

Detection) algorithms are proposed to perform robust

spatial prediction and spatial outlier detection. Their

time complexities are analyzed, which scale linearly.

• Comprehensive experiments to validate the robust-
ness and efficiency of the proposed techniques. The

R3-SKM was evaluated by the extensive experiments

on simulated and real datasets. The results demon-

strated that the three algorithms based on R3-SKM

outperformed existing representative techniques, when

the data were contaminated by outliers.

The rest of paper is organized as follows. Section II

reviews the theoretical background. Section III presents the

R3-SKM framework. A general approach based on R3-

SKM is proposed to perform robust parameter estimation

in Section IV, and two inference algorithms are discussed in

Section V. Experiments on both simulated and real datasets

are presented in Section VI. The paper concludes with a

summary of the research in Section VII.

II. THEORETICAL BACKGROUND

This section reviews the Spatial Kriging Model (SKM)

and knot based reduced-rank techniques.

A. Spatial Kriging Model

Let us define a numerical random field Y (s) on a domain

D ⊆ R2, and Y = (Y (s1), · · · , Y (sn))
′ be the n×1 vector

of observed responses, each of which is along with a p× 1
vector of spatially referenced predictors x(s). The associated

spatial kriging model can be represented as

Y (s) = xT (s)β + η(s) + ε(s) (1)

where ε(s) is a spatial white noise process with mean

zero, var(ε(s)) = τ2 > 0, and τ2 is a parameter to

be estimated. The white noise assumption implies that

Ri,j(φ) = cov(ε(si), ε(sj)) = 0, unless i = j. x(s) refers

to a vector of known predictors, and the coefficients β are

unknown. xT (s)β is a vector of deterministic (spatial mean)

or trend functions, which models large scale variations,

and the spatial random process η(s) captures the small

scale variations. The hidden process η(s) captures spatial

association. It is assumed to follow a Gaussian process with

zero mean and the covariance function σ2C(s, s′;φ), where

σ2 refers to the variance, and C(·;φ) the correlation function

of the process controlled by the parameter φ. Function C
controls the smoothness and scale among latent variables

η(si), and can be selected freely as long as the resulting

covariance matrix is symmetric and positive semi-definite.

B. Reduced Rank Methodology

The spatial inference (e.g., spatial prediction, outlier de-

tection) based on the SKM model involves the inversion

of the n by n correlation matrix, which has the time

complexity of O(n3). This makes the SKM model pro-

hibitively expensive for large n. The knot-based model

proposed by Banerjee et al. [12] considers a fixed set of

“knots” S∗ = (s∗1, · · · , s∗n∗) with n∗ � n. The Gaussian

process η∗(s) yields an n∗-vector of realizations over the

knots, that is, η∗ = (η(s∗1), · · · , η(s∗n∗)), which follows a

GP{0, C∗(s∗i , s∗j ; θ)}. Spatial estimation at a generic site s
is operated through

η̃(s) = E{η(s)|η∗} = cT (s; θ)C∗−1(θ)η∗ (2)

where c(s; θ) = [C(s, s∗j ; θ)
n∗
j=1]. The reduced rank SKM

model can be formalized as

Y (s) = xT (s)β + η̃(s) + ε(s) (3)
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Table I: Description of Major Symbols

Sym. Description
S S = {si}ni=1, a set of n training locations.
S∗ S∗ = {s∗i }mi=1, a set of m knot locations.
Y A given set of observations with numerical attributes which

follow Gaussian distribution. Y = {Y (si)}ni=1
X A set of explain variables. {X(si)}ni=1 is a p × 1 vector of

covariates or explain variables at location si.
η Spatial random effects of the observations, which provide local

adjustments to the means. η = {η(si)}ni=1
η∗ Spatial random effects of the knots. η∗ = {η∗(si)}mi=1
η̃ The predicted values of η by η∗.η̃ = {η̃(si)}ni=1
ε̃ {ε̃(si)}ni=1 is the nugget measurement error.

v∗ v∗ = (η∗
′
, β′)′, it is a (m + p) × 1 vector comprising the

realizations of the spatial predictive process and the regression
parameters.

H H = [F (φ)X]. F (φ) is a transformation matrix which
describes that η̃ is defined as a spatially varying linear trans-
formation of η∗.

Θ The set of sample locations of θ, based on the mode and
Hessian at it of π̂(θ|Y, Z). Θ = {θ}Kk=1.

Δ The set of weight values of sample θ, which are computed by
their corresponding posterior distributions. Δ = {Δ}Kk=1

It is important to select a reasonable number of knots as

well as their spatial locations. This is related to the problem

of spatial design. There are two popular knots selection

strategies. One is to draw a uniform grid to cover the study

region and each grid is considered as a knot. Another is

to place knots such that each covers a local domain and

the regions with dense data have more knots. In practice, it

is feasible to validate models by using different number of

knots and different choices of knots to obtain a reliable and

robust configuration.

III. ROBUST AND REDUCED RANK SPATIAL KRIGING

MODEL

The Robust and Reduced-Rank Spatial Kriging Model

(R3-SKM) integrates robust, reduced-rank, and Bayesian

hierarchical techniques together.

The proposed R3-SKM is defined as

Y = Xβ + η̃ + ε̃ (4)

in which most of the variables are defined in section

II, except the measurement error ε̃ now follows a heavy

tailed distribution with the probability density function

f(ε̃;μ, 	2) = 1
�h((ε̃ − μ)/	), where μ refers to the mean,

and 	 the dispersion parameter. Examples of the h function

include: 1) Laplace distribution: h(x) = 1
2e
−|x|; 2) Student’s

t distribution: h(x) = c(x + ν)(p+ν)/2, where c is a

normalization constant, the case v = 1 is the Cauchy density,

and the limiting case v →∞ yields the normal distribution;

and 3) Huber distribution: h(x) = ce−ϕ(x;�),

ϕ(x;κ) =

⎧⎪⎨
⎪⎩

κ|x| − 1

2
κ2, for |x| > κ

1

2
x2, for |x| ≤ κ, (5)
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Figure 2: pdfs of Heavy Tailed Distributions

where c is a normalization constant that ensures∫
c
�e
−ϕ(x;κ) = 1, and 	 is a range parameter of the

distribution. The probability density functions (pdf) of the

Huber, Laplace and Gaussian distribution are compared

in Figure 2. The robustness of the R3-SKM is realized

by the latent variation component ε̃i, i = {1, · · · , n},
which follows a heavy tailed distribution. For example,

the parameter ν in Student’s t, or κ in Huber distribution

controls the degree of the robustness. When the value of ν
increases, the robustness of the Student’s t will decrease.

R3-SKM can be formalized in the framework of Bayesian

hierarchical model with three layers, including the obser-

vation layer, the latent robust Gaussian process layer, and

the parameter layer. The observation layer contains the

observations Y = {Y (s1), · · · , Y (sn)}. It is assumed that

each Y (si) follows a Gaussian distribution. Each random

variable Y (si) is related to the latent Gaussian effects in

the second layer, v∗ = (η∗′, β′)′, which is the (m+ p)× 1
vector. Specifically, β is assigned a multivariate Gaussian

prior, i.e., β ∼ N (μβ ,Σβ). The third level of the hierarchical

model consists of the related parameters with the latent

variables. In the R3-SKM model, the parameters include

θ = (σ2, φ, ν, 	2). That is, σ2 and φ for modeling η∗, μ
and 	2 for modeling ε̃. σ2 has an inverse gamma prior

distribution: σ2 ∼ IG(ασ, γσ), where ασ and γσ are suffi-

ciently small informative prior distribution. The correlation

parameter φ is usually assigned an informative prior decided

based on the underlying spatial domain, i.e., φ ∼ U(aφ, bφ),
a uniform distribution over a finite range. In Student’s t

distribution, ν ∼ U(aν , bν) and 	2 ∼ IG(α�, γ�). Taking

the Student’s t as an example, the graphic representation of

the R3-SKM is depicted in Figure 3.

IV. ROBUST PARAMETER ESTIMATION

This section presents a novel approach, R3-PE (Robust

and Reduced-Rank Parameter Estimation), to execute the

robust parameter estimation by integrating Laplace approx-

imation [13]. It consists of two critical steps: 1) Gaussian

approximation of the posterior distribution of latent variables

conditional on parameters and observations; 2) Laplace

approximation of the posterior distribution of corresponding

parameters conditional on observations. Student’s t distribu-

tion is selected to model the pdf of ε̃.
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Figure 3: Graphic Model Representation of R3-SKM

A. Gaussian Approximation of Posterior Distribution of v∗

First, we need to compute π(v∗|Y, θ), where v∗ =
(η∗

′
, β′)′, which consists of the spatial predictive process

and the regression parameters. Its mean and covariance

matrix are computed as follows.

μv∗ = (0m, μβ)
′,Σv∗ =

[
σ2C∗(φ) 0m×p

0p×m Σβ

]
(6)

we have prior v∗ ∼ N(μv∗ ,Σv∗).

With the information depicted by the graphical model in

Figure 3, we determine that the full conditional distribution

of π(Y |v∗, θ) follows the heavy tailed distribution, which

can be approximated as a Gaussian distribution of v∗ by

Taylor expansion. For example, if ε̃ accords to the Student’s

t distribution, then π(yi|ν, TiHv∗, 	2)= Γ( ν+1
2 )

Γ( ν
2 )
√

πν�2
(1 +

1
ν
(yi−TiHv∗)2

�2 )−
ν+1
2 , where TiHv∗ = xiβ + η̃i and Ti is

the ith row of unit matrix In. H=[F (φ)X], and F (φ) =
C(φ)′C∗−1(φ), where C(φ)′ is an n×m matrix whose ith

row is the 1 ×m vector in which the jth element is given

by C(si, sj ;φ). We Taylor expand it to second order by

expressing the result in a quadratic form of v∗,

log (π̂(Y |v∗, θ)) = −1

2
v∗

′
QY v

∗ + v∗
′
bY + const

QY =
n∑

i=1

Qyi
, bY =

n∑
i=1

byi

Qyi
= m1m2(

m2�D(v̂∗){�D(v̂∗)}′
(1 +m2D(v̂∗))2

− �2D(v̂∗)
1 +m2D(v̂∗)

)

byi =
m1m2�D(v̂∗)
1 +m2D(v̂∗)

+Qyi v̂
∗

m1 = −ν + 1

2
,m2 =

1

ν	2

D(v̂∗) = (yi − TiHv̂∗)′(yi − TiHv̂∗)
�D(v̂∗) = −2H ′T ′iyi + 2H ′T ′iTiHv̂∗

�2D(v̂∗) = 2H ′T ′iTiH (7)

With the above Gaussian approximation, π(v∗|Y, θ) is

analytically available and numerical routines can be applied.

For the R3-SKM, the full conditional for v∗ is

π(v∗|Y, θ) ∝ π̂(Y |v∗, θ)π(v∗|θ) (8)

∝ exp[−1

2
v∗

′
Qv∗ + v∗

′
b]

where the full conditional precision matrix Q = QY +Σ−1
v∗ ,

and the canonical parameter b = bY + Σ−1
v∗ μv∗ . Thus, the

full conditional is π(v∗|Y, θ) ∼ N(Q−1b,Q−1). We can

compute the required inverse and determinant of the size

(m+p)×(m+p) matrix Q by utilizing the structure of Σv∗

and H . The main cost of matrix inversion is thus O(m3),
since the number of knots is m, assuming m
 p.

B. Laplace Approximation of Posterior Distribution of θ

Different from π(v∗|Y, θ), the posterior π(θ|Y ) is usually

skewed and the approximation as a Gaussian distribution is

inappropriate. The posterior π(θ|Y ) plays an important role

in the inference of marginal posterior of latent variables that

are of interests. Take v∗ as an example, the interest is to

estimate the marginal posterior π(v∗|Y ), which has

π(v∗|Y ) =

∫
π(v∗|Y, θ)π(θ|Y )dθ (9)

It is possible to obtain a sample set of {θ1, · · · , θK} from the

input space of θ that represents an approximate discrete form

of the posterior π(θ|Y ). We can estimate the approximate

π̂(v∗|Y ) by

π̂(v∗|Y ) =
K∑

k=1

π(v∗|Y, θk)π(θk|Y )Δk (10)

where Δk is the weight of the sample θk that can be mea-

sured by its normalized probability density. The critical step

is to efficiently identify a suitable sample set {θ1, · · · , θK},
as well as its corresponding weight set {Δ1, · · · ,ΔK}. The

posterior π(θ|Y ) can be reformalized as

π(θ|Y ) ∝ π(Y |v∗, θ)π(v∗|θ)π(θ)
π(v∗|Y, θ) (11)

Laplace Approximation (LA) can be applied to approximate

the denominator π(v∗|Y, θ) as a Gaussian distribution, and

then set the vector of variables, υ∗, to the mode. The LA

method uses similar ideas for Bayesian spatial inference:

π̂(θ|Y ) ∝ π(Y |v∗, θ)π(v∗|θ)π(θ)
π̂(υ∗|Y, θ)

∣∣∣∣
v∗=v̂∗

(12)

where π̂(υ∗|Y, θ) is a Gaussian approximation as shown in

Equation (8). We can get the mode v̂∗ and the curvature

at the mode of this full conditional expression. The pre-

ceding Gaussian approximation can be efficiently conducted

by using the popular Iterated Re-weighted Least Squares

(IRLS) algorithm. The above detailed procedures can be

summarized as Algorithm 1.

Algorithm 1 iterates l1 times, from Step 2 to Step 8 until

convergence. Among these steps, Step 6 has the highest
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Algorithm 1 Exploring posterior distribution of π(θ|Y )

Input: S, S∗, Y,X
Output: Θ,Δ

1: Choose an initial value θ = (σ2, φ, ν, �);
2: repeat
3: Construct μv∗ , Σv∗ with θ (See Equation(6));
4: Calculate the transformation matrix H;
5: Gaussian approximation of π(Y |v∗, θ) as the form of v∗.
6: Apply IRLS to identify the mode υ̂∗ and Hessian at the

mode of π̂(υ∗|Y, θ).
7: Compute the gradient and Hessian of π̂(θ∗|Y ) and apply

one Newton’s step to update θ.
8: until Convergence
9: Explore the contour of π̃(θ|Y ) based on its mode and Hessian

at the mode, obtain K sample locations, Θ = {θ1, ..., θK}.
10: Compute and normalize {π̂(θ1|Y ), · · · , π̂(θK |Y )} to obtain

Δ = {Δ1, · · · ,ΔK} as Δk = π̂k(θk|Y )
∑K

k=1
π̂k(θk|Y )

.

time cost, because the solution is analytically intractable and

numerical optimization techniques are applied. An efficient

IRLS algorithm is proposed to conduct this process. Step 6

is first reformulated as the following optimization problem

argmax
v∗

π̂(v∗|Y, θ) = argmin
v∗

− lnπ(Y |v∗, θ)− lnπ(v∗|θ) (13)

Expanding the density functions π(Y |v∗, θ) and π(v∗|θ),
we have that argmin

v∗
{ 12v∗′{

∑n
i=1 Qi}v∗ − v∗′{∑n

i=1 bi}+
1
2

(
v∗ − μv∗)′Σ−1

v∗ (v∗ − μv∗
)}. The gradient and Hessian

matrix of the above objective function can be obtained as

�π̂(v∗|Y, θ) = (
n∑

i=1

Qi +Σ−1
v∗ )v∗ − (

n∑
i=1

bi +Σ−1
v∗ μv∗)

�2π̂(v∗|Y, θ) =
n∑

i=1

Qi +Σ−1
v∗ (14)

The IRLS algorithm for Step 6 is described as follows:

1) Select an initial v̂∗

2) Until convergence

Update v̂∗ = v̂∗ − (�2π̂(v̂∗|Y, θ))−1 � π̂(v̂∗|Y, θ).
3) Output v̂∗ as the mode of π̂(v∗|Y, θ).

Computational Complexity. In Algorithm 1, suppose that

it needs l2 iterations to find the mode υ̂∗ and Hessian

at the mode of π̂(υ∗|Y, θ), the time cost of Step 6 is

O(l2 ∗ (n∗m2+m3)). The Step 5, Gaussian approximation

of π(Y |v∗, θ), takes O(n ∗ m). Overall, Steps 2-8, which

generate the converged gradient and Hessian of π(θ|v∗) take

O(l1∗l2∗(n∗m2+m3)+ l1∗n∗m). Finally, sampling the θ
set and computing their corresponding weighted values take

O(K). In summary, assuming n 
 K, n 
 m, n 
 l1
and n 
 l2, the total computational complexity of robust

parameter estimation based on R3-SKM is O(n).

Algorithm 2 Robust Reduced Rank Spatial Prediction

Input: S, S∗, S0, Y,X,X0,Θ,Δ
Output: Y 0

1: for k = 1toK do
2: Construct μv∗ , Σv∗ with θk and S∗ (See Equation (6)).
3: Calculate the transformation matrix H with θk, S

∗, S,X .
4: Gaussian approximation of the likelihood of Y.
5: Calculate the mode, Hessian at the mode of π̂(υ∗|Y, θk),

and its Gaussian approximation (See Equation (8)).
6: Predict Y 0

k for new locations S0. (See Equation (15))
7: end for
8: Calculate the final Y 0 values as Y 0 =

∑K
k=1 Y

0
k ×Δk

V. ROBUST SPATIAL INFERENCE

This section formalizes the Robust and Reduced Rank

Spatial Prediction (R3-SP) , and Robust and Reduced Rank

Spatial Outlier Detection (R3-SOD) based on the R3-SKM.

A. Robust Spatial Prediction

Given a set of unsampled locations {s01, · · · , s0Nte
}, we

are interested in predicting the Y values at these locations,

denoted as Y 0 = [Y (s01), · · · , Y (s0Nte
)]. The first step is

to estimate the posterior distributions of the corresponding

latent variables π(v0|Y ), where v0 = [v(s01), · · · , v(s0Nte
)]′.

Then, the posterior distributions of Y 0 can be obtained as

π(Y 0|Y ) =

∫
π(Y 0|v0)π(v0|Y )dv0 (15)

Given the approximated π̂(v∗|Y, θ) and π̃(θ|Y ) as obtained

in Sections IV.A and IV.B, the posterior distribution π(v0|Y )
can be estimated by

π(v0|Y ) =

∫ ∫
π(v0|v∗, Y, θ)π(v∗|Y, θ)π(θ|Y )dv∗dθ

=

∫ {∫
π(v0|v∗, θ)π(v∗|Y, θ)dv∗

}
π(θ|Y )dθ

≈
∑
k

{∫
π(v0|v∗, θk)π̂(v∗|Y, θk)dv∗

}
π̂(θk|Y )Δk

≈
∑
k

N (μ̃, Σ̃)π̂(θk|Y )Δk (16)

where

Σ0 = Cov(v0),Σ∗ = Cov(v∗),Σ0∗ = Cov(v0, v∗)
μ̃ = Σ0∗Σ∗−1Q−1b

Σ̃ = Σ0 − Σ0∗Σ∗−1Σ0∗′ +Σ0∗Σ∗−1Q−1Σ∗−1Σ0∗′

Based on the above theoretical analysis, the main pro-

cedures of R3-SP are described by Algorithm 2. In the

R3-SP algorithm, we first derive the K samples of θ and

their weight values, Δ, by utilizing the R3-SKM framework,

and then use each generated sample, θk, to construct the

corresponding mean and covariance matrix of latent vari-

ables, v∗. Next, the transformation matrix H = [F (φ)X]
is computed, in which F (φ) describes the spatially varying
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linear transformation of η̃ on η∗. Furthermore, the likelihood

of Y are approximated as the result of a quadratic form of

v∗. Next, the mode of π̂(v∗|Y, θk) are calculated to predict

the new observations Y 0
k at sample θk. Finally, the predicted

Y is calculated as Y 0 =
∑K

k=1 Y
0
k ×Δk.

Computational complexity. Similarly, for the R3-SP

algorithm, Steps 4 and 6 dominate most time costs, because

they are naturally analytical intractable. With the numerical

optimization discussed in Section IV, it takes O(n ∗m) to

operate a Gaussian approximation of Y at each sample θk.

And computing the mode and Hessian of π̂(v∗|Y, θk) costs

O(l2 ∗ (m3 + n ∗m2)). Repeating Steps 2-6 at K sample

θs takes O(K ∗ (n ∗m+ l2 ∗ (m3 +n ∗m2))). In summary,

the total computational complexity of the R3-SP algorithm

is O(n), assuming n
 K, n
 l2, n
 p and n
 m.

B. Robust Spatial Outlier Detection

Statistically, spatial outlier can be interpreted as obser-

vations that have abnormally low correlations with their

spatial neighbors, considering normal deviations caused by

measurement error (white noise). For the regular SKM

framework, when a data set contains outliers, the additional

variation due to those outliers will be captured by distorting

spatial dependence. The white noise component is unable to

handle large deviations due to the light tailed feature of the

Gaussian distribution. In comparison, the proposed R3-SKM

uses heavy tailed distribution to model the measurement

error. When outliers appear, our model directly captures the

additional large variation due to outliers as the measurement

error, which will control the resulting accurate parameter

estimation and spatial outlier detection.

Therefore, the R3-SKM can also be utilized to iden-

tify spatial outliers as objects with higher predicted ε̃
values(measurement error). First, we apply the R3-SKM

to accurately estimate the latent variables and parameters

for the contaminated spatial dataset. Second, the estimated

values are utilized to operate a spatial prediction for each

observed location. Finally, the differences between observed

and predicted values are computed to measure their outlying

degrees. The objects which have higher measurement errors

are labeled as spatial outliers.

The main procedures of spatial outlier detection are de-

scribed in Algorithm 3. In the R3-SOD Algorithm, we use

the K samples of θ to predict the corresponding {Yi}pk(k =
1, · · · ,K), and the predicted {Yi}p is finalized by the sum

over values derived from different θk with weight Δk. If

the predicted {Yi}p has a large deviation compared with its

original value, and this deviation is higher than the cut-off

value, c · 	(c = 3), then the corresponding objects will be

identified as spatial outliers.

Computational complexity. As analyzed in Algorithm 2,

predicting {{Yi}pk}ni=1 takes around O(K(l2n + m3)). Fi-

nalizing the predicted {{Yi}p}ni=1 costs O(n). In summary,

Algorithm 3 Robust Reduced Rank Spatial Outlier Detec-

tion (R3-SOD)

Input: S, S∗, Y,X,Θ,Δ
Output: Y 0

1: Repeat Steps 1-7 in Algorithm 2 to predict {Yi}pk for each
locations si.(k = 1, · · · ,K, and i = 1, · · · , n).

2: for i = 1ton do
3: Calculate the final {Yi}p values as {Yi}p =∑K

k=1 {Yi}pk ×Δk.
4: Calculate the abstract difference Diffi= |{Yi}p − Yi|.
5: end for
6: Rank the objects by sorting Diff with an descending order.
7: Label the top ones that have Diff≥ c · � as spatial outliers.

R3-SOD algorithm takes O(n), assuming n 
 K, n 
 l2,

n
 p and n
 m.

VI. EXPERIMENT

This section evaluates the robustness and efficiency of the

proposed R3-SKM model based on an analysis of simulated

and real data sets. Student’s t distribution was selected to

model the probability density function of ε̃. All experiments

were conducted on a PC with Intel(R) Core(TM) I5-2400,

CPU 3.1 Ghz, and 8.00 GB memory.

A. Experiment Setting

Dataset Description
Simulation Dataset. The simulations were generated based

on the following statistical model:

Y (s) ∼ N (xTβ + η(s), τ2) (17)

where η(s) is from a latent spatial Gaussian process with

the variogram model V ar(η(si), η(sj)) = σ2C(h|φ), and

h = |si − sj |. C(h|φ) refers to the spatial correlation,

where φ is the range parameter that controls its degree. The

popular exponential function was used to model C(h|φ).
The parameter settings used in our experiments are shown

in Table II. We also evaluated different combinations of

parameters, and observed similar patterns.

Table II: Parameter settings in the simulations

Variable Setting Description
[Ntr, Nte] Training and testing points were randomly generated

at Ntr spatial locations {si}Ntr
i=1 and Nte spatial loca-

tions {si}Nte
i=1 , respectively, in the range [0,50]×[0,50]

units. Ntr = 300, 500, Nte = 30, 100
β The regression coefficient β = [0.5, 1.5]′.
σ σ2 = 4 in all simulations
φ φ = 25.
τ The nugget variance, τ2, was set to 0.1.
C(h|φ) An exponential spatial correlation function C(h|φ) =

σ2exp(−h
φ
) was used in all simulations.

Real Dataset. We validated our approach on five real

datasets, namely, Lake, MLST, BEF, HR, and House. Lake
was originally published by Varin et al. [14] and was used
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to model trout abundance in Norwegian lakes as a function

of lake acidity. MLST [15] came from multiple listings

containing structural descriptors of houses, their sale prices,

and their addresses for Baltimore, Maryland, in 1978. BEF
[16] is a forest inventory dataset from the U.S. Department

of Agriculture Forest Service, Barlett, NH. HR is a Boston

Housing dataset from 1978 which discusses issues related

to the demand for clean air. House contains information

collected for a range of variables for all the block groups

in California from the 1990 Census. Both House and HR
data are included in the spBayes R package [17]. Table III

summarizes the main information types of each of these

datasets used in our experiments.

Table III: Settings in 5 real datasets

Dataset Size Ntr Nte Y Y-SD
BEF 437 337 100 BE basal area 0.17
Lake 371 271 100 Trout abundance 0.007
MLST 211 150 61 House price 0.17
HR 506 406 100 House price 0.10
House 20,640 1000 200 House price 0.25

Spatial Inference Method
Spatial Estimation and Prediction Methods. There are

currently two popular methods used for parameter estimation

and spatial prediction. The Spatial Kriging Model(SKM)

predicts unobserved values as a linear combination of

the known values of observed locations, while Linear

Regression[18] models data using linear predictor functions,

and estimates unknown model parameters from the data.

Outlier Detection Methods. We compared R3-SOD with

eight existing representative SOD approaches: Z-test [19],

Median Z-test, Iterative Z-test, trimmed Z-test [20], Scatter-

plot [21], MoranScatterplot [22], SLOM [23] and POD [24].

The implementations of the above methods were all based

on their published algorithm descriptions.

Performance Metric
Data Contamination. For each dataset, including both

the simulations and real datasets, we randomly selected

α%(contamination rate) of the data to be anomalies by

shifting them from their original values with γ(shift rate)

times standard deviation of Y. For each α, the synthetic

outliers were generated 10 times, and the mean values of the

results from the parameter estimation, spatial prediction and

spatial outlier detection were calculated for each approach.

Parameter Estimation. Parameter estimation was executed

only in simulations since the true values of parameters were

known. We compared the estimation results from SKM,

Regression and R3-SKM, with the true values to validate

their effectiveness.

Spatial Prediction. SKM, Regression and R3-SKM were

also applied in both simulation and real datasets to obtain

the predicted Ỹ . The Mean Absolute Percentage Error

(MAPE =
∑Nte

i=1 |Yi−Ỹi|
Nte

) and Root Mean Square Error

(a) HR_406_100_49_0.05_7 (b) House_1000_200_81_0.05_3

(c) Acid_271_100_25_0.10_3.5 (d) MLST_150_61_25_0.20_7

(e) Sim_500_100_49_0.10_4.5 (f) Sim_300_30_36_0.25_7

Figure 4: Comparison of prediction performances on simu-

lation and real datasets

(RMSE = {
∑Nte

i=1 (Yi−Ỹi)
2

Nte
}1/2) between Y and Ỹ were

calculated to evaluate the prediction performance.

Spatial Outlier Detection. Nine different outlier detection

approaches were applied to both simulation and real datasets.

To compare the accuracies among them, we used the follow-

ing common evaluation measures: detection rate (precision)

and detection precision (recall). The precision was plotted

against recall and the curves that are higher and farther to

the right denote better performance.

B. Experiment analysis and discussion

Robustness on Parameter Estimation. Table IV shows

the parameter estimation results on four simulations with

training data sizes of 300, 500, 700 and 1000. The data

name depicts the parameter combination information. For

example, “Sim_500_100_49_0.05_2.5” indicates that it was

generated by simulation data, and there are 500 training

data, 100 testing data, 49 knots, and 5% of the training data

were contaminated as outliers by shifting the original Y to

(Y + 2.5 ∗ std(Y )).
Comparing the estimated parameters with the true values,

R3-SKM was able to more accurately estimate most of the

parameters. For “Sim_500_100_16_0.05_2.5”, only 5% the

data are distorted with a relatively small shift rate(2.5),

which means the contaminated data had a similar distribution

to that of the original. Even so, SKM and Regress performed

354475



Table IV: Comparison of parameter estimation results on simulations

Data Sim_300_30_36_0.25_7 ||Sim_500_100_49_0.05_2.5 ||Sim_700_200_81_0.05_5 ||Sim_1000_400_100_0.05_5
������Approach

Para.
β φ σ2 β φ σ2 β φ σ2 β φ σ2

True Values [0.50, 1.50] 25.00 2.00 [0.50, 1.50] 25.00 2.00 [0.50, 1.50] 25.00 2.00 [0.50, 1.50] 25.00 2.00

R3-SKM [0.49, 1.61] 24.73 1.11 [0.44, 1.54] 25.92 1.98 [0.48, 1.60] 26.41 1.80 [0.49, 1.46] 27.39 1.73
Regression [0.44, 2.31] – – [0.62, 1.84] – – [0.39, 1.82] – – [0.63, 1.31] – –

SKM [0.06, 1.91] 6 1.85 [0.78, 1.23] 5.78 1.82 [0.29, 1.76] 5.66 1.77 [0.61, 1.38] 19077.44 48.33

(b) Acid_371_36_0.25_1.5 (c) BEF_437_64_0.10_2 (d) MSLT_211_25_0.05_2.5

(e) HR_506_49_0.15_1.5 (f) House_1000_81_0.05_1.5 (g) Sim_500_64_0.10_1.5

Figure 5: Comparison of SOD performances on simulation and real datasets

much worse than R3-SKM on this data. As depicted by

Table IV, when estimating β value, the estimation errors for

R3-SKM were 12% and 2.7% for β1 and β2, respectively.

However, SKM had values of 56% and 18%, and Regression

24% and 22.6% for the same data. When estimating σ and

φ, the estimation errors for R3-SKM were 4% and 1%, while

for SKM, they were 76.8% and 9%. This considerable differ-

ence in the estimation errors implies that SKM was highly

influenced by the existence of outliers. There is no result

for σ and φ for the Regression model, since this approach

does not take the spatial dependency into consideration. And,

as a consequence, it always incorrectly estimated β with

higher errors, which absorbed the spatial variations into the

spatial mean(XTβ). Compared with SKM and Regression,

R3-SKM can be resilient to the influence of outliers, even

in datasets in which more data were heavily contaminated,

such as, “Sim_300_30_36_0.25_7” in which 25% of data

were skewed with a higher shift rate(7). Not surprisingly,

some experimental results indicate that if the data is severely

contaminated, it is more difficult to accurately estimate

parameters. This is demonstrated by the lower performances

of SKM and Regression in Sim_ ∗ _5 and Sim_ ∗ _7. Still,

R3-SKM was able to achieve very impressive estimation

results since the integration of the heavy tailed distribution

helped alleviate the impact of outliers.

Robustness on Spatial Prediction. To better analyze

prediction performances, we utilized Moran’s I-statistic to

capture the spatial dependency of Y observations. This made

it possible to learn more about the degree of spatial auto-

correlation for each dataset. The spatial dependency for Y in

simulations was computed to be 0.70, which means that the

simulations have a higher spatial dependency and this must

be accurately captured during the estimation and prediction

processes. The last column in Table III shows the calculated
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spatial dependencies for real datasets. Most are lower values,

which implies that the non-spatial attribute(X) contributes a

great deal to the prediction the outcome variables.

Figure 4 compares the performances of different predic-

tion models for simulated and real datasets. The calculated

RMSEs and MAPEs demonstrate that R3-SP outperforms

both Regression and SKM. In particular, SKM did not

perform as good as the Regression model in spite of the fact

it takes into account the spatial auto-correlation in its spatial

predictions. This is because the SKM model is considerably

more complicated. It consists of a vector representing the

spatial mean(xTβ), the spatial random process(η) and mea-

surement error ε. Regression is composed of xTβ and ε. The

hidden process η captures spatial association which is as-

sumed to be a multivariate Gaussian process. When there are

outliers in the dataset, SKM treats their outlying behaviors

as natural spatial variations in the dataset, which therefore

affects the computation of η, and further degrades the predic-

tion quality. Meanwhile, the greater the outlying degrees of

outliers, the worse its prediction performance: for the cases

of HR_406_100_49_0.05_7, MLST_150_61_25_0.20_7
and Sim_300_30_36_0.25_7, where the shift rate are

all 7. Interestingly, R3-SP generated very similar pre-

diction result to that for the Regression model for

Acid_271_100_25_0.10_3.5. This is because Acid data has

a very low spatial dependency, 0.007. So, spatial mean(xTβ)

dominates the prediction results. But for datasets with

high spatial dependencies, like Sim_300_30_36_0.25_7 and

House_1000_200_25_0.05_3, R3-SP has preceding perfor-

mance increases by benefiting from the integration of the

heavy tailed distribution.

Accuracy of Spatial Outlier Detection. The outlier

detection accuracies of different methods were compared

based on different combinations of parameter settings. Fig-

ure 5 shows six representative results from simulated and

real datasets. Clearly, R3-SOD has impressive identifica-

tion performances, achieving 10-15% improvement over Z,

Median-Z, Iterative-Z and Trimmed-Z, 20-30% over POD

and SLOM, 40-50% over Moran-Scatterplot, and 60-70%
over Scatterplot. Z series of approaches identify outliers

by normalizing the difference between a spatial object and

the average of its spatial neighbors. However, this differ-

ence value is easily influenced by the presence of one or

more outliers in its neighborhood, which leads to worse

outlier detection qualities. This is especially true for higher

numbers of outliers in the neighborhood, as demonstrated

by “BEF_437_64_0.10_2” and “Sim_500_64_0.10_1.5”.

POD method constructs a graph based on k nearest neigh-

bors, assigns the non-spatial attribute differences as edge

weights, and then continuously cuts high weight edges

to identify isolated points as outliers. Its performance de-

grades significantly with increasing outlier sizes. Such as

in “MSLT_211_25_0.05_2.5”, its performance was better

than others since only 5% of the data were contaminated.

The MoranScatterplot and Scatterplot approaches detect out-

liers by normalizing the attribute values against the average

values for the corresponding neighborhood, which greatly

neutralizes the significant differences caused by outliers and

results in poor performances. It is worth mentioning that, if

the outlying degrees of outliers are much higher(such as the

shift rate is set to 4 and 5), all the SOD approaches can get

good identification results. However, if the outlying behavior

is less differentiated, they did not accurately capture spatial

outliers at all except R3-SOD. In contrast, R3-SOD can be

easily resilient to the outliers with different outlying degrees.

When identifying outliers, it does not rely on neighborhood

differences, which are susceptible to the neighborhood size

and presence of outliers. Rather, it statistically analyzes

the data model by integrating a heavy tailed distribution to

minimize the effects of outliers. Its competing identification

results are demonstrated by Figure 5.

Figure 6: Prediction performances by varying knot sizes

Impact of Knot Sizes. We also evaluated the prediction

performance by varying the knot sizes. Figure 6 shows

various knot sizes from 16 to 121 (representing 3.2% and

24.2%, respectively, of the total number of observations).

The curves show the effects of varying the number of

knots on prediction accuracy. The simulations with different

outlying degrees(2.5, 3, 4, 4.5, 5) have very similar affected

trends for the different knot sizes. As shown in Figure 5,

RMSEs decline as the knot size increases till they reach a

stable state. In the simulations, which include 500 training

and 100 testing points, the optimum prediction performance

was achieved when knot size is equal to 64. That is, the knot

size can be as high as 10%-15% of the total dataset. We also

evaluated the optimal knot size in different sized datasets,

and observed similar patterns. The optimal selection of the

knot size enables not only more accurate spatial prediction,

but also faster inferences.
Computational Cost. Finally, we examined the speed

and associated scalability of SKM and R3-SKM. Figure 7

displays the comparison of their runtime in datasets with

varying numbers of training points. For all the simulations,

the knot sizes were set to 10. Consequently, for R3-SKM,

when the data size is smaller than 1000, the time complexity
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Figure 7: Total response time by varying data size

is dominated by the knot size, O(m3) = 1000, rather than

data size, O(n). Above 1000, the time cost increases linearly.

In comparison, the time cost of SKM was observed to

increase in a nonlinear fashion for larger datasets. In sum-

mary, the reduced-rank techniques enables our algorithms to

perform efficiently with a linear time complexity.

Result Discussion. R3-SKM has been shown to be very

robust for parameter estimation and spatial inference. It

has superior performance over existing techniques in both

real and simulation datasets. The experimental results verify

three observations. First, if there is a good selection of

knots that cover most of the domain interests, the predictive

process cost will be significantly reduced to a linear order.

Second, by being combined with numerical routines, Laplace

approximation can provide much faster and more accurate

parameter estimation. Third, integrating the heavy detailed

distribution into the modeling process clearly minimizes the

impact of outliers to a reasonable value, which provides a

very good demonstration of the new method’s robustness.

VII. CONCLUSION

This paper proposes a Robust and Reduced-Rank Spatial

Kriging Model for large spatial datasets, abbreviated as

R3-SKM. This approach integrates a Bayesian hierarchical

framework to support priors on model parameters. Mean-

while, the measurement error is modeled by a heavy tailed

distribution, which enables it to be resilient to the influences

of outliers and allow for fast spatial inferences. Furthermore,

three algorithms are proposed to perform robust parameter

estimation, spatial prediction and spatial outlier detection,

respectively, in linear time. Their robustness and efficiency

were demonstrated by extensive experimental evaluations.

R3-SKM provides critical functionality for stochastic pro-

cesses on large spatial datasets.
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