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ABSTRACT  1 

Traffic prediction is critical to success of Intelligent Transportation Systems (ITS). Predicting 2 
traffic on an urban traffic network using spatio-temporal models has become a popular research 3 
area in the past decade. The model does not only rely on observation data at the detector of 4 
interest but also takes advantage of neighboring detectors to provide better prediction capability.  5 
However, most models suffer high mathematical complexity and low flexibility in tune-up. This 6 
paper presents a novel Spatio-Temporal Random Effects (STRE) model that has a reduced 7 
computational complexity due to mathematical dimension reduction, and additional tune-up 8 
flexibility provided by the basis function that is able to take traffic patterns into account. The 9 
City of Bellevue, WA is selected as the model test site due to the widespread locations of the 10 
loop detector in the City. Data collected from 105 detectors in the downtown area during the first 11 
two weeks of July, 2007 are used in the modeling process and the traffic volumes are predicted 12 
for 14 detectors during the first week of July, 2008. The results not only show that the model can 13 
effectively consider the neighboring detectors to accurately predict the traffic in locations with 14 
regular traffic patterns, but also verify its temporal transferability. Except three special locations, 15 
all experimental links have Mean Average Percentage Errors (MAPEs) between 8% and 15%. 16 
Without further model tune-up, the results are encouraging.  17 
 18 
 19 
  20 
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1. INTRODUCTION 1 

Reliable, accurate and consistent real-time traffic information is a key to success in the 2 
development and implementation of the Intelligent Transportation Systems (ITS). For example, 3 
the Advance Traveler Information System (ATIS), a subsystem of ITS, relies heavily on high 4 
quality real-time traffic data to provide road users with up-to-date guidance. Moreover, the 5 
Advance Traffic Management System (ATMS), another subsystem of ITS, also requires accurate 6 
traffic information to implement the traffic control schemes. In the past, the collection of real-7 
time data was the foremost goal. Currently, most agencies have begun to consider taking 8 
advantage of the vast archived datasets for “real-time forward-looking analysis” (1). With 9 
predicted data, proactive transportation management is feasible. 10 

In today’s ITS environment, time- and location-specific data are collected in huge 11 
volumes in real-time (2) and more and more agencies are capable of archiving real-time traffic 12 
data. Processing real-time and historical traffic data simultaneously could provide useful results. 13 
Reliable short-term traffic prediction algorithms can provide many benefits to traffic 14 
management without further investment in new facilities. Unfortunately, a consistent data feed to 15 
the Traffic Management Center (TMC) is not always feasible. Inconsistent data connection is 16 
one of the key problems for arterial ATIS due to communication errors and malfunctioning 17 
detectors (3). Maintaining consistent, high quality traffic data flow has been a challenging task 18 
for researchers and practitioners. A robust short-term traffic prediction is a key to successful ITS 19 
application. 20 

Besides, travel demand forecasting also relies on short-term traffic flow prediction (4). 21 
Over the past three decades, most efforts have focused on freeway traffic status (volume, speed 22 
or occupancy) prediction. For example, the work done by (4,5,6) demonstrates great efforts in 23 
traffic volume prediction. Many previous efforts are also summarized in these research papers. 24 
The urban networks are usually more complicated than freeways. Thus, there is greater 25 
likelihood of communication disruption. Moreover, the traffic control strategies would be less 26 
responsive because of the lag between traffic data detection and implementation. Due to the 27 
complex infrastructure of urban cities, a more responsive volume prediction scheme is required 28 
but is also more challenging. In terms of volume prediction method development, there are two 29 
major differences between freeways and arterials. First, the spatial locations of detectors are 30 
usually closer in arterials. The traffic prediction method being developed can take advantage of 31 
the geospatial relationships between detectors to provide better prediction accuracy. Second, the 32 
urban traffic suffers from delays caused by signalized intersections. Traffic status would 33 
introduce more irregularity and uncertainty to the traffic prediction because of different traffic 34 
characteristics, such as frequent occurrences of queues and lane-changing behaviors. These 35 
factors may lead to a low prediction precision on arterial networks. The traffic prediction method 36 
needs to be more responsive to react to the rapid changes in urban traffic status.  37 
   38 

2. LITERATURE REVIEW 39 

Despite the fact that the spatial relationships are strong and noticeable on urban networks, most 40 
research has focused on “one point” (or one detector) short-term traffic prediction in the past 41 
decades. In other words, the dependencies between detectors (spatial domain) were not 42 
considered but only the temporal domain was considered. These are also called “univarite” 43 
methods, which are similar to those used for freeway cases. Among all univariate methods, time 44 
series-based methods are considered most popular. The autoregressive integrated moving 45 
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average (ARIMA)-based method is commonly used, e.g. (6) and (7). Many of the univariate 1 
models are compared by many researchers. For example, Smith and Demetsky (5) compared 2 
historical average, time series (ARIMA), back-propagation neural network, and nonparametric 3 
regression. Later on, Smith et al. (8) found the results generated by seasonal ARIMA models are 4 
statistically superior to those produced by non-parametric regression.  In general, the ARIMA-5 
based models yield satisfactory performance. 6 

Most recently, univariate time series-based approaches are still used to predict traffic but 7 
with improvement. For example, (9) developed the data aggregation (DA) strategy to integrate 8 
moving average (MA), exponential smoothing (ES) and ARIMA models using a Neural Network 9 
(NN). Their proposed method shows the DA approach outperforms the naïve ARIMA, 10 
nonparametric regression and NN models. Thomas et al. (10) developed a heuristic approach to 11 
predict short- and long-term traffic. The novelty of their method relies on the mixed method 12 
combining the concept of time-series (temporal correlation) and the application of Kalman filter 13 
(to reduce the noise).  14 

Despite the success in single-point prediction, more and more researchers are inclined to 15 
use the “geographic advantage” of urban network analysis to provide better prediction results. 16 
Since arterial detectors are geographically closers to each other than freeway detectors, urban 17 
traffic prediction can not only rely on historical data, but also the real-time data from its 18 
neighboring detectors (links). Therefore, in addition to short-term traffic prediction, a spatio- 19 
temporal (ST)-based predictor has a major advantage over univarite detectors: The ST-based 20 
detector can potentially predict or estimate traffic volume simply based on neighboring detectors.   21 

In the past decade, more and more research efforts further considered spatial information 22 
to improve prediction accuracy. Among all the methods, multivariate time series have been 23 
popular, such as Spatio-Temporal (ST) ARIMA (11,12,13), multivariate structural time-series 24 
(14), Dynamic STARIMA (15) and Generalized STARIMA (16).  However, time series models 25 
have many parameters to calibrate. Smith et al. (4) compared several parametric and 26 
nonparametric traffic prediction models and found the ARIMA model is fairly time consuming. 27 
Due to the nature of multi-variate time series, adding one more dimension (spatial) would 28 
increase computational complexity and estimation of a large number of parameters  (14). 29 

Recently, the spatio-temporal correlations have gained more attention and been used to 30 
forecast traffic flow. Vlahogianni et al. (17) developed a traffic volume predictor that uses 31 
“temporal structures of feed-forward multilayer perceptrons (MLP).” Later on, Vlahogianni (18) 32 
further enhance the pattern-based neural network prediction scheme by considering traffic flow 33 
regimes. Zou et al. (19) use a spatial autocorrelation method to estimate the patterns of traffic 34 
states among urban streets based on historical travel time data. However, traffic flow prediction 35 
is not a focus in this research. Cheng et al. (2) investigate the autocorrelation of space-time 36 
observations of traffic to determine “likely requirements for building a suitable space–time 37 
forecasting model.” Most recently, a multivariate spatio-temporal autoregressive (MSTAR) 38 
model developed in (1) is designed to minimize the number of parameters, reducing the 39 
computational costs. This allows the model to be applied to large metropolitan areas. The model 40 
was tested on a large urban network.  41 

Based on the literature review, the common challenge for the spatio-temporal model-42 
related research is the dimension of the network. Once the network grows, most spatio-temporal 43 
models are not capable of handling a large network in a timely manner. Huge datasets collected 44 
from a large network become more and more common with the rapid development and 45 
implantation of ITS sensors. A large number of spatial detectors would result in a high-46 
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dimensional statistical model. To deal with this issue, a Spatio-Temporal Random Effects (STRE) 1 
model is adopted in this study to handle these issues.  2 
 3 

3. METHODOLOGY  4 

Inheriting the filtering capability of Kalman Filter, the Spatio-Temporal Kalman Filter (STKF) 5 
expands KF to a spatio-temporal domain. However, the traditional STKF suffers from its low 6 
performance in modeling high-dimension data (20). The STRE model, a special type of STKF, is 7 
proposed by Cressie et al. (20) and has proven its mathematical effectiveness in dimension 8 
rededuction and parameter estimation (20). To explain this innovative STRE model used in this 9 
study, the Spatial Random Effects (SRE) model is first introduced. After adding a temporal 10 
component, the SRE model becomes a spatio-temporal random effect (STRE) model. The details 11 
of the STRE model, e.g. parameter estimation and prediction process, will be also elaborated.  12 

3.1 Spatial Random Effects (SRE) Model  13 

Let ሺYሺܛሻ: s ∈ D ∈ Թଶሻ  be a real-valued spatial process. The Spatial Random Effects (SRE) 14 
model first decomposes the spatial process into two additive components 15 

Zሺܛሻ ൌ Yሺܛሻ ൅ ϵሺܛሻ,			ܛ ∈ D, 

where	ϵሺܛሻ  is a spatial white process with mean zero and var൫ϵ௧ሺܛሻ൯ ൌ σ஫,௧ଶ vሺܛሻ ൐ 0, σ஫,௧ଶ  is a 16 
parameter to be estimated, and vሺܛሻ  is known. The white noise assumption implies that 17 
cov൫ϵሺܛሻ, ϵሺܚሻ൯ ൌ 0, unless ܛ ൌ  18 .ܚ

The hidden process Yሺܛሻ is assumed to have the linear mean structure  19 

Yሺܛሻ ൌ ሻ୘઺ܛሺܠ ൅ υሺܛሻ,			ܛ ∈ D, 

where ܠሺܛሻ is a vector of known covariates, the coefficients ઺ are unknown, and the process υሺܛሻ 20 
is a spatial process with zero mean and a general non-stationary spatial covariance function that 21 
is captured by a set of basis functions ሼbଵሺܛሻ, … , b୰ሺܛሻሽ as 22 

υሺܛሻ ൌ ሻ୘િܛሺ܊ ൅ ξሺܛሻ, 

where ܊ሺܛሻ ൌ ൣbଵሺܛሻ, … , b୮ሺܛሻ൧
܂

, િ is a vector of r-dimensional Gaussion process with mean 23 
zero and co-variancs ۹: િ~घ୰ሺ૙, ۹ሻ, and ξሺܛሻ is independent Gaussian white noise with zero 24 
mean and variance σஞ

ଶ. Then, by combining Equations (3.1), (3.2), and (3.3), we have the SRE 25 
Model as 26 

Zሺܛሻ ൌ ሻ୘઺ܛሺܠ ൅ ሻ୘િܛሺ܊ ൅ ϵሺܛሻ ൅ ξሺܛሻ 
 27 
The unknown parameters are ൛઺, σ஫,௧ଶ , σஞ

ଶൟ. It is shown that by employing this form, the resulting 28 
Best Linear Unbiased Predictor (BLUP) could achieve significant computational savings 29 
compared with a traditional Kriging Model. The BLUP estimator based on the SRE model is also 30 
named fixed-rank Kriging.   31 

  32 
 33 

3.2 Spatio-Temporal Random Effects Model (STRE) 34 

 35 

(1) 

(2) 

(3) 

(4) 
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The Spatio-Temporal Random Effects (STRE) model is regarded as the extension of the SRE 1 
model with consideration of temporal effects. The STRE model can perform the following tasks: 2 
dimension reduction (spatial) and rapid smoothing, filtering, or prediction (temporal) (20). The 3 
filtering, smoothing, and prediction based on STRE are also named fixed rank filtering (FRF), 4 
fixed rank smoothing, and fixed rank prediction (20).   5 

 The STRE model is used to model a spatial random process that evolves over time, 6 
ሼY௧ሺܛሻ ∈ Թ: ܛ ∈ D ∈ Թଶ, ݐ ൌ 1,2, … ሽ, where D is the spatial domain under study, and Y୲ሺܛሻ are 7 
the measurements at location ܛ  and at time t. A discretized version of the process can be 8 
represented as  9 

,ଵ܇ ,ଶ܇ … , ,௧܇ ,௧ାଵ܇ … 

where	܇௧ ൌ ൣY௧൫ܛଵ,௧൯, Y௧൫ܛଶ,௧൯, … , Y௧൫ܛ௠೟,௧൯൧
୘

. The sample locations ൛ܛଵ,௧, ,ଶ,௧ܛ … ,  ௠೟,௧ൟ  can be 10ܛ
different spatial locations at different time t.  11 

Two major uncertainties, including missing data and noise (measurement error) can be 12 
handled in this model. Suppose we have the measurements ሼ܈ଵ, ,ଶ܈ … , ሽ, with 13 

௧܈ ൌ ௧܇௧۽ ൅ ૓௧, ݐ ൌ 1,2,…,	 

where ܈୲  is an ݊௧ -dimenstional vector (݊௧ ൑ ݉௧ ୲۽ ,(  is an ݊௧ ൈ ݉௧  incidence matrix, and 14 

૓௧ ൌ ൣϵ௧൫ܛଵ,௧൯, ϵ௧൫ܛଶ,௧൯, … , ϵ௧൫ܛ௠೟,௧൯൧
୘
~घ୫౪

൫0, σ஫,௧ଶ ஫,௧൯܄  is a vector of white noise Gaussian 15 

processes, with ܄஫,௧ ൌ diag ቀv஫,௧൫ܛଵ,௧൯, … , v஫,୲൫ܛ୬౪,୲൯ቁ . Particularly, var൫ϵ௧ሺܛሻ൯ ൌ σ஫,௧ଶ vሺܛሻ ൐ 0 , 16 

σ஫,௧ଶ  is a parameter to be estimated, and vሺܛሻ is known. The white noise assumption implies that 17 
cov൫ϵ௧ሺܛሻ, ϵ௨ሺܚሻ൯ ൌ 0, for t ് u and ܛ ്  18 .ܚ
 19 

Assume that ܇୲ has the following structure:  20 

௧܇ ൌ ૄ௧ ൅ ્௧, ݐ ൌ 1,2, …,	 

where ૄ௧ is a vector of deterministic (spatio-temporal) mean or trend functions, modeling large 21 
scale variations, and the random process ્௧  captures the small scale variations. A common 22 

strategy is to define ૄ௧ ൌ ௧઺௧܆ , where ܆௧ ൌ ,ଵ,௧൯ܛ௧൫ܠൣ … , ௡೟,௧൯൧ܛ௧൫ܠ
୘

 and ܠ௧൫ܛଵ,௧൯ ∈ Թ୮ 23 
represents a vector of covariates.  The coefficients ઺௧ are in general unknown and need to be 24 
estimated or predefined.  25 

In many challenging applications, such as astronomy studies, the values ݊௧ and ݉௧ can be 26 
in a large scale. For traditional spatio-temporal Kalman filtering models, a large number of 27 
parameters need to be estimated and also there exist high computational costs due to the high 28 
data dimensionality during the filtering, smoothing, and prediction processes. As a key 29 
advantage of the STRE model, it models the small scale variation ્௧  as a vector of spatial 30 
random effects (SRE) processes 31 

્௧ ൌ ۰௧િ௧ ൅ ૆௧, ݐ ൌ 1,2, …, 32 

where ۰௧ ൌ ,ଵ,௧൯ܛ௧൫܊ൣ … , ௡೟,௧൯൧ܛ௧൫܊
୘

ଵ,௧൯ܛ௧൫܊ , ൌ ൣbଵ,௧൫ܛଵ,௧൯, … , b௥,௧൫ܛଵ,௧൯൧  is a vector of 33 ݎ 
predefined spatial basis functions, such as wavelet and bisquare basis functions, and િ௧ is a zero-34 
mean Gaussian random vector with an r ൈ r covaraince matrix given by ۹௧. The first component 35 

(5) 

(8) 

(6) 

(7) 
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in (8) denotes a smoothed small-scale variation at time t, captured by the set of basis 1 
functions	൛܊௧൫ܛଵ,௧൯, … ,  ௡೟,௧൯ൟ.  2ܛ௧൫܊

The second component in (8) captures the fine-scale variability similar to the nugget 3 
effect as defined in geostatistics (20). It is assumed that 	૆୲~घ୫౪

൫0, σஞ,୲
ଶ ஞ,୲൯܄ క,௧܄ , ൌ4 

diag ቀvక,௧൫ܛଵ,௧൯, … , vక,௧൫ܛ௡೟,௧൯ቁ, and vక,௧ሺ⋅ሻ describes the variance of the fine scale variation and 5 

is typically considered known. If no expert knowledge is available about the variance form, it 6 
could be modeled as	vక,௧ሺ⋅ሻ ൌ exp൛܊క

rక	క is a vector of rక basis functions, with܊ కൟ, whereࣁ் ൏  7 ݎ
(21). Note that the component 	૆௧  is important, since it can be used to capture the extra 8 
uncertainty due to the dimension reduction in replacing ્௧ by ۰௧િ௧. The coefficient vector િ௧ is 9 
assumed to follow a vector-autoregressive process of order one, 10 

િ௧ ൌ ۶௧િ௧ିଵ ൅ ા௧, ݐ ൌ 1,2, …,	 

where ۶௧ refers to the so-called propagator matrix, ા௧~घሺ0,  ௧ሻ is an r-dimensional innovation 11܃
vector, and ܃௧  is named the innovation matrix. The initial state િ଴~घ୰ሺ0, K଴ሻ  and K଴  is in 12 
general unknown.  13 

Combining Equations (6), (7) and (8), the (discretized) data process can be represented as 14 

௧܈ ൌ ௧ૄ௧۽ ൅ ௧۰௧િ௧۽ ൅ ௧૆௧۽ ൅ ૓୲, ݐ ൌ 1,…,	 

where ૄ୲ is deterministic and the other components are stochastic (20).  15 
  16 

3.3 Filtering, Smoothing and Prediction 17 

The STRE model can perform filtering, smoothing and prediction. The mathematical operations 18 
are defined as follows: Let િ௧|௧መ ൌ Eሺિ௧|ܢଵ:௧መሻ, ૆௧|௧መ ൌ Eሺ૆௧|ܢଵ:௧መሻ. Denote ۾௧|௧መ ൌ varሺિ௧|ܢଵ:௧መሻ as 19 
the conditional covariance matrix of િ௧ , and ܀௧|௧መ ൌ varሺ૆௧|ܢଵ:௧መሻ as the conditional covariance 20 
matrix ૆௧. For initial state, we set િ଴|଴ ൌ ૙ and ۾଴|଴ ൌ ۹଴. 21 

The fixed rank filtering estimator of ܇௧ is  22 

௧|௧܇              ൌ ௧ૄ௧۽ ൅ ௧۰௧િ௧|௧۽ ൅  ௧૆௧|௧, 23۽

             િ௧|௧ ൌ િ௧|௧ିଵ ൅ ௧۽௧|௧ିଵ۰௧୘۾
୘ൣ۽௧۰௧۾௧|௧ିଵ۰௧୘۽௧

୘ ൅ ۲௧൧
ିଵ
൫ܢ௧ െ ௧઺௧܆௧۽ െ  ௧۰௧િ௧|௧ିଵ൯, 24۽

              ૆௧|௧ ൌ σక,௧
ଶ ௧۽క,௧܄

୘ൣ۽௧۰௧۾௧|௧ିଵ۰௧୘۽௧
୘ ൅ ۲௧൧

ିଵ
൫ܢ௧ െ ௧઺௧܆௧۽ െ  ௧۰௧િ௧|௧ିଵ൯, 25۽

௧|௧۾               ൌ ௧|௧ିଵ۾ െ ௧۽௧|௧ିଵ۰௧୘۾
୘ൣ۽௧۰௧۾௧|௧ିଵ۰௧୘۽௧

୘ ൅ ۲௧൧
ିଵ
 ௧|௧ିଵ, 26۾௧۰௧۽

௧|௧܀               ൌ σక,௧
ଶ క,௧܄ െ σక,௧

ଶ ௧۽క,௧܄
୘ൣ۽௧۰௧۾௧|௧ିଵ۰௧୘۽௧

୘ ൅ ۲௧൧
ିଵ
క,௧σక,௧܄௧۽

ଶ , 27 

where ۲௧ ൌ σక,௧
ଶ ௧۽క,௧܄୲۽

୘ ൅ σక,௧
ଶ  క,௧. 28܄

 29 
    The fixed rank smoothing estimator of  ܇௧, t ∈ ሼ1,2, … , ܶሽ, is 30 

்|௧܇																 ൌ ௧ૄ௧۽ ൅ ்|௧۰௧િ௧۽ ൅  31	௧૆௧|்۽

              િ௧|் ൌ િ௧|௧ ൅ ۸୲൫િ௧ାଵ|் െ િ࢚ା૚|࢚൯ 32 

(11) 

(12) 

(9) 

(10) 
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																ξ௧|் ൌ ξ௧|௧ െ M୲൫η௧ାଵ|் െ η௧ାଵ|௧൯	1 

																P௧|் ൌ P௧|௧ ൅ J௧൫P௧ାଵ|் െ P௧ାଵ|௧൯J௧୘	2 

																R௧|் ൌ R௧|௧ ൅ M௧൫P௧ାଵ|் െ P௧ାଵ|௧൯M௧
୘,	3 

where ۸௧ ൌ ௧|௧۶௧ାଵ۾
୘ ௧ାଵ|௧۾

ିଵ ௧ۻ, ൌ σక,௧
ଶ ௧۽క,௧܄

୘ൣ۽௧۰௧۾௧|௧ିଵ۰௧୘۽௧
୘ ൅ ۲௧൧

ିଵ
௧|௧ିଵ۶௧ାଵ۾௧۰௧۽

୘ ௧ାଵ|௧۾
ିଵ . 4 

 5 
    The fixed rank prediction estimator of ܇௨, ݑ ∈ ሼݐ ൅ 1, ݐ ൅ 2,… ሽ, is 6 

୳|୲܇               ൌ ୳ૄ୳۽ ൅  ୳۰୳િ୳|୲ 7۽

              િ୳|୲ ൌ ሺ∏ ۶୧
୳
୧ୀ୲ାଵ ሻη୲|୲ 8 

୳|୲۾               ൌ ሺ∏ ۶୧
୳
୧ୀ୲ାଵ ሻ۾୲|୲ሺ∏ ۶୧

୳
୧ୀ୲ାଵ ሻ୘ ൅ ୳܃ ൅ ∑ ቄ൫∏ ۶୨

୳
୨ୀ୧ାଵ ൯܃୧൫∏ ۶୨

୳
୨ୀ୧ାଵ ൯

୘
ቅ୳ିଵ

୧ୀ୲ାଵ  9 

 10 

Computational Complexity 11 

 12 
The computational complexity is calculated based the total number of observed time 13 

stamps, the total number of observed spatial locations n୲ at time t, and the number of bases used 14 
in the hidden process ሼિ୲ሽ. We compare the computational complexity between the traditional 15 
spatio-temporal Kalman filtering (STKF) model (22) and the STRE model. Given observed data 16 
ሼܢଵ, … , ∑୲ሽ, the computational complexity of the spatio-temporal Kalman filtering is Oሺܢ n୲

ଷ
୲ ሻ. In 17 

comparison, the computational complexity of the fixed-rank filtering based on the STRE model 18 
is Oሺ∑ n୲rଷ୲ ሻ . In general, r  is fixed with r ≪ n . Therefore, we have the computational 19 
complexity for the STRE model as Oሺ∑ n୲୲ ሻ, which is linear order complexity. The comparison 20 
results indicate STRE model achieves significant computational savings, compared with 21 
traditional STKF.  22 
 23 
 24 

3.4 Parameter Estimation 25 

 26 
For the model parameter estimation process, the Expectation-Maximization (EM) algorithm (21) 27 
is used. We first assume that the parameter σ஫,୲ଶ  is known, and focus on the estimation of the 28 
parameters ી ൌ ൛β୲, σஞ,୲

ଶ , H୲, U୲, K଴ൟ. The STRE model only depends on the parameters H୲ and U୲ 29 

through the relationships η୲|୲ିଵ ൌ H୲η୲ିଵ|୲ିଵ  and P୲|୲ିଵ ൌ H୲P୲ିଵ|୲ିଵH୲୘ ൅ U୲ . It implies that 30 
there will be no unique MLE estimation if both H୲ and U୲ are allowed to be different at different 31 
time stamps. Hence, to achieve the identifiability of the parameters, it is assumed that H ൌ Hଵ ൌ32 
⋯ ൌ H୘ and U ൌ Uଵ ൌ ⋯ ൌ U୘. The complete negative log likelihood function is  33 

െ2 log Lୡሺીሻ ൌ െ2 log fሺܢଵ:୘, િଵ:୘, ૆ଵ:୘|ીሻ 

ൌ෍tr൫܄ఢ,௧ିଵሾܢ௧ െ ௧઺௧܆ െ ۰௧િ௧ െ ૆௧ሿሾܢ௧ െ ௧઺௧܆ െ ۰௧િ௧ െ ૆௧ሿ୘൯

୘

୲ୀଵ

/σఢ,௧ଶ  

(13) 
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൅෍n௧ log σక,௧
ଶ

୘

୲ୀଵ

൅
∑ tr൫܄క,௧

ିଵ૆௧૆௧୘൯୘
୲ୀଵ

σஞ,୲
ଶ ൅ log|۹଴| ൅ trሺ۹଴

ିଵ	િ଴િ଴
୘ሻ ൅ Tlog|܃|

൅෍trሺି܃ଵሾિ௧ െ ۶િ௧ିଵሿሾિ௧ െ ۶િ௧ିଵሿ୘ሻ
୘

୲ୀଵ

൅ const 

 1 
 2 

Let ۹௧
ሾ୪ାଵሿ ൌ ௧ା்۾

ሾ୪ሿ ൅ િ௧|்
ሾ୪ሿ િ௧|்

ሾ୪ሿ ୘  and ۺ௧
ሾ୪ାଵሿ ൌ ்|௧,௧ିଵ۾

ሾ୪ሿ ൅ િ௧|்
ሾ୪ሿ િ௧|்

ሾ୪ሿ ୘ . The EM updates of the 3 

parameters are as follows: 4 

													઺௧
ሾ୪ାଵሿ ൌ ൫܆௧୘܄ఢ,௧ିଵ܆௧൯

ିଵ
ఢ,௧ିଵ܄௧୘܆ ቂܢ௧ െ ۰௧િ௧|்

ሾ୪ሿ െ ୲|୘ࣈ
ሾ୪ሿ ቃ 5 

σஞ,୲
ଶ ൌ tr ቀ܄క

ିଵ ቂࡾ௧|்
ሾ୪ሿ ൅ ૆௧|்

ሾ୪ሿ ૆௧|்
ሾ୪ሿ ୘ቃቁ /n୲ 

۹଴
ሾ୪ାଵሿ ൌ ்|଴۾

ሾ୪ሿ ൅ િ଴|்
ሾ୪ሿ િ଴|்

ሾ୪ሿ ் 

۶ሾ୪ାଵሿ ൌ ൭෍ۺ௧
ሾ୪ାଵሿ

୘

୲ୀଵ

൱൭෍۹௧
ሾ୪ାଵሿ

୘ିଵ

୲ୀ଴

൱

ିଵ

 

ሾ୪ାଵሿ܃ ൌ
ቀ∑ ۹௧

ሾ୪ାଵሿ୘
௧ୀଵ െ ۶ሾ୪ାଵሿ ∑ ௧ۺ

ሾ୪ାଵሿ୘୘
௧ୀଵ ቁ

T
. 

The EM algorithm for the STRE model is as follows: 6 
 7 

Step 1: Select an initial estimate of the parameters ીሾ଴ሿ 8 

Step 2: For l ൌ 1,…, until convergence 9 
Step 2.1 Use the parameters ીሾ୪ሿ smoothing estimators in Equation (12) to estimate 10 

િ௧|்
ሾ୪ሿ , ୲|୘ࣈ

ሾ୪ሿ , ்|௧ࡾ
ሾ୪ሿ , and	۾௧|்

ሾ୪ሿ . 11 

Step 2.2 Use Equation (13) to obtain the updated ીሾ୪ାଵሿ 12 
 13 
 14 

4. STUDY SITE AND DATA COLLECTION 15 

 16 
The traffic volume data are collected in the City of Bellevue, Washington (WA). The traffic 17 
volume data are collected from the advance loop detector, which is located 100 ~ 130 feet (30.5 18 
~ 39.7 m) upstream from the stop bar at each approach. As of July 2010, the City has more than 19 
182 signalized intersections, 165 of which are controlled by traffic management center (TMC). 20 
Data from 706 loop detectors are sent to the TMC every minute. The data is currently21 

(14) 
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managed by the Digital Roadway Interactive Visualization and Evaluation (DRIVE) Net system 1 
(3, 23) at the Smart Transportation Application and Research Laboratory (STAR Lab) at the 2 
University of Washington (UW), Seattle.   3 

This study focuses on the downtown area because the intersections are closer to each 4 
other (around 500 feet (152.5 m) apart). The STRE model is expected to take advantage of the 5 
high correlation between detectors due to proximity of intersections. The downtown area in 6 
Figure 1 is selected as our test site. In total, 105 detectors in this area are included in the 7 
modeling process.  8th Ave is selected as the test route because it is a fairly busy street, with 8 
annual average weekday traffic of 37,700 (veh/day), connecting freeway I-405 and a large 9 
shopping mall (Bellevue Square). 14 detectors, seven eastbound and seven westbound, on 8th 10 
Ave are used to examine the model’s capability. Since each link only has only one detector, a 11 
link also represents a detector hereafter in this study. These links and reference points used in 12 
this study are illustrated in Figure 1. The reference point is overlapped with the intersection 13 
number and its concept will be explained in the next section.  14 

Weekday data (Tuesday, Wednesday and Thursday) collected from first two weeks of 15 
June, 2007 are used for training and the last two weeks of June, 2007 are used for cross 16 
validation. The verification data are collected during the first week of July in 2008. In this study, 17 
all data are aggregated into 5-minute intervals to reduce the effect of random noise. 18 

 19 
 20 

 21 
Figure 1 Downtown area in the City of Bellevue, WA (background images are from 22 
maps.google.com) 23 
 24 
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5. MODEL ADJUSTMENT 1 

Before the modeling process, the basis functions in Equation (8) have to be determined. As to the 2 
selection of basis function, the bisquare function is used in this study and is defined as: .  3 
 4 

b୧ሺܛሻ ൌ ቄ1 െ
‖܋ିܛ‖

୵
ቅ
ଶ
Iሺ‖ܛ െ ‖܋ ൏  ሻ,     (14) 5ݓ

 6 
where c is the  reference point, w is the range, and Iሺ⋅ሻ is an indicator function.  7 

The range parameter determines the independency between two links. The smaller the 8 
range parameter is, the more likely two links are independent.  Based on the experimental results, 9 
the east-west distance between downtown boundaries is considered most suitable for our study. 10 

Since the basis function determines the portion of how much predicted volume each 11 
reference point should contribute depending on the correlation between the detector and each 12 
reference point, the location and number of reference points are critical to prediction accuracy. 13 
The reference point is set as the point between two detectors. Since the detectors are assumed to 14 
be in the middle of the link, each reference point is located at the intersection (node) in this study. 15 
As found in our experiment, the more reference points are included in the analysis, the better the 16 
results will be. However, computational efficiency will decrease.  In order to increase model 17 
performance, the number of center points needs to be relatively small. In the experiments, 11 18 
reference points are considered and illustrated in Figure 1 in a dark color. It should be noted that, 19 
different from regular spatio-temporal data, the data collected in a transportation network need to 20 
consider the direction of traffic flow. Two links with reversed directions between same pair of 21 
intersections would overlap with each other. Therefore, the reference points determined by these 22 
two pairs of links will be also overlap (at the same intersection), but with opposite directions. 23 
 24 

Directional Penalty 25 

 26 
Generally, the common spatio-temporal model simply considers the distances between 27 

data observation points to determine their correlations. In traffic applications, the L1 distance 28 
(Manhattan distance) is more reasonable than Euclidean distance and used to calculate the spatial 29 
distance between detectors. However, the correlation between different detectors depends not 30 
only on their spatial distances, but also, importantly, on the traffic directions and traffic turning 31 
movement counts. In order to take all these factors into account, the penalty value, p, needs to be 32 
assigned to each basis function. The revised basis function is reformulated as:   33 

 34 

b୧ሺܛሻ∗ ൌ p ∗ b୧ሺܛሻ      (15) 35 

 36 

Note that the greater the penalty value (basis function), the lower the correlation between the 37 
reference point and the detector. In this case, the detector would contribute less volume to the 38 
reference point. Take the intersection in Figure 2 for example. To determine the penalty for the 39 
contribution of a detector to the reference point with eastbound direction, the rules are defined as 40 
follows:  41 
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Rule 1: If the detector is upstream of the reference point, then we use penalty p ൌ 1; i.e. Detector 1 
1 contributes most of the volume to the reference point.  2 

Rule 2: Similar to Rule 1, but the detector is downstream of the reference point. Then, penalty 3 
p ൌ 1.2; i.e. Detector 2 has a reduced volume contribution to the reference point.  4 

Rule 3: If the detector direction and the reference point direction are opposite, then the penalty is 5 
set as 0, meaning their correlation is not considered; i.e. Detector 3 has no contribution to the 6 
reference point because it is assumed that U-turn traffic is insignificant. 7 

Rule 4: If the detector direction and the reference point direction are perpendicular, the penalty p 8 
is set as 7.5; i.e. Detector 4 or Detector 5 has minor contribution to the reference point. This is 9 
because the traffic detected on Detector 1 is less likely to be collected by Detector 4 or Detector 10 
5 again since only through traffic detectors are used in this study. 11 

Note that all the penalties are adjusted based on the results from the cross validation.  12 
 13 

 14 
FIGURE 2   Basis function penalty assignment 15 
 16 
 17 
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 1 

6. PREDICTION PERFORMANCE 2 

6.1 Performance Indexes 3 

In order to verify the STRE model performance, two measures of effectiveness are used: Mean 4 
Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE). These two measures 5 
are widely used to evaluate traffic prediction performance (9, 25, 27) and are defined as follows:   6 
 7 
  8 

1

1
| |

n
t t

t t

G Z
MAPE

n G


 

     (15) 
9 

 
10 

2

1

( )
n

t t
t

G Z
RMSE

n






     (16) 
11 

 12 
 13 

6.2 Experimental Results 14 

To evaluate the temporal transferability of the STRE model, the model was verified with the data 15 
collected during the first week of July, 2008 (Tuesday, Wednesday and Friday). In our analysis, 16 
the prediction results of all the links are separated into groups: mall area and non-mall area 17 
because these two areas have different traffic patterns. The reference point, 322, is regarded as a 18 
separation boundary to separate two kinds of traffic patterns. The mall area (Bellevue Square) 19 
has about 180 retail stores and more than 10,000 parking spaces. This shopping mall attracts 20 
more than 43,000 visitors daily. Therefore, the parking lots around the mall create irregular 21 
traffic patterns that might disturb the spatio-temporal prediction accuracy. 22 

Table 1 shows the model verification results divided by two areas. Scenarios of 1, 5, 15 23 
and 60 step prediction horizons are adopted. As expected, the prediction accuracy degrades as 24 
the prediction horizon increases. However, the prediction accuracy only degrades slightly. 25 
Overall, the prediction results are satisfying. Figures 3(a) and 3(b) show the example results of 26 
Links 165 and 36, respectively. These two figures show two distinct patterns in the downtown 27 
area and demonstrate the challenges in our datasets. This results shows the STRE model is 28 
adaptive to many traffic patterns. 29 

In terms of prediction accuracy for different areas, the prediction MAPEs in the non-mall 30 
area are between 11.6% (one-step) and 12.5% (60-step) while the MAPEs in the mall area are 31 
between 16.9% and 17.5%. The resulting RMSEs follow the same trend of MAPEs. In the non-32 
mall area, the overall prediction accuracy is satisfying (most MAPEs ≈11 %). However, the 33 
STRE model tends to overestimate the volume on Link 215 (MAPE≈20%), as shown in Figure 34 
4(a). This link was a special data collection point where the City estimates the volume by its 35 
upstream and downstream detectors. In other words, the ground truth data being used are still 36 
estimated values. For the links in the mall area, the prediction of Link 45 has the lowest 37 
performance. The result is not surprising because the link is located at the major entrance and 38 
exit of the parking lot. The traffic pattern there is fairly unstable. As shown in Figure 4(b), the 39 
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STRE model tends to underestimate the volume because the model might be unable to capture 1 
the volume from the parking lot. 2 

For both mall or non-mall areas, the westbound traffic prediction is consistently better 3 
than the east bound one. It is very likely that the traffic control coordination system is designed 4 
to favor westbound traffic. The semi-actuated coordinated signal control scheme is implemented 5 
on 8th Ave to release traffic from the off ramp on the freeway (I-405). This finding suggests the 6 
consideration of traffic control scheme should be considered in the future modeling tuning 7 
process.  8 



 
TABLE 1  Prediction Results  

Link NO 3035 45 75 3225 76 46 36 165 215 275 266 276 216 166

RMSE 88.665 154.336 92.866 83.724 76.248 82.918 39.108 91.791 132.965 105.946 59.202 85.76 98.241 87.386

MAPE 0.159 0.283 0.202 0.143 0.128 0.121 0.147 0.115 0.19 0.129 0.08 0.11 0.098 0.093

Avg. MAPE (1)

Avg. MAPE (2)

RMSE 89.219 158.438 96.341 85.125 78.39 83.957 39.261 95.13 138.739 109.201 61.138 90.171 103.202 92.16

MAPE 0.16 0.292 0.21 0.146 0.132 0.123 0.148 0.119 0.199 0.134 0.083 0.117 0.103 0.099

Avg. MAPE (1)

Avg. MAPE (2)

RMSE 89.435 160.29 98.039 85.569 78.96 84.382 39.267 96.197 141.366 110.85 61.75 92.229 104.7 93.784

MAPE 0.161 0.296 0.214 0.146 0.132 0.123 0.148 0.12 0.204 0.136 0.085 0.12 0.104 0.101

Avg. MAPE (1)

Avg. MAPE (2)

RMSE 89.448 160.515 98.243 85.595 78.984 84.406 39.268 96.277 141.583 110.985 61.776 92.324 104.759 93.843

MAPE 0.161 0.296 0.215 0.147 0.132 0.123 0.148 0.121 0.205 0.136 0.085 0.12 0.105 0.101

Avg. MAPE (1)

Avg. MAPE (2)

Avg. MAPE : Average MAPE

Eastbound Westbound

0.174

0.197

0.202

0.204

Eastbound

Non‐Mall AreaMall Area

0.169 0.116

Westbound

0.132 0.095

0.134 0.151 0.101

0.134

0.175

0.145

0.205

0.125

Prediction 
Horizon

0.122

0.154 0.103

0.153 0.103

0.124

0.173

1‐step

5‐step

15‐step

60‐step

0.134



(a)  

(b)  
FIGURE 3   Examples of Prediction Results (a) July, 6, 2008 (Wed) (Link 165), and (b) 
July, 5, 2008 (Tue) (Link 36) 
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(a)  

(b)  
FIGURE 4   Links with low prediction accuracy , (a) July, 5th, 2008 (Tuesday) (Link 215) 
(b) July, 5th, 2008 (Tuesday) (link 45) 
 1 
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7. CONCLUSIONS AND RECOMMENDATIONS 1 

Predicting traffic on an urban traffic network using spatio-temporal models has become a 2 
popular research area. The paper proposes a STRE model that can predict traffic volume by 3 
considering many detectors simultaneously. The City of Bellevue, Washington is selected as the 4 
test site because the City has more than 700 detectors covering the entire city. 105 detectors are 5 
included in the modeling process and the detectors on 8th Ave between a large shopping mall and 6 
freeway are used to demonstrate the prediction capability of the STRE model.  This is because 7 
8th Ave is considered one of the busiest streets in the City. The experiments show the STRE 8 
model can effectively predict traffic volume. Without further tune-up, all the experimental links 9 
have MAPEs between 8% and 15% except three special locations, Link 45 (Overall MAPE ≈ 10 
29%), Link 75 (Overall MAPE ≈ 21%) and Link 215 (Overall MAPE ≈ 20%). As discussed, the 11 
predictions for these locations could be potentially improved if the regional traffic patterns are 12 
considered in the basis function adjustment process. As shown in previous research (9), most 13 
other algorithms result in MAPEs ranging from 6% to 20%. Considering the high volatility of 14 
our test network and active interaction between each block, the STRE model is encouraging.  15 

Even though the STRE model provides encouraging prediction results, many challenges 16 
still exist. Importantly, many parameters need to be adjusted during the calibration process. In 17 
the meantime, pre-knowledge of traffic patterns would facilitate the model-tuning process. For 18 
future model improvement, one can follow many potential directions. First, investigating how to 19 
decide the number of reference points and locations is an issue worth being addressed in the 20 
future. Second, the selection of the basis function is critical. Once the basis function is 21 
determined, the tune-up process is also challenging. For example, the proposed penalty function 22 
in the basis function might need to change. A case-by-case basis might tremendously improve 23 
the results, especially for Links 215 and 45 that underperform in the study. Only through-24 
movement detectors are used in this study. If the turning-movement counts are available, the 25 
penalty value can be more precisely determined to increase prediction accuracy.  26 
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