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Abstract
The increasing demands on drinkable water, along
with population growth, water-intensive agricul-
ture and economic development, pose critical chal-
lenges to water sustainability. New techniques to
long-term water conservation that incorporate prin-
ciples of sustainability are expected. Recent stud-
ies have shown that providing customers with us-
age information of fixtures could help them save
a considerable amount of water. Existing disag-
gregation techniques focus on learning consump-
tion patterns for individual devices. Little attention
has been given to the hierarchical decomposition
structure of the aggregated consumption. In this pa-
per, a Deep Sparse Coding based Recursive Disag-
gregation Model (DSCRDM) is proposed for water
conservation. We design a recursive decomposition
structure to perform the disaggregation task, and in-
troduce sequential set to capture its characteristics.
An efficient and effective algorithm deep sparse
coding is developed to automatically learn the dis-
aggregation architecture, along with discriminative
and reconstruction dictionaries for each layer. We
demonstrated that our proposed approach signifi-
cantly improved the performance of the benchmark
methods on a large scale disaggregation task and
illustrated how our model could provide practical
feedbacks to customers for water conservation.

1 Introduction
According to the 2012 statistics reported by [WHO, 2012]

and [UNICER, 2012], more than 780 million people live in
a shortage of portable water and about 2.5 billion people are
living in areas where it is difficult or even impossible to access
safe sanitation facilities. It’s estimated that 2.3 billion people
will be living without access to basic water needs for drink-
ing, cooking and sanitation in 2025 [Concern-Worldwide,
2008]. To ensure that the world’s water resources can be sus-
tained for future generations, water conservation becomes an
increasingly important research topic.

Generally, there are two main approaches to achieve the
goal of water conservation: deploying infrastructures for ef-
ficient use of water, or reducing water demand by changing

consumption habits. The first strategy will inevitably incur a
large investment to develop new techniques for intelligent use
of water, while the second strategy is more economical and
mainly depends on customers’ consumption behaviours. Re-
cent studies have shown that detailed feedbacks on consump-
tion patterns would largely affect customers’ behaviours and
ultimately save consumption up to 20 percent [Fischer, 2008;
Froehlich et al., 2010; Houde et al., 2013]. We intend to em-
ploy the advances of artificial intelligence to separate aggre-
gated water consumption into component devices, and pro-
vide device level usage to users for water conservation.

Water disaggregation is an emerging research topic, which
involves taking an aggregated water consumption, for exam-
ple, the total smart meter readings of a house, and decom-
posing it into the usages of different water fixtures. Re-
cently, significant research efforts have been attracted to de-
tect the “open” and “close” operations of appliances based
on high sample rate sensing data. Froehlich et al. proposed
HydroSense, a pressure based sensor, to identify activities
at individual water fixtures within a home and estimate the
amount of fixture level water usage [Froehlich et al., 2009].
Furthermore, an extensive study of the HydroSense technol-
ogy was conducted by Larson et al. through a comprehen-
sive analysis of valve- and fixture-level events identification
[Larson et al., 2012]. In 2011, Froehlich et al. performed a
longitudinal study of pressure sensing and concentrated on in-
ferring real-world water usage events in the home [Froehlich
et al., 2011]. Srinivasan et al. designed flow and motion sen-
sor signatures based clustering techniques to identify unique
water fixtures [Srinivasan et al., 2011]. Parson et al. used
Hidden Markov Model for energy disaggregation in an itera-
tive manner [Parson et al., 2011]. However, all of these stud-
ies depend on high sample rate (1Hz∼1Khz) sensing data. It
is not practical to widely deploy high sample rate smart me-
ters in real world due to privacy and reliable data transmission
concerns.

This motivates another major stream for water disaggrega-
tion research with the usage of low sample rate (about 1/900
Hz) sensing data. Kolter et al. proposed discriminative sparse
coding for low sample rate energy signal disaggregation, and
applied structured prediction to refine the basis functions to
minimize the regularized disaggregation error [Kolter et al.,
2010]. However, the accuracy of this model will decease
when common basis functions are shared by many devices.
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A FHMM-based unsupervised disaggregation framework is
presented in [Kim et al., 2011] to incorporate additional fea-
tures, such as time of day and dependency between appli-
ances. However, it’s impractical to collect such prior knowl-
edge especially when handling data collected from a large
scale area. Wang et al. incorporated the shape and activation
characteristics into sparse coding based dictionary learning,
and achieved acceptable performance [Wang et al., 2012].
But only three devices were analysed since it’s impractical
to manually examine the spans and shapes for all devices, es-
pecially when the number of devices is large.

In this paper, we look specifically at the task of low sample
rate water consumption disaggregation. Since existing ap-
proaches are all lack of the mechanisms to learn the decom-
position structure, we conduct the first study on the represen-
tation learning of the disaggregation process. Through de-
signing a hierarchical recursive structure, we can control the
disaggregation sequence. Considering the problems that the
learnable parameters of discriminative sparse coding model
will significantly increase with the number of devices, several
critical issues will emerge, such as over-fitting due to exces-
sive complexity and slow convergence caused by vast local
optima. It’s of significant importance to perform separation
in a structural manner targeting for reducing the size of dic-
tionaries. We disaggregate consumption of each device from
total consumption step by step, and learn a much smaller dis-
criminative dictionary to distinguish the current device from
all other residual devices in each step. Suppose there is a total
consumption of k devices, and there are N bases for each de-
vice. If we learn the dictionary for separation using discrim-
inative sparse coding, there will be a dictionary of k ×N for
distinguishing the k devices simultaneously. Generally, there
are more than 10 identical water appliances in each house-
hold, i.e., k > 10. On the other hand, using the recursive
structure, we only need to learn a dictionary of 2×N for the
separation between the current device and the remainders. An
effective algorithm is designed for the discovery of the opti-
mal separation sequence with the objective of minimizing the
recursive disaggregation error respectively for each layer. In
summary, the primary contributions of this paper are as fol-
lows:

• Construction of the hierarchical decomposition
structure: We investigate the advantages of representa-
tion learning for disaggregation, and introduce sequen-
tial set to formalize the recursive structure.

• Design of a Deep Sparse Coding based Recursive
Disaggregation Model (DSCRDM): DSCRDM is pro-
posed to incorporate the separation architecture into the
sparse coding model, and the recursive disaggregation
error is presented to perform optimization.

• Efficient and effective learning algorithm for the dis-
covery of separation sequence: We propose the al-
gorithm deep sparse coding by relaxing the exact con-
straints to learn the layer level discriminative and recon-
struction dictionaries sequentially.

• Extensible experiments to validate the effectiveness
of DSCRDM: We demonstrated that DSCRDM outper-
formed other models in both whole home and device

level measures in a large scale real-word disaggregation
task.

2 Preliminaries
In this section, we introduce the notations and discriminative
disaggregation sparse coding.

Notations and Concepts Assume there are k water fix-
tures, such as faucet and irrigation, in a household. For ∀i =
1, 2, · · · , k, there exists a consumption matrix Ci ∈ R

T×M ,
where T is the number of intervals in one day, and M indi-
cates the number of days. The jth column of Ci, denoted as
Cij , represents the consumption of device i in the jth day,

where j = 1, 2, · · · ,M . The lth element of Cij , indicated

by Cijl, denotes the water usage of device i at the lth interval

in the jth day, where l = 1, · · · , T . The aggregated water

consumption over all devices is C̄ =
∑k

i=1 Ci. During the
course of training, water consumption of individual fixture
is supposed to be available, i.e., C1,C2, · · · ,Ck, while at
the testing phase, only the aggregated consumption C̄ could
be used for disaggregation. Under the context of sparse
coding for source separation [Schmidt and Olsson, 2006;
Schmidt et al., 2007], water consumption of the ith fixture
is approximated by Ci ≈ BiAi, where Bi ∈ R

T×N denotes
the dictionary for fixture i, and Ai ∈ R

N×M is the activa-
tions of dictionary Bi. N is the number of basis functions in
dictionary Bi, which can be activated by Ai for the recon-
struction of Ci [Olshausen and Field, 1996].

Discriminative Disaggregation Sparse Coding Discrim-
inative Disaggregation Sparse Coding (DDSC) was proposed
in [Kolter et al., 2010] and designed for energy disaggrega-
tion. With the assumption that the disaggregation dictionary
is not necessary the same as that for reconstruction, they de-
fine the augmented regularized disaggregation error as the ob-
jective function

Ẽ =

k∑
i=1

(
1

2

∥∥∥Ci −BiÂi

∥∥∥2
F
+ λ

∑
p,q

(
Âi

)
pq

)

subject to:

Â1:k = argmin
A1:k≥0

∥∥∥C̄− B̃1:k(A
T
1:k)

T
∥∥∥2
F
+ λ

∑
i,p,q

(Ai)pq

(1)

Where ‖X‖F ≡
(∑

p,q (X)pq

)1/2

denotes the Frobenius

norm, λ ∈ R+ is a regularization parameter, X1:k is the short-
hand for [X1,X2, · · · ,Xk]. In Equation (1), B1:k represents
the reconstruction bases, which are learned based on sparse

coding model. B̃1:k denotes the discriminative bases which

intend to reduce the difference between Â1:k and A�
1:k, where

A�
1:k is the activations learned by sparse coding. A structured

prediction based algorithm was applied for optimization by

iteratively updating Â1:k and B̃1:k.
However, DDSC might fail to identify disaggregation dic-

tionary when training bases B̃1:k with a large value of k and
limited label data. Moreover, when the number of fixtures in-
creases, it’s of high probability that consumption patterns of
devices are similar with each other. Consequently, the disag-
gregation performance of DDSC will decrease significantly.
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Figure 1: Illustration of the recursive disaggregation architec-
ture.

Since the size of B̃1:k increases with k, the vast amount of
learnable parameters will lead to many local optima and high
time consumption for iterative update. In addition, due to
high cost and invasion of privacy concerns, only a small quan-
tity of label data can be collected and available for training.

This might result in poor efficacy of DDSC since B̃1:k is
large.

3 Deep Sparse Coding based Recursive
Disaggregation Model

In this section, we design a decomposition structure to over-
come the limitations of DDSC and propose the algorithm
deep sparse coding to perform disaggregation task.

3.1 Design of the Recursive Decomposition
Structure

Representation of the structure or data has been considered as
a significant factor for the success of machine learning [Ben-
gio et al., 2012], which also plays an important role in the
disaggregation task. For example, suppose there are three
parallel devices: two similar Showers (denoted as SH1 and
SH2) along with one Clothes Washer (denoted as CW ). If
we disaggregate these three activities simultaneously, it’s dif-
ficult to discriminate the two similar Showers. On the other
hand, if we consider a different representation: SH1 along
with the combination of SH2 and CW , then we can first de-
rive SH1 from the total consumption, and then separate SH2

from the combination. Since the consumption patterns of the
combination of one Shower and one Clothes Washer is usu-
ally quite different from those of one Shower, it’s rather easier
to achieve a high disaggregation performance based on such
a disaggregation structure.

This motivates us to conduct an in-depth study on the rep-
resentation of decomposition structure, and design a recur-
sive architecture to conduct the disaggregation task. An il-
lustration is shown in Figure 1: The disaggregation process
is conducted in a recursive manner to separate one device

from the remainders at one layer until all devices are exam-
ined. Considering there are five water fixtures, Irrigation is
firstly extracted while the remainders are combined together
and regarded as an artificial device. Then with the usage of
the 1st residual consumption, Humidifier is separated from
the other devices. Similarly, Dishwasher, Bath, and Hot Tub
could be identified. Based on the designed structure, it’s clear
that within each step, only 2×N basis functions are required
to decompose the aggregated consumption into one single de-
vice and the remainders. Compared with DDSC, it is capable
of fully utilizing the limited label data, since k − 1 combina-
tions of the data are inherently incorporated in the disaggre-
gation process. To formalize the representation of the disag-
gregation architecture, we introduce the definition sequential
set,

Definition 1. Suppose set S contains k elements, i.e., S =
{1, 2, · · · , k}. Then its sequential set Si, (1 ≤ i ≤ k) is

defined as: Si = {S(1)
i ,S

(2)
i }, where

S
(1)
i =

{
e ∈ S , i = 1

e ∈ S
(2)
i−1 , 2 ≤ i ≤ k

,

and S
(2)
i = S \⋃i

j=1

{
S
(1)
j

}
, 1 ≤ i ≤ k.

The reason we call Si for 1 ≤ i ≤ k as
the sequential set is that it inherently sorts set S as

S
(1)
1 ,S

(1)
2 , · · · ,S(1)

k . For example, Figure 1 shows one se-
quential set for the devices: S

(1)
1 = sIrrigation, S

(2)
1 =

{sHumidifier, sDishwasher, sBath, sHot Tub}, S
(1)
2 = sHumidifier,

S
(2)
2 = {sDishwasher, sBath, sHot Tub}, S

(1)
3 = sDishwasher, S

(2)
3 =

{sBath, sHot Tub}, S
(1)
4 = sBath, S

(2)
4 = {sHot Tub}, S

(1)
5 =

sHot Tub, S
(2)
5 = ∅, where s� is the order number for the corre-

sponding device. The inherent sorting result is Irrigation →
Humidifier → Dishwasher → Bath → Hot Tub, which corre-
sponds to the disaggregation architecture we need to learn.

3.2 Disaggregation Structure Learning via Deep
Sparse Coding

Given a set of k devices, we intend to identify a sequential set
to reveal the optimal disaggregation order, which can maxi-
mize the disaggregation performance. Mathematically, given
S = {1, 2, · · · , k}, we have the following optimization prob-
lem,

Minimize E =

k∑
i=1

2∑
j=1

[
1

2

∥∥∥CS
(j)
i

−B
S

(j)
i
Â

S
(j)
i

∥∥∥2
F

+ λ
∑
p,q

(
Â

S
(j)
i

)
pq

] (2)

subject to:

S
(1)
i ∈ S, S

(2)
i = S \

i⋃
j=1

{
S
(1)
j

}
, (1 ≤ i ≤ k). (3)
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ÂS1:Sk
= argmin

AS1:Sk
≥0

k∑
i=1

[
1

2

∥∥C̄Si − BSiASi

∥∥2
F

+ λ
∑
p,q

(ASi)pq

] (4)

A
S

(j)
i

= argmin
A≥0

[
1

2

∥∥∥CS
(j)
i

−B
S

(j)
i
A
∥∥∥2
F

+ λ
∑
p,q

(A)pq

] (5)

B
S

(j)
i

= argmin
B≥0,‖bj‖2≤1

1

2

∥∥∥CS
(j)
i

−BA
S

(j)
i

∥∥∥2
F

(6)

BS1:Sk
= argmin

BS1:Sk
≥0,‖bj‖2≤1

k∑
i=1

1

2

∥∥∥ASi
− ÂSi

∥∥∥2
F

(7)

Where E denotes the recursive disaggregation error,

C
S

(1)
i

denotes the consumption of device S(1)
i , C

S
(2)
i

=∑|S(2)
i |

l=1 C
(S

(2)
i )l

(
(S

(2)
i )l is the lth element in S

(2)
i

)
represents

the ith residual consumption, C̄Si
= C

S
(1)
i

+C
S

(2)
i

is the total

consumption at the ith layer; BSi =
[
B
S

(1)
i
,B

S
(2)
i

]
denotes

the discriminative dictionary which is learned by minimiz-

ing the difference between ÂSi
and ASi

, B
S

(j)
i

is the recon-

struction dictionary, A
S

(j)
i

is the activations learned by sparse

coding, Â
S

(j)
i

is the estimated activations for discrimination,

ASi
=

[
A

S
(1)
i

A
S

(2)
i

]
, and XS1:Sk

= {XS1
, · · · ,XSk

}.

This optimization problem is a Non-Convex Mixed-Integer
Nonlinear Programming (Non-Convex MINLP) problem, and
it’s NP-hard in general [Garey and Johnson, 1979]. Specifi-
cally, the time complexity of this problem increases exponen-
tially with the number of involved devices, which will cause
a prohibitively high time complexity for a large-sized S.

This motivates us to design the algorithm deep sparse cod-
ing to iteratively solve this problem based on the assumption

that the choice of S
(1)
i (1 ≤ i ≤ k) can be learned sequen-

tially. We introduce the objective function of deep sparse
coding, which targets for the optimization with each layer,

Minimize Ei =
2∑

j=1

[
1

2

∥∥∥CS
(j)
i

−B
S

(j)
i
Â

S
(j)
i

∥∥∥2
F

+ λ
∑
p,q

(
Â

S
(j)
i

)
pq

] (8)

The constraints for the above objective are similar with
those formulated by Equations (3), (4), (5), (6), (7), but here
we only consider those factors which affect the current layer
i. Through the relaxation, in terms of the number of involved
devices, the time complexity of the problem decreases from
O(k!) to O(k2). The details of deep sparse coding algorithm
are shown in Algorithm 1. We use Procedure RDSC to iden-
tify the device that needs to be disaggregated at each layer.

Algorithm 1 Deep sparse coding

Input: Ci: consumption for device i; λ : regularization
parameter; α : gradient step learning rate; device set S =
{1, · · · , k}.
Output: Si: layer-wise optimal sequential set of S; B

S
(j)
i

:

discriminative dictionary; B
S

(j)
i

: reconstruction dictionary.

1: Initialization.
2: foreach i in S
3: (Ai,Bi) ← SC(Ci).
4: m ← k. l ← 1.
5: RDSC ( l, S, C1:m, B1:m, A1:m).

Procedure RDSC( l, S, C1:m, B1:m, A1:m)

1: if (S == ∅) Then RETURN.
2: foreach i in S
3: CRi

← ∑
j∈S,j �=i Cj . C̄ ← Ci +CRi

.

4: (ARi
,BRi

) ← SC (CRi
).

5: (Bi,BRi
, Âi, ÂRi

)← DDSC (C̄, [Bi,BRi ], [Ai,ARi ]).

6: S
(1)
l ← argmin

i∈S
Ei. S

(2)
l ← S \ {S(1)

l }. Sl ← {S(1)
l ,S

(2)
l }.

7: c ← S
(1)
l . BSl

← {Bc,BRc
}. BSl

← {Bc,BRc
}.

8: RDSC(l+1,S
(2)
l ,C1:m\C

S
(1)
l

, B1:m\B
S
(1)
l

, A1:m\A
S
(1)
l

).

Procedure SC(Ci)

1: Initialize Ai, Bi with non-negative values.
2: Iterate until convergence:

3: Ai ← argmin
A≥0

1
2 ‖Ci −BiA‖2F + λ

∑
p,q(A)p,q .

4: Bi ← argmin
B≥0,‖b(j)‖2≤1

1
2 ‖Ci −BAi‖2F .

5: RETURN (Ai, Bi).

Procedure DDSC(C̄, [B1,B2], [A1,A2])

1: A�
1:2 ← A1:2. B1:2 ← B1:2. B ← [B1,B2].

2: Iterate until convergence:

3: Â1:2 ← argmin
A1:2≥0

[
1
2

∥∥C̄− B1:2A1:2

∥∥2
F
+ λ

∑
p,q(A1:2)pq

]
.

4: B ←
[
B−α

((
C̄− BÂ

)
ÂT − (C̄− BA�

)
(A�)T

)]
+

.

5: for all i, j, b
(j)
i ← b

(j)
i /‖b(j)

i ‖2.

6: RETURN ( B1, B2, Â1, Â2 ).

RDSC can fully utilize Procedure DDSC in different layers to
discriminatively optimize the bases B by reducing the differ-
ence between reconstruction and discrimination activations.
Consequently, we can learn the sequential set Si of S, which
specifies the disaggregation order. Both discriminative and
reconstruction bases can also be learned for disaggregation.

Estimation of Device Level Consumption Based on the
structure and parameters learned by deep learning algorithm
(Algorithm 1), we can estimate device level consumption.
The details of the disaggregation process are shown in Al-
gorithm 2.
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Algorithm 2 Device Level Consumption Estimation

Input: C̄: aggregated consumption; Si: sequential set of S;
B
S

(j)
i

: discriminative dictionary; B
S

(j)
i

: reconstruction dic-

tionary.

Output: Ĉi: estimated consumption for device i.

1: Initialization.
2: for i ← 1 to k

3: Â1:2 ← argmin
A1:2≥0

[
1
2

∥∥C̄− BSiA1:2

∥∥2
F
+ λ

∑
p,q(A1:2)pq

]
.

4: Ĉ
S

(1)
i

← B
S

(1)
i

Â1.

5: C̄ ← B
S

(2)
i
Â2.

4 Experimental Evaluation
In this section, we conducted a large scale water disaggrega-
tion task based on a real-world data set.

4.1 Experiment Setup
Data Set: We conducted water disaggregation with a data set
collected by Aquacraft [Mayer et al., 1999]. The data set con-
tains 1,959,817 water use events recorded during a two-year
study from 1,188 residents across 12 study sites (e.g., San
Diego, Denver, Eugene, and Seattle) located in six distinct
regions of North America. Since the widely deployed smart
meters are constrained to report at a low sample rate (typ-
ically 1/900 Hz), for generalization purpose, we converted
the event records into interval based time series with a 1/900
Hz sample rate. In the course of experiments, we performed
training/testing with respect to each household: 70% of the
data for training, 30% of the data for testing.

Benchmark Methods: Two baselines were considered
for comparison. One is DDSC model proposed in [Kolter
et al., 2010], which was designed for energy disaggregation.
The other one is FHMM based disaggregation approach pre-
sented in [Kim et al., 2011; Kolter and Johnson, 2011], which
was capable of disaggregating power data. Since the features
required for CFHMM in [Kim et al., 2011] are not available
in the scenario of water disaggregation, we naturally used
FHMM instead of CFHMM.

Evaluation Metrics: Both device and whole home level
evaluation metrics were used to measure the performance.
The whole home disaggregation performance was evaluated
with accuracy and Normalized Disaggregation Error (NDE),

Accuracy =

∑
i,q min

(∑
p (Ci)pq ,

∑
p(Ĉi)pq

)
∑

p,q(C̄)pq
(9)

NDE =

√√√√√√
(∑

i,p,q

∥∥∥(Ci)pq − (Ĉi)pq

∥∥∥)2

(∑
i,p,q (Ci)pq

)2 (10)

Where Ĉi = BiÂi is the estimated consumption of device i.
Large accuracy indicates that the estimated consumption can
cover the true data well; while large NDE means that the esti-
mated consumption is significantly different from the ground

truth. In addition, the metrics used to evaluate the device level
disaggregation performance include precision, recall, and F-
measure. Precision is the fraction of estimated consumption
that is correctly separated, recall indicates the fraction of true
consumption that is successfully classified, and F-measure is

calculated by 2× precision×recall
precision+recall

.

4.2 Performance Evaluation and Comparison
Device Level Disaggregation Performance: We assessed
DSCRDM, DDSC, and FHMM with 12 domestic water fix-
tures. Based on Algorithm 1, we learned the recursive disag-
gregation structure and its corresponding disaggregation se-
quence for these 12 water devices was 11 → 4 → 6 → 2 →
9 → 7 → 5 → 10 → 3 → 8 → 12 → 1.

As shown in Table 1, DSCRDM significantly outper-
formed DDSC and FHMM. Specifically, DSCRDM achieved
48.53% in average F-measure (the mean value of all de-
vices’ F-measure), while DDSC and FHMM only respec-
tively achieved 22.89% and 16.80%. DSCRDM was capable
of attaining more than 80% precision for Humidifier, Treat-
ment, Irrigation, and Swimming Pool, and achieving more
than 70% recall for Faucet and Shower. Interestingly, DDSC
outperformed DSCRM in recall with respect to Dishwasher,
Humidifier, Treatment, Hot Tub, and Bath, but DDSC reached
a relatively low precision for these devices. The low preci-
sion and high recall phenomenon was caused by the fact that
DDSC failed to identify the discriminative dictionaries, and
the estimated consumption was much larger than true con-
sumption, causing good recall and bad precision. Similarly,
FHMM was able to achieve 48.55% in recall but only 9.74%
in precision.

Household Level Disaggregation Performance: The
whole home level accuracy and normalized disaggregation
error comparison between DSCRDM, DDSC, and FHMM
are shown in Figure 2. DSCRDM significantly outperformed
FHMM with respect to accuracy. However, it failed to be
more successful than DDSC. Referring to Equation 9, we
could conclude that the estimated consumption of DDSC is
much larger than the true consumption, which is also in ac-
cordance with the low precision and high recall phenomenon
mentioned above. Since the low precision and high re-
call phenomenon occurred in five water fixtures, it largely
distorted the authenticity of accuracy. NDE achieved by
DSCRDM was as small as 0.7417, which was much smaller
than those attained by either DDSC or FHMM. Since NDE
measures the difference between the estimated and actual
consumption, we could infer that DSCRDM better estimated
the overall water usage.

Water Conservation with Detailed Feedbacks We ap-
plied DSCRDM to estimate the device level consumption and
provide water usage information to users for water conser-
vation. Figure 3 shows that the Actual Consumption (Ac-
tual Con.) in one home for a short period from 7:15am to
12:15am, along with the Estimated Consumption (Estimated
Con.) in the testing set by DSCRDM. In whole home level,
DSCRDM was capable of correctly capturing most of the ac-
tual consumption in spite of the small estimation error. The
figure also illustrates both true and estimated time series of
four selected devices of this home. In many cases, the devices
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Devices DSCRDM DDSC FHMM

1. Faucet
19.11% 16.12% 9.94%
70.08% 22.99% 50.85%
30.03% 18.95% 16.62%

2. Dishwasher
59.85% 6.06% 8.57%
59.87% 60.31% 22.92%
59.86% 11.01% 12.47%

3. Toilet
38.16% 30.71% 9.74%
32.48% 15.55% 48.55%
35.09% 20.65% 16.23%

4. Humidifier
84.75% 37.50% 3.66%
51.27% 85.53% 35.32%
63.89% 52.13% 6.63%

5. Cooler
77.16% 7.43% 74.63%
48.57% 6.38% 40.92%
59.61% 6.87% 52.86%

6. Treatment
83.83% 24.15% 6.28%
28.68% 70.71% 17.55%
42.74% 36.01% 9.25%

7. Hot Tub
66.28% 11.86% 9.34%
48.20% 70.77% 21.59%
55.82% 20.32% 13.04%

8. Shower
75.77% 7.23% 6.17%
71.36% 43.50% 18.53%
73.50% 12.40% 9.26%

9. Bath
53.17% 11.98% 7.03%
43.09% 53.36% 20.83%
47.60% 19.57% 10.51%

10. Clothes Washer
42.24% 18.68% 9.86%
50.64% 14.93% 27.52%
46.06% 16.59% 14.52%

11. Irrigation
81.36% 65.72% 28.77%
30.53% 26.60% 10.11%
44.40% 37.87% 14.96%

12. Swimming Pool
84.48% 40.17% 57.40%
13.81% 15.38% 16.21%
23.74% 22.24% 25.28%

Table 1: Device level performance for DSCRDM, DDSC,
and FHMM. Performance is reported as precision recall F-
measure (each occupies one line).
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Figure 2: Whole home level performance of DSCRDM,
DDSC and FHMM.

Clothes Washer, and Dishwasher were estimated accurately.
There were also cases DSCRDM could not perform estima-
tion precisely, such as the premature estimation of the spike
for Shower, and the underestimation of the peak of Faucet.
Nonetheless, despite some poor estimations, the estimated
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Figure 3: Illustration of the true consumption and estimated
consumption by DSCRDM, both in units of Gallons.

water consumption is still quite informative, which could ef-
fectively help consumers save a significant amount of water.
We investigated the general disaggregation performance of
DSCRDM over all devices with the usage pie charts. As
shown in Figure 4, DSCRDM could correctly identify the us-
age percentage information for most devices, although it mis-
classified some of Irrigation as Faucet. Such high level usage
information could inform users that Irrigation occupies more
than 70% of the total, indicating that further actions need to
be taken, such as using the most water-efficient drip irriga-
tion.
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Figure 4: Total water consumption percentages.

5 Conclusion
Water disaggregation, which separates total consumption into
individual device consumption, has significant contribution
to water conservation. In this paper, we examine the impor-
tance of structure learning for disaggregation task and present
a machine learning model to automatically discover the de-
composition structure. The extensible experiments showed
that our algorithm significantly outperformed the benchmark
methods. The estimated consumption results by our proposed
model were specifically inspected, and detailed feedbacks
could be provided to help customers for conservation.
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