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Abstract

Energy crisis and climate change have caused a global con-

cern and motivated efforts to reduce energy consumption.

Studies have shown that providing appliance-level consump-

tion information can help users conserve a significant amount

of energy. Existing methods focus on learning parallel sig-

nal signatures, but the inherent relationships between the

signatures have not been well explored. This paper presents

the Hierarchical Probabilistic Model for Energy Disaggrega-

tion (HPMED). We derive the discriminative features from

low sample rate power readings to characterise device func-

tional modes. The HPMED model bridges the discrimina-

tive features, working states, and aggregated consumption.

To address the analytical intractable problem, an efficient al-

gorithm is proposed to approximately infer the latent states

for disaggregation task. Extensive experiments on a real-

world dataset demonstrated the effectiveness of the proposed

approach.

1 Introduction

The growing energy consumption issues pose various
challenges, for example, the guarantee of sufficient
energy supplies, the reduction of greenhouse effect,
and “the death of globalization”due to the increase
of transportation cost [1]. While the International
Energy Agency (IEA) showed that energy demand
continues to rise over 2% annually since 1973 [2], the
U.S. Energy Information Administration (EIA) predicts
that if current energy usage patterns continue, there will
be about a 50% increase in world energy consumption
by 2030 [3].

Generally, there are two main ways for tackling
the energy conservation challenge: using more efficient
energy infrastructures, or reducing energy demand by
changing consumption habits. The former can incur
a high cost due to large capital for developing new
technologies, while the latter depends primarily on
users’ behaviours, which can be achieved in a cost-
efficient manner. Previous studies have shown that
providing appliance level information to end-users will
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save a significant amount of energy [5]. This motivates
us to employ machine learning techniques to break down
aggregated energy consumption and provide users with
device level usage information.

Thanks to ubiquitous smart meters, which regularly
report the whole-home level power readings, energy dis-
aggregation methods can take the data and use it to
predict device level consumption. However, the smart
meters can only collect energy readings at a very low
resolution (generally 1/900 Hz), which makes it diffi-
cult to identify discriminative features from the data.
We carefully studied the patterns of low sample rate
readings, and learned that most appliances function in
multiple states. For example, a microwave can work in
“Popcorn”, “Defrost”, or “Keep Warm”modes. Thus,
we introduce the state-based features to characterise the
working modes. We then propose a hierarchical prob-
abilistic model to disaggregate the signal by incorpo-
rating the state-based features, functional modes, and
interval based aggregated consumption.

The major contributions of this paper are summa-
rized as follows:

• In-depth study on the discriminative fea-
tures of low sample rate power readings: We
carefully investigate the features for distinguishing
the functional modes of devices, and develop an al-
gorithm to extract the state-based features.

• Design of a Hierarchical Probabilistic Model
for Energy Disaggregation (HPMED): A hi-
erarchical model HPMED is proposed by incorpo-
rating the discovered features, working states of de-
vices, and aggregated smart meter readings.

• Efficient and effective estimation of latent
states: The characteristics of the estimation prob-
lem are thoroughly analysed and an efficient algo-
rithm is developed to approximately infer the work-
ing states of devices with desirable accuracy.

• Extensive experiments to validate the ef-
fectiveness of HPMED: We demonstrated that
HPMED outperformed other models in both whole-
home and device level measures. The extensibility
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of HPMED is validated through cross home evalu-
ations.

The remainder of the paper is organized as fol-
lows. Section 2 states the problem and related work.
The state-based features discovery and extraction are
presented in Section 3. Section 4 introduces the hier-
archical probabilistic model for energy disaggregation,
and presents an algorithm for estimating latent work-
ing states. The effectiveness of the proposed approach
is illustrated with extensive experiments in Section 5.
Section 6 summarizes our work.

2 Problem Statement and Related Work

Energy disaggregation is the task of decomposing a
whole-home aggregated energy consumption into its
component devices. Assume there are M devices, such
as lamp, computer, and dish washer. For each device
j = 1, . . . ,M , we have an energy consumption matrix
Y(j) ∈ RN×L, where N is the number of intervals in
one day, and L is the number of days for the collected

data. The lth column of Y(j), denoted by y
(j)
·,l ∈ RN×1,

is the energy usage of the lth day for a particular
device j, where l = 1, . . . , L. The ith element in vector

y
(j)
·,l , denoted by y

(j)
i,l , is the energy consumption value

of device j at interval i in day l, named as interval
level consumption. We denote the aggregated energy
consumption over all equipments as Ȳ, Ȳ =

∑M
j=1 Y(j).

The lth column of Ȳ holds the aggregated consumption
of the lth day for a given household. The ith element

of ȳ·,l, denoted as ȳi,l =
∑M

j=1 y
(j)
i,l , is the aggregated

consumption at interval i in day l. At training phase,
we assume that we can access the individual device
consumption matrix Y(1),Y(2), . . . ,Y(M). At testing
phase, we can only access the aggregated consumption
matrix Ȳ, and the goal is to decompose Ȳ into its
components Ŷ(1), Ŷ(2), . . . , Ŷ(M).

Early work in power disaggregation focused on
high sample rate electricity usage readings. A major
work called Nonintrusive Appliance Load Monitoring
(NALM) was proposed by Hart [6]. Hart identified the
different power consumption signatures of various elec-
trical appliances, and suggested using Finite State Ma-
chines (FSM) to model the signatures. A large amount
of research have been invested to improve NALM. A
pattern recognition approach proposed by Farinaccio
and Zmeureanu [7] classified aggregated electricity con-
sumption into its end uses. Laughman et al. suggested
installing higher sample rate meters to collect higher
resolution data, and then applying higher harmonics in
the aggregated current signal to distinguish loads in the
signature space [8]. Additionally, the voltage noise sig-
natures were studied and characterized for classifying

the operation of electrical appliances [9].
Recently, due to the broadly deployed smart meters

producing aggregated readings at a low resolution, the
research focus has shifted to disaggregating low sam-
ple rate residential power consumption. Kolter et al.
proposed Discriminative Disaggregation Sparse Coding
(DDSC) [10]. They defined the regularized disaggrega-
tion error as the objective function aiming at learning
better basis functions (signatures) than regular sparse
coding for separating aggregated readings. However,
it’s shown that many devices share similar basis func-
tions especially when the number of parallel devices is
large. This leads the failure of DDSC, since it can-
not distinguish the set of devices with common basis
functions. A Factorial Hidden Markov Model (FHMM)
based framework has been presented through consid-
ering additional features, such as correlation between
activities [11]. However, they only consider two work-
ing modes (“On” and “Off”) of devices, which is obvi-
ously not practicable in real life. For example, portable
washer usually works in “Soak”, “Wash”, “Rinse” and
“Spin”. Naturally, the FHMM-based method lacks the
mechanism to handle complex power signatures.

Existing energy disaggregation techniques are inca-
pable of embodying the intrinsic characters of low sam-
ple rate aggregated consumption, which requires the in-
corporation of certain essential features into the model.
DDSC assumes there exist discriminative basis func-
tions for identifying the consumption of devices. In fact,
many devices have analogous consumption shapes, thus
leading to devices share similar basis functions and caus-
ing the failure of disaggregation. FHMM-based meth-
ods assume that each appliance has two states (“on”
and “off”), which cannot capture all functional modes
of devices. The performance of FHMM-based method
will be greatly reduced when dealing with complex con-
sumption patterns. This motivates us to identify the
inherent features from low sample rate data, and in-
corporate the discriminative features into a hierarchical
model for disaggregation task.

3 Patterns Learning from Smart Meter
Readings

In this section, we explore the discriminative features
across devices for low sample rate aggregated power
readings, and develop an algorithm for learning the
features from data.

3.1 Evidence Collection By inspecting the daily
energy readings of devices, we found that most devices
work in various states, and the corresponding energy
consumptions can significantly differ under different
states. Take computer as an example, “Standby”state
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Figure 1: Daily energy consumption of typical equip-
ments.

consumes only 10% of that of “High-performance”state,
while “Screen-saver” state consumes about 33.3%. In
addition, a computer in “Shut-down”state consumes
about 3–5W per hour due to the indicator lights.

In Figure 1, we visualize the daily power consump-
tion of four typical equipments. As shown in the figure,
there are at least two states for any equipment in work-
ing condition. Specifically, we can use four states to
model the functional modes of “Lighting”. Most of the
time, it consumes a small quantity of power per hour
and we use State 1 to describe it. Early in the morning,
there is a small peak indicating that the hosts might go
to the bathroom and we use State 2 to depict it. Then
in the evening, there are two other distinct states. We
use State 3 to represent the low consumption rate, and
use State 4 to trace the high consumption rate. Simi-
larly, we can model “Microwave” with 4 states, model
“Stove”with 2 states, and model “Kitchen Outlets”with
3 states.

In short, we found that most equipments function in
multiple states. Since each state contains unique char-
acteristics, it’s important to identify these states and
select appropriate features to distinguish the functional
modes of devices.

3.2 Features Extraction Considering different
states, we intend to discover the state-based features.
Naturally, the interval level power consumption is
one distinct characteristic for differentiating working
conditions. However, many devices share similar
interval level power consumption under different states.
For instance, average power consumption of a one-ton

air conditioner is almost the same as that of high power
mode of microwave (about 1200 Watts). Fortunately,
the start time and duration of microwave is much
different from those of air conditioner. This inspires us
to extract another set of features to characterize the
devices and their working states.

Formally, we use X(j) to denote the state matrix of
device j. Each column is a state vector for one day,

i.e., x
(j)
·,l . The ith element of x

(j)
·,l , denoted as x

(j)
i,l ,

indicates the state of device j at interval i in day l.

x
(j)
i,l = 1, . . . ,Kj , where Kj is the number of states for

a particular device j. We employ the Non-Parametric
Bayesian Clustering techniques (NPBC) proposed in
[12] to discover the number of states Kj , and the state
label for each interval consumption. We then extract
the state-based start time and duration with consecutive
constraints. Suppose vector a

(j)
k contains the start time

of device j at state k, and vector b
(j)
k contains the

duration of device j at state k, where k = 1, . . . ,Kj .
The start time is the order number of the interval, at
which the state begins (from 1 to N), and the duration
is measured with the number of intervals spanned by
the corresponding state (from 1 to N). To identify the
start time and duration of a specific state for a given
device, we break down the time series of device j at
state k with consecutive constraints, and then store the

start time and duration of state k respectively into a
(j)
k

and b
(j)
k . The details of the algorithm are shown in

Algorithm 1.

Algorithm 1 Learning state-based Features

Input: Y(j) ∈ RN×L〈 power consumption of devices〉 ,
where j = 1, . . . ,M .

Output: Kj〈the number of states for device j〉; f
(j)
k 〈the

power consumption of device j at state k〉; a
(j)
k 〈 the start

time vector of state k for device j〉; b
(j)
k 〈 the duration

vector of state k for device j〉.

1. for j ← 1 to M
2. [Kj , cluster label]← NPBC

(
Y(j)

)
.

3. for k ← 1 to Kj

4. f
(j)
k ← Y(j) (cluster label = k).

5. [c1, c2, . . . , cO]← break down f
(j)
k with

consecutive constraints.
6.

[
a
(j)
k ,b

(j)
k

]
← extract start time and dura-

tion from [c1, c2, . . . , cO].
7. end for
8. end for

In Line 2, NPBC(Y(j)) means to apply the Non-
Parametric Bayesian Clustering algorithm to Y(j). In
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Line 4, Y(j)(cluster label = k) means to extract the
kth cluster’s power consumption from Y(j). In Line 5,
O indicates the number of sub-continuous time series,
which are obtained after segmentation. The consecutive
constraints are satisfied if and only if the original
interval order number are adjacent. For example, if the
original interval order number of c1,1 is 10, then that
of c1,2 should be 11 (where c1,1 and c1,2 are the first
two elements of c1). In Line 6, the start time is the
interval order number of the first element respectively
in c1, c2, . . . , cO, while the duration is the length of
c1, c2, . . . , cO.

4 A Hierarchical Probabilistic Model

In this section, we propose a hierarchical probabilistic
model that incorporates the state-based features with
the working state and aggregated consumption.

4.1 Generative Model We begin by studying the
distribution of power consumption of devices at a spe-
cific working state. Histograms of the consumption of
four appliances are shown in Figure 2. Through examin-
ing the consumption patterns, we learned that under a
particular state, the consumption varies in a small range
with a peak in the center, which can be well captured by
a Gaussian distribution. Based on the observation, we
assume that the consumption of any device at any state
follows a Gaussian distribution. Mathematically, for
∀i = 1, . . . , N, j = 1, . . . ,M, l = 1, . . . , L, k = 1, . . . ,Kj ,
we have,

(4.1) Pr
(
y
(j)
i,l | x

(j)
i,l = k

)
= N

(
y
(j)
i,l | µ

(j)
k , ν

(j)
k

)
,

where y
(j)
i,l is the power consumption of device j at

interval i in day l, x
(j)
i,l = k indicates the current

working state is k for device j at interval i of day

l. µ
(j)
k and ν

(j)
k are the parameters governing the

Gaussian distribution, which are respectively the mean
and variance. Generally, the mean value of a state
represents the average power consumption while the
variance captures the transient features between the
current state with its adjacent states.

We introduce two new random variables, s
(j)
k and

r
(j)
k , which respectively indicate the start time and

duration of device j at state k. We set s(j) =[
s
(j)
1 , s

(j)
2 , . . . , s

(j)
Kj

]
, and r(j) =

[
r
(j)
1 , r

(j)
2 , . . . , r

(j)
Kj

]
.

Since we are most concerned with the relationship
between aggregated consumption and the state-based
features, we develop a three-layer Bayesian probabilistic
model to formalize the relation. As shown in Figure
3, the observed variables are represented with shaded
nodes, while hidden variables are depicted with white
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Figure 2: Histograms of the power consumption of
appliances under a specific working mode.

nodes. The only observed variable is the aggregated
consumption. The state-based start time and duration
lie in Layer 1 (Feature Layer), which depicts the
functional modes of devices. In Layer 2 (State Layer),
they are the working states of devices, which depend on
the start time and duration. If interval i lies between
the start time of state k and the end time of state
k (the end time is the start time plus the duration),
then the state at interval i is k. The aggregated
consumption for a particular interval i is located in
Layer 3 (Consumption Layer), which is decided by
the working states of all devices at interval i.

We carefully analyze the start time and duration
over intervals to identify their corresponding distribu-
tions. As shown in Figure 4, we present the start
time and duration of “Stove”and “Washer dryer”un-
der a particular working state. Through inspecting the
start time and duration of most devices, we learned that
Gamma distribution can capture the frequent variations
as it has more freedom in both distribution shape and
scale.

Consequently, in Layer 1, the prior probability
of the start time and duration respectively follows
a Gamma distribution, and for ∀j = 1, . . . ,M, k =
1, . . . ,Kj , we have

(4.2) Pr
(
s
(j)
k

)
= Γ

(
s
(j)
k | α̂

(j)
k , β̂

(j)
k

)
,

(4.3) Pr
(
r
(j)
k

)
= Γ

(
r
(j)
k | ᾱ(j)

k , β̄
(j)
k

)
,

where α̂
(j)
k and β̂

(j)
k respectively denote the shape and

rate parameter of start time for device j at state k;
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while ᾱ
(j)
k and β̄

(j)
k respectively denote the shape and

rate parameter of duration for device j at state k.
Formally, ∀i = 1, . . . , N, j = 1, . . . ,M, l = 1, . . . , L,

x
(j)
i,l is dependent on s(j) and r(j). For ∀k = 1, . . . ,Kj ,

we have

Pr
(
x
(j)
i,l = k

)
= Pr

(
s
(j)
k ≤ i ≤ s

(j)
k + r

(j)
k

)
= Pr

(
s
(j)
k ≤ i, r

(j)
k ≥ i− s(j)k

)
=
γ
(
α̂
(j)
k , β̂

(j)
k · i

)
Γ
(
α̂
(j)
k

)
−

i∫
0

Pr(s
(j)
k )

γ
(
ᾱ
(j)
k , β̄

(j)
k ·

(
i− s(j)k

))
Γ
(
α̂
(j)
k

) ds
(j)
k ,

(4.4)

where γ(x, y) denotes the lower incomplete gamma
function. This equation states that for any i, j, l, if it

lies between the start time s
(j)
k and end time s

(j)
k + r

(j)
k ,

then the state of device j at interval i in day l is k. The
derivation of Equation (4.4) can be found in [16].

As the values of s
(j)
k and r

(j)
k is restricted as integers

between 1 and N , we employ the following mapping
schema for scale purpose.
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Figure 4: Histograms of the start time and duration of
appliances under a specific working mode.

(4.5)

f
(
δ
(j)
k = n

)
=


∫ 1

−∞ Pr
(
δ
(j)
k

)
dδ

(j)
k , n = 1∫ n

n−1 Pr
(
δ
(j)
k

)
dδ

(j)
k , 1 < n < N∫ +∞

N−1 Pr
(
δ
(j)
k

)
dδ

(j)
k , n = N

,

where n ∈ N?, δ
(j)
k is s

(j)
k or r

(j)
k . Then, we revise the

Equation (4.4) by replacing Pr
(
s
(j)
k

)
with f

(
s
(j)
k

)
, and

substituting the integral operation with summation.
As the aggregated consumption over devices de-

pends on the states of all devices, for ∀i = 1, . . . , N, j =
1, . . . ,M, l = 1, . . . , L, we have

Pr
(
ȳi,l | x(1)i,l = k1, x

(2)
i,l = k2, . . . , x

(M)
i,l = kM

)
= N

ȳi,l | M∑
j=1

µ
(j)
kj
,

M∑
j=1

ν
(j)
kj

(4.6)

The derivation of Equation (4.6) can be found in
[16].

4.2 Inference and Learning Based on the gener-
ative model, we perform inference to learn the hidden
working states of devices, i.e., X(j), j = 1, . . . ,M . Given
any device j = 1, . . . ,M, k = 1, . . . ,Kj , parameters{
α̂
(j)
k , β̂

(j)
k

}
,
{
ᾱ
(j)
k , β̄

(j)
k

}
respectively for start time and

duration could be derived from the extracted vectors
a
(j)
k and b

(j)
k . Moreover, the consumption related pa-

rameters
{
µ
(j)
k , ν

(j)
k

}
can be derived from the consump-
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tion records f
(j)
k at state k for device j.

During the course of testing, the only observations
are the aggregated consumption over devices, i.e., Ȳ.
We need to learn the state matrix of all devices (i.e.,
X(j), j = 1, . . . ,M), which specifies the interval level
working mode of devices. We intend to identify the
optimal values of X(j) using the Maximum a Posterior
(MAP) optimal estimator, which maximizes the state
posterior Pr

(
X(1),X(2), . . . ,X(M) | Ȳ

)
. For a given Ȳ,

maximizing the posterior is equivalent to maximizing
the joint probability Pr

(
Ȳ,X(1),X(2), . . . ,X(M)

)
, thus

{
X?(1),X?(2), . . . ,X?(M)

}
= argmax
{X(1),X(2),...,X(M)}

Pr
(
Ȳ,X(1),X(2), . . . ,X(M)

)
(4.7)

The optimization problem (4.7) can be decomposed
into N · L independent sub-problems, where N is the
number of intervals in one day, and L is the number of
days to be estimated. The sub-problem associated with
interval i of the lth day is given by

{
x
?(1)
i,l , x

?(2)
i,l , . . . , x

?(M)
i,l

}
= argmax{

x
(1)
i,l ,x

(2)
i,l ,...,x

(M)
i,l

}Pr
(
ȳi,l, x

(1)
i,l , x

(2)
i,l , . . . , x

(M)
i,l

)

= argmax{
x
(1)
i,l ,x

(2)
i,l ,...,x

(M)
i,l

}
[
Pr
(
ȳi,l | x(1)i,l , x

(2)
i,l , . . . , x

(M)
i,l

)

×
M∏
j=1

Pr
(
x
(j)
i,l

)]

(4.8)

Considering the fact that device j has Kj states, the
theoretical computational cost increases exponentially
with the number of devices M (Suppose the number
of states for all devices are K, then the complexity is
KM ·N · L).

This motivates us to propose a heuristic algorithm
that can efficiently achieve a local optimum. We first
remove the devices which do not satisfy the time and
consumption constraints, then the rest of devices will be
considered as combinational candidates in the following
processes. We define a threshold to preclude searching
for global optimum once a satisfactory local optimum
is reached. The details of the method are shown in
Algorithm 2.

In Line 2, CL represents the candidate list of
devices that will be considered for decomposing the
consumption of interval i. In Phase 1: Construct
the candidate list, we use time and consumption

Algorithm 2 Approximately Infer States

Input: ȳi,l〈the aggregated power consumption over
devices 〉.
Output: x

?(j)
i,l 〈the state for all devices〉, where j =

1, . . . ,M〉.

1. for i← 1 to N
2. CL← [].

{Phase 1: Construct candidate list.}
3. for j ← 1 to M
4. O1 ← Check if i is abnormal under time

constraints of device j.
5. O2 ← Check if ȳi,l is abnormal under

consumption constraints of device j.
6. if O1 = false and O2 = false
7. CL← [CL; j].
8. end if
9. end for

{Phase 2: Search optimal solution.}
10. Is ← 1.
11. repeat
12. Evaluate all possible combinations of de-

vices in CL with size Is.
13. Is ← Is + 1
14. until convergence or Is > size(CL)
15. end for

constraints to rule out invalid devices. In Line 4, the
outliers are detected using the algorithm proposed in
[14] with respect to start time and duration constraints.
If current i is an outlier under the start time and
duration distributions (Gamma distribution) of working
states for devices j, then we conclude that the device j
is invalid at interval i. Similarly, in Line 5, we detect
the invalid devices for interval i using consumption

constraints. Based on the fact that ȳi,l =
∑M

j=1 y
(j)
i,l ,

ȳi,l should be greater than or equal to any y
(j)
i,l . If

for ∀k = 1, . . . ,Kj (except the “off”state, where the

consumption is near zero), we have ȳi,l < µ
(j)
k − 3ν

(j)
k ,

then we consider device j as invalid, because there is
less than 0.15% probability of occurring in this interval.
In Phase 2: Search optimal solution, we begin by
setting the size of combination to be 1, then evaluate
all possible combinations with the current size. During
the course of evaluation, suppose the acquired minimum
value of the joint probability shown in Equation (4.8)
is m1, and the corresponding maximum value is m2.
Then the convergence criteria in Line 19 is set as
m1

m2
≤ λ, (λ is the predefined threshold). That is if

the ratio of the minimum value over the maximum
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Table 1: Device level performance, which is reported as
Precision Recall F-measure (each occupies one line).

Devices HPMED FHMM DDSC

1 Mains 1
92.33% 62.51% 15.42%
83.49% 14.89% 0.002%

87.69% 24.06% 0.004%

2 Mains 2
35.41% 45.19% 24.84%
91.76% 41.94% 0.01%

51.10% 43.51% 0.02%

3 Kitchen outlets
63.29% 41.24% 100%
81.55% 74.73% 0.10%

71.27% 53.15% 0.20%

4 Furnace
46.78% 8.76% 48.82%
96.50% 99.57% 0.43%

63.01% 16.11% 0.86%

5 Lighting

34.28% 37.92% 48.31%

70.44% 47.39% 0.03%

46.12% 42.13% 0.06%

6 Refrigerator

47.79% 59.96% 35.24%

91.98% 41.06% 0.012%

62.90% 48.74% 0.025%

7 Microwave

22.17% 10.11% 92.93%

69.54% 99.59% 0.05%

33.63% 18.36% 0.10%

8 Bathroom gfi1
72.21% 7.16% 66.01%

89.58% 100% 0.54%

79.96% 13.36% 1.07%

9 Electronics

86.57% 96.96% 46.59%

89.71% 59.49% 0.02%
88.11% 73.73% 0.04%

10 Stove

63.16% 4.36% 66.70%

90.77% 100% 9.30%
74.49% 8.35% 1.83%

11 Washer dryer

64.42% 5.33% 66.22%

89.11% 100% 0.76%
74.78% 10.13% 1.51%

12 Air conditioning

66.61% 7.30% 59.57%

89.61% 100% 0.48%
76.42% 13.61% 0.95%

value is less than λ, then the search is terminated.
Accordingly, the combination of the candidates with the
maximum joint probability is selected as the optimal

value
{
x
?(1)
i,l , x

?(2)
i,l , . . . , x

?(M)
i,l

}
.

Since the state matrix X(j) has been derived, we can
estimate the power consumption of individual device

using Pr
(
y
(j)
i,l | x

(j)
i,l = k

)
as defined by Equation (4.1).

The constraint on this estimation is
∑M

j=1 y
(j)
i,l = ȳi,l.

As long as y
(j)
i,l follows a Gaussian distribution, we

apply the method proposed in [13], and perform the

disaggregation task through approximating
∑M

j=1 y
(j)
i,l =

ȳi,l as
∑M

j=1 y
(j)
i,l ≤ ȳi,l. This approach will enforce the

sum consumption of all devices to be as close to the
aggregated consumption as possible, while preserving
the individual working state characteristics.

1gfi: ground fault interrupter

HPMED FHMM DDSC
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Figure 5: Whole-home level performance of HPMED,
FHMM, and DDSC.

5 Experimental Results

In this section, we evaluate the performance of the hier-
archical probabilistic model with extensive experiments
across several homes.

5.1 Experiment Design In this section, we describe
the data set, and discuss the evaluation metrics.

Data Set: We employed a real-world dataset
REDD [15], consisting of 1 Hz power readings for five
real homes. Due to cost and privacy concerns, the
broadly installed smart meters are not allowed to report
readings in such a high granularity (typically as low
as 1/900 Hz). We intend to promote the experimental
environment towards real-life scenarios. Consequently,
for every device j, we aggregate the 1 Hz power readings
to be 1/900 Hz.

Evaluation Metrics: For the purpose of examin-
ing the performance of models in both global and local
scenarios, we inspect the whole-home and device level
evaluation metrics. We assessed the whole-home level
disaggregation capability with accuracy and normalized
disaggregation error. Accuracy measures the average
consumption capability, abbreviated as Acc.

(5.9) Acc. =

∑
j,l min

(∑
i y

(j)
i,l ,
∑

i ŷ
(j)
i,l

)
∑

i,l ȳi,l
,

where ŷ
(j)
i,l is the estimated consumption at the ith

interval in lth day for device j. We used the Normalized
Disaggregation Error (NDE) to measure the effect of the
difference values between true and estimated data

(5.10) NDE =

√√√√√√
(∑

i,j,l

∥∥∥y(j)i,l − ŷ
(j)
i,l

∥∥∥)2(∑
i,j,l y

(j)
i,l

)2
From the above two equations, large accuracy indi-

cates that estimated results almost covers all the true
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data, and large normalized disaggregation error hints
that the predicted data is significantly different from
the true data.

The device level performance was evaluated with
precision, recall, and F-measure, where the precision
is the fraction of disaggregated consumption that is
correctly classified, recall is the fraction of true device
level consumption that is successfully separated, and F-
measure is 2× precision×recall

precision+recall .

Table 2: Performance across homes, which is reported
as Acc. / NDE.

Home ID
Num. of

HPMED FHMM
Devices

Home 1 8 0.9215 / 0.4567 0.4583 / 0.909

Home 2 11 0.9246 / 0.3311 0.2773 / 0.9344

Home 3 12 0.9868 / 0.8103 0.3583 / 0.9079

Home 4 13 0.9538 / 0.7081 0.2658 / 0.9434

Home 5 15 0.9941 / 1.6717 0.3624 / 0.926

5.2 Performance Evaluation and Comparison
We compared HPMED with FHMM and DDSC, and
applied HPMED to analyse the consumption distribu-
tion of households.

Device Level Disaggregation Performance Com-
parison HPMED, FHMM, and DDSC were assessed
with the real data set, where 70% for training and
30% for testing. The household appliances were in-
spected and the results are shown in Table 1. HPMED
outperformed both FHMM and DDSC on disaggrega-
tion task. Specifically, HPMED achieved as much as
37.02% higher than FHMM in average F-measure, and
achieved 66.82% higher than DDSC. For some equip-
ments, such as “Furnace”, “Microwave”and “Bath-
room gfi”, FHMM was capable of attaining a near 100%
recall, but with low precision. This is caused by the
fact that the predicted consumption is much larger than
the true consumption induced by the inaccurate power
signatures. DDSC failed completely on this task due
to the lack of discriminative basis functions. Interest-
ingly, for most devices, DDSC could achieve a fair or
even high precision (e.g., more than 90% of precision
in “Kitchen outlets”and “Microwave”). However, the
acquired recall is very low. The reason is that the esti-
mated consumption is far smaller than true data leading
to a high value in precision and a low value in recall.

We studied the whole-home level performance of
HPMED, FHMM and DDSC measured with NDE and
Acc. As shown in Figure 5, HPMED is capable of
achieving more than 0.9 in Acc. and less than 0.5 in
NDE, while FHMM only achieves 0.45 in Acc. with
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Figure 6: True (top), HPMED predicted (bottom)
breakdown in device level for one day.

a rather large NDE (more than 0.9). As expected,
DDSC has poor whole-home performance. Since DDSC
consistently achieved a poor performance in both device
and whole-home level measure, we dismiss it in the
following discussions.

Overall Evaluation Across Homes To demonstrate
the extensibility of the proposed model, we investigated
the global performance of HPMED and FHMM across
multiple homes, and conducted the comparison in terms
of accuracy and NDE. Five homes were considered along
with various appliances. As shown in Table 2, HPMED
performed much better than FHMM for the first four
homes in both accuracy and NDE. However, for the
fifth home, FHMM outperformed HPMED in NED. The
reason is that the prediction results of HPMED could
cover almost all of the true data, but the difference value
between the prediction and the ground truth is large.
The accuracy of FHMM is much smaller than that of
HPMED due to its inaccurate prediction results.

Another pattern shown in Table 2 is that HPMED is
more robust than FHMM when the number of involved
devices increases. For example, comparing the results
of “Home 1”and “Home 2”, we found that HPMED
remains high performance despite the little increase
of both accuracy and NDE, however, FHMM changes
greatly with more than 18.00% decrease in accuracy
and a small increase in NDE. This is because FHMM
is more sensitive to the signatures of devices, which are
significantly affected by the number of involved devices.

Consumption Distribution Analysis We analysed
the consumption contribution of devices, and intended
to provide users with the distribution information for
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conservation purpose. We begin by visually inspecting
a daily true appliance consumption along with the
prediction results by HPMED.

To reveal the main contribution to the total con-
sumption, we show the power usage distribution in Fig-
ure 7 (refer [16] to view the distribution analysis for
other three homes). The left column shows the true dis-
tribution while the right column presents the predicted
information by HPMED. For both “home 1”and “home
2”, HPMED was capable of labelling the top appli-
ances, {“Mains 1”, “Mains 2”}, consuming more than
55% of the total for “home 1”and more than 60% for
“home 2”, in spite of the misclassification between these
two devices. In addition to “Mains 1” and “Mains 2”,
HPMED properly separated other major classes, such
as, “Kitchen outlets 1”, “Kitchen outlets 2”, “Light-
ing 1”and “Lighting 2” for “home1”, and “Refrigera-
tor”and “Microwave” for “home2”.

In summary, we compared HPMED with DDSC and
FHMM with a large scale of appliances, and showed
that HPMED archived the best performance. Besides,
we showed that HPMED is more robust than FHMM
with respect to the number of involved devices. We also
demonstrated that HPMED has competent capability
in distribution analysis.

6 Conclusions

In this paper, we present a concrete solution to the dis-
aggregation of low sample rate smart meter readings.
We begin by deriving the temporal features start time
and duration of functional modes for devices, which are
practical for distinguishing devices. HPMED is pro-
posed for the disaggregation task by incorporating the
temporal features, functional modes, and the interval
level consumption. Using low sample rate consump-
tion data from real homes, we showed that HPMED
outperformed other methods in both device and whole-
home level performance measures, and was capable of
accurately disaggregating aggregated readings into per-
appliance usage information.
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