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Abstract Spatial outlier detection is an important research problem that has re-
ceived much attentions in recent years. Most existing approaches are designed for
numerical attributes, but are not applicable to categorical ones (e.g., binary, ordinal,
and nominal) that are popular in many applications. The main challenges are the
modeling of spatial categorical dependency as well as the computational efficiency.
This paper presents the first outlier detection framework for spatial categorical data.
Specifically, a new metric, named as Pair Correlation Ratio (PCR), is measured
for each pair of category sets based on their co-occurrence frequencies at specific
spatial distance ranges. The relevances among spatial objects are then calculated
using PCR values with regard to their spatial distances. The outlierness for each
object is defined as the inverse of the average relevance between an object and its
spatial neighbors. Those objects with the highest outlier scores are returned as spatial
categorical outliers. A set of algorithms are further designed for single-attribute and
multi-attribute spatial categorical datasets. Extensive experimental evaluations on
both simulated and real datasets demonstrated the effectiveness and efficiency of
our proposed approaches.
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1 Introduction

With the ever-increasing volume of spatial categorical data, identifying hidden but
potentially interesting patterns of anomalies has attracted considerable attentions.
Spatial Categorical Outlier (SCO) analysis, which aims at detecting abnormal objects
in spatial context, becomes one of the most important spatial data mining branches.
The identification of SCOs can help extract important knowledge in many appli-
cations, including geological data, meteorological data, satellite image analysis, and
hotspot identification.

During the past decades, numerous Traditional Categorical Outlier Detection
(TCOD) algorithms [11, 14, 29] have appeared in literature. TCOD approaches can
be categorized into four groups: rule-based, probability distribution-based, entropy-
based and similarity-based. Rule based approaches [2, 10, 21, 22, 35, 47] mine rules
from the data set, and observations which are significantly uncommon are recognized
as anomalies. Typical algorithms include LERAD [10], WSARE [47], and FP-Outlier
[22]. Distribution-based approaches [9, 14, 34, 36] model the normal data as a
specific probability density distribution. Each object that significantly deviates the
normal distribution is identified as an outlier. Representative models include the
Bayesian network and dependency trees. Entropy-based methods [19, 20] define
TCOD as an optimization problem. That is, identifying l objects such that after
removing them, the expected entropy of the rest of data set is minimized. Similarity-
based approaches combine some typical TNOD approaches [8, 37] with certain
well-designed dissimilarity measures to identify TCOs. Meanwhile, some research
works focus on efficiently identifying categorical outliers, including AVF [29] and
MapReduce AVF [30]. When encountering Spatial Categorical Outlier Detection
(SCOD), TCOD approaches sometimes can’t be satisfactory with the spatial context.
First, spatial objects have complex structures (e.g., points, lines, polygons and
locations, etc.). Second, traditional approaches do not consider spatial dependencies
when identifying anomaly patterns. As the geographic rule of thumb, “Nearby things
are more related than distant things [46]” requires more considerations on spatial
auto correlation in spatial analysis. Third, TCOD methods treat spatial and non-
spatial attributes equally, which should be considered separately for spatial anomaly
identification.

Recently, a number of algorithms [1, 3, 12, 17, 45] have been proposed to
identify outliers in spatial databases [39, 40]. There are three basic classes, namely,
visualization-based, statistic-based, and graph-based. Visualization-based ap-
proaches utilize visualization techniques to highlight outlying objects. Representa-
tive algorithms include scatterplot [18] and Moran scatterplot [3]. Statistic-based
approaches apply statistical tests to measure the local inconsistencies. Typical
methods include Z [42], median-based Z [32], iterative-Z [32], and GLS-SOD [13]
approaches. Graph-based methods [28, 31, 43] detect spatial outliers by designing a
function to compute the difference between specific observation and its neighboring
points. Other works identified outliers by studying the property of specific spatial
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data. Zhao et al. proposed a wavelet-based method to detect region outliers [49].
Lu et al. presented a multi-scale approach to detecting spatial temporal outliers [33].
Adam et al. introduced an approach that considers both the spatial and semantic
relationship among neighbors [1]. A local outlier measure [45] was proposed by Sun
and Chawla to capture the local behaviors of data in their spatial neighborhood.
However, most of the aforementioned techniques concentrated on continuous real-
valued data attributes. There is no mechanism for processing spatial categorical data
with no implicit ordering.

In real world, the non-spatial attributes of spatial data are usually category-
typed, where attributes have no intrinsic order. A typical example is Rock whose
values include Igneous, Sedimentary, and Metamorphic. This special property makes
anomaly detection in spatial categorical domain more complicated than that in
numerical one. Currently, there is a lack of Spatial Categorical Outlier Detec-
tion (SCOD) approaches. When encountering categorical dataset, some introduce
Spatial Numerical Outlier Detection (SNOD) methods by directly mapping the
categorical attributes to continuous ones. However, there are several critical issues:
(1) Mis-utilization: statistically, the definition of an SCO is different with that of
a Spatial Numerical Outlier (SNO). Although both of them focus on the iden-
tification of spatial abnormal behaviors, SCOD is determined by the co-occurrence
infrequency, while SNOD focuses on the numerical differences; (2) Complicated
function: the mapping process is not straightforward, especially for nominal at-
tributes; (3) Swamping and masking problems: without estimating outlying degrees
accurately, some true outliers may be missed and normal ones misclassified as
outliers.

In the past decades, there are some association rule based researches [24, 25, 41,
48] which focus on mining spatial co-location patterns. A spatial co-location pattern
is a set of spatial events that are frequently located together in spatial proximity [41].
Most of the works were interested in identifying a collection of boolean features
(e.g., bird, drought) which have higher co-occurrence frequency. Spatial association
rules was first discussed in [27]. Huang et al. [25] proposed a general framework
of mining spatial co-location patterns where an instance join-based algorithm was
introduced. Furthermore, Yoo and Shekhar [48] designed a partial-join and joinless
method to improve its performances. Meanwhile, Huang et al. [24] introduced a
novel methodology to mine the rare set of spatial events. The co-location pattern
identification process aims at mining association rules among different types of
features in close geographic proximity. Its objective is to identify the group of
events from different types with higher co-occurrence frequency. However, spatial
categorical outlier detection focuses on identifying the spatial objects which behave
abnormally with respect to its spatial neighbors in the same types of features. The
co-occurrence frequency within the same types of attributes is computed at different
spatial distances. The distinct objective and application make the methodologies of
frequency computation quite different in these two areas.

Pair Correlation Function (PCF) has been proven very effective [26] to capture
how observations are packed together, which could be utilized to estimate the
relevance among spatial categorical objects. It is a probability measure to find a unit
at a distance of d away from a reference unit. PCF techniques have been widely
used to analyze the behavioral characteristics of the individual objects in a variety of
natural systems, e.g., electrostatic, magnetic and biological application. This paper
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investigates the benefits of PCF techniques on SCOD, and design algorithms for
spatial datasets with single and multiple categorical attributes. First, PCF techniques
are utilized to measure the Pair Correlation Ratio (PCR) between any pair of
category sets as a function of spatial distances. Second, the discrete relevance
between a reference object and its neighbors is fitted by the PCR function. Third, the
outlying degree for each object is computed as the inverse of average PCR between
the object and its neighbors. Finally, the top l objects with high outlierness values are
identified as SCOs. The key contributions of this paper include:

– Formalization of the SCOD problem. This is the first work that specifically
focuses on Spatial Categorical Outlier Detection(SCOD). The SCOD problem is
differentiated from the SNOD one: an SCO is identified as a spatial observation
which occurs infrequently with regard to its spatial neighbors.

– Design of two SCOD algorithms for single attribute dataset. We first present
a PCF-SCOD (Pair Correlation Function based Spatial Categorical Outlier
Detection) algorithm to identify SCOs by investigating the capability of PCF
techniques of calculating the Pair Correlation Ratios (PCRs) for each pair of
categories at specific distances. Further, considering the computational cost
of PCF-SCOD, a kNN-SCOD(k Nearest Neighbor based Spatial Categorical
Outlier Detection) approach is proposed to approximate the outlier scores.
It allows for efficient SCOD when memory and processor resources are
issues.

– Design of one SCOD algorithm for multi-attribute dataset. The kNN-SCOD
work is extended to the SCOD issue in multi-attribute domain. By mapping the
kNN relationship from the raw dataset into a well-defined pair object dataset, the
PCR of possible pair category sets is computed to capture the relevance among
objects which are spatial neighbors with each other.

– Comprehensive experiments to validate the effectiveness and efficiencies of the
proposed techniques. The proposed approaches were evaluated by extensive
experiments on simulated and real datasets. The results demonstrated that PCF
series of algorithms outperformed 14 existing techniques for both single and
multiple attribute dataset.

The paper is organized as follows. Section 2 provides fundamental definitions used
in SCOD, and introduces a general SCOD framework. Section 3 presents two SCOD
approaches to identifying SCOs with single attribute, named PCF-SCOD and kNN-
SCOD. kNN-SCOD work is extended to detect the SCOs with multiple attributes
in Section 4. Experimental evaluations on both simulated and real life datasets are
presented in Section 5. The paper concludes with a summary of the research in
Section 6.

2 Preliminary concept

This section introduces PCF techniques, defines key notations used, and examines
the SCOD problem. The deficiencies of existing methods are also discussed.
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2.1 Pair correlation function

In mathematical mechanics, PCF, g(r), is defined as the observed probability of
finding an object at a given distance, r, from a fixed reference particle [38]. The
mathematical definition of g(r) is

g(r) = dn(r)/N
dv(r)/V

= dn(r)
dv(r)

· V
N

= dn(r)
4πr2dr

· V
N

(1)

Where N and V denote the number of units and the volume of the entire system,
respectively; dn(r) and dv(r) represent those in the shell-region; r is the distance from
reference unit to the shell of interest. Figure 1 depicts the 2D-projection of a typical
example which describes the PCF computation in Eq. 1. In this paper, the relevances
among spatial objects are determined by the frequency of co-occurrence of a pair of
categories at specific distances. PCF is capable of estimating how observations are
packed together, which could be utilized to capture the relationship among spatial
categorical objects.

2.2 Preliminary definition

To formalize the SCOD framework, we need to understand some basic definitions.

Definition 1 (Spatial categorical dataset) Let s denote a spatial location on a domain
S of the d dimensional Euclidean space Rd. Let A1, · · · , Am be a set of categorical
attributes and C1 ,· · · , Cm non-empty sets over these attributes where Ci

⋂ C j = φ for
i �= j.

A set D ⊆ S × C1 × · · · × Cm is called a spatial categorical dataset over the do-
mains, S, C1, · · · , Cm. Each record ri ∈ D (i ∈ 1, · · · , n) can be denoted as a vector
(r.s, r.A1, · · · , r.Am)′, where r.Ai ∈ Ci. The number of categorical attributes, m, is also
referred as the dimensionality of the spatial data set.

Categorical attributes can be classified into two types: ordinal and nominal ones.
The key characteristic of nominal attributes is that different values in an attribute
domain are absolutely not inherently ordered, e.g., color. The issue of distance or
dissimilarity for nominal data is not as straightforward as for ordinal or numerical
one. Thus it is difficult to directly compare two nominal values. This paper is
focused on such type of data sets as consist solely of nominal attributes. However,
our approach could be directly applied to spatial categorical data set with ordinal
attributes.

Fig. 1 PCF using a spherical
shell of thickness dr
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Informally, an anomalous behavior in spatial domain can be truly captured by the
local difference, which is determined by the irrelevance between a specific object
and its spatial neighbors. A spatial neighbor query refers to identifying the k spatial
objects nearest to specific points. An classical set of queries is the class of k
Nearest Neighbor (NN) queries. Typical methods include simple kNN queries [6],
approximate kNN queries [15], reverse NN queries [44], and kNN join queries [23].
Meanwhile, Voronoi diagram method can be utilized to identify spatial neighbor-
hood by partitioning the plane into N (the number of spatial objects) polygons.
Hence, the nearest neighbors of any query point inside a Voronoi polygon are the
generators of those polygons. Normally, an observation can not have more than six
Voronoi neighbors on average due to the search space [4].

In the paper, simple k-Nearest Neighbor (kNN) is utilized to construct the
neighborhood relationship.

Definition 2 (Spatial neighborhood) Given a dataset D with n points and parameter
k, for ri ∈ D, its spatial neighborhood is constructed by the top k points according to
its spatial Euclidean Distance vector with the rest of observations in the dataset, such
that ∀ j ∈ 1, ..., n, j �= i, r j ∈ kNN(ri) : dE(ri, r j) ≤ dE

k (ri), where dE
k (ri) represents the

distance between ri and its kth spatial neighbor.

One of the open issues of kNN algorithm is the selection of the optimal value of
k beforehand. In the area of spatial outlier detection, if k is too large, the abnormal
behavior of an outier might be masked by the average differences. On the other hand,
if k is too small, the normal observation might be errorly identified as an outlier since
it is more sensitive to the existence of outlying neighbors. The objective of this paper
is to measure the similarities among categorical observations, and further identify
the spatial categorical outliers. In the experiment, we evaluated different k values on
spatial outlier detection and found it was enough to set k as around 8 in different
sizes of data sets.

In numerical domain, an SNO is defined as the one whose non-spatial attributes
are significantly different with those of its neighbors. Such definition is not applicable
in categorical domain. For example, as shown in Fig. 2, based on the idea of SNOD
approaches, the object A will be recognized as an outlier since it has the categorical
attribute, T, which is very different with its neighbors’, Fs. However, the contrary is
the case in categorical domain. This is because the pair of attributes, < T, F > or
< F, T > occurs normally at the spatial distance, d. Object A should be treated as
a normal observation. In this sense, the definition of spatial outliers in categorical
domain is totally different with that of SNOs.

Fig. 2 An example of
differentiating an SNO
and an SCO
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Definition 3 (SCO) Let ri be an observation in D, and ri_1,· · · , ri_k be its spatial
neighbors. Its outlierness, for k ≥ 1 ,is defined as

OutScore(ri) = −
∑k

j=1 PCR(ri.A, ri_ j.A, dE(ri, ri_ j))

k
(2)

The first l observations with higher OutScore are considered as spatial categorical
outliers. PCR(ri.A, ri_ j.A, dE(ri, ri_ j))) denotes the co-occurrence frequency of the
pair category sets, < ri.A, ri_ j.A >, of objects, ri and ri_ j, at the specified distance,
dE(ri, ri_ j). Here, l is decided by the cut-off θ so that these l observations satisfy
OutScore >= θ , while the rest of observations OutScore < θ . Assume that the
OutScores follow a normal distribution, the cut-off θ is calculated by the mean and
standard deviation. This paper declares θ is computed as the OutScore whose p-value
is equal to 0.01.

In summary, an SCO is an observation which has lower co-occurrence frequency
with its spatial neighbors. PCF is capable of estimating such frequencies as how
objects are packed together, which could be utilized to calculate PCR, further
OutScore(ri). Sections 3 and 4 will discuss the PCR computation in spatial categorical
dataset with single and multiple attributes, respectively.

Based on the above definitions, the SCOD problem can be modeled as follows.

Given:

– D is a set of spatial objects r1, ..., rn with single or multiple categorical attributes.
– k is an integer denoting the number of adjacent data objects which form the

spatial neighborhood.
– l is the number of outliers to be identified, generally, l 	 n.

Objective:

– Design a mapping function f : D ×D −→ R+, which estimates PCR for each
pair of objects as a function of spatial distances.

– Estimate the OutScore for each observation, and identify a set of O1, ..., Ol∈ D
with higher values as SCOs.

3 Spatial categorical outlier detection in single attribute dataset

Intuitively, given a spatial data set, a normal observation is the one that behaves
normally with regard to its spatial neighborhood. In single categorical domain, this
corresponds to the high frequency of co-occurrence of a pair of categories at a
specified distance. The categorical outlier has rarely occurring category attributes
with regard to the ones of its neighborhood. This section presents two SCOD
approaches to detecting SCOs with single attribute, namely PCF-SCOD (Pair Cor-
relation Function based Spatial Categorical Outlier Detection) and kNN-SCOD-S
(k Nearest Neighbor based Spatial Categorical Outlier Detection in Single attribute
dataset).



508 Geoinformatica (2014) 18:501–536

3.1 Pair correlation function based SCOD

We investigate the benefits of PCF techniques to capture the rare behaviors of SCOs.
The major components are described as follows.

– PCR (Pair Correlation Ratio) estimation. PCR is defined to characterize the co-
occurrence frequency of each pair of categories at different specified distances.
With the set of discrete points in a 2-D space, determined by PCR values against
spatial distances, we can statistically learn a continuous PCR function which can
easily estimate the PCRs among spatial objects.

– Neighborhood formulation and outlierness computation. The spatial neighbor-
hood for each object can be formed using kNN. And the outlier degree for each
object is computed by the mean of PCRs between itself and its spatial neighbors.

– Outlier identification. The outer scores are ranked in an descending order and
the top l objects are marked as SCOs.

For the above components, the first one is critical since it determines the estimation
quality of the relevance among observations. Section 3.1.1 introduces PCR computa-
tion in particular, and then PCF-SCOD algorithm is described in Section 3.1.2.

3.1.1 Pair correlation ratio computation

For each random variable r, r.A is a multilevel categorical variable taking values in
C = A1, ..., AL. We denote Eq. 3 as the frequency of observing category Al in the
dataset,

Freq(Al) = P
[
A(ri.A) = Al] = nAl

n
(3)

where nAl
represents the number of objects whose non-spatial attribute are Als,

and n the number of objects in the whole dataset. Figure 3a depicts a small spatial
categorical dataset which consists of 64 objects, of which 37 ones take category “+”,
and 27 ones “−”. With Eq. 3, we get Freq(+) = 37/64 and Freq(−) = 27/64.

(a) (b) (c)

Fig. 3 An example of identifying B-PD and B-PC-PD
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Let SPF(< Al, Al′ >, dE(ri.X, r j.X)) denote Spatial Pair Frequency associated to
two objects, ri and r j, where ri.A = Al and r j.A = Al′ . Then PCR can be defined as
follows:

Definition 4 (Pair Correlation Ratio-PCR) Considering a spatial pair correlation
process in which there are two observations, ri, r j in D, each of them is tagged with
one category, Al and Al′ , respectively. The PCR of ri,r j is defined as the normalized
spatial pair frequency of the pair of categories, < Al, Al′ > at ri and r j.

The mathematical definition of PCR is

PCR(ri, r j) = SPF
(
< Al, Al′ >, dE(ri.S, r j.S)

)

Freq(Al) · Freq(Al′)
(4)

As shown in Eq. 4, the PCR value between two spatial objects, is determined
by the co-occurrence frequency of categories and their spatial Euclidean distance,
not their specific spatial locations. In the following, SPF computation is discussed by
utilizing the example in Fig. 3.

– Distance division. Compute the Euclidean distance for each pair of spatial
objects, identify the maximal and minimal ones, dE

Max (as shown in Fig. 3a)
and dE

Min (set as 0), and divide the distance into b small bins whose sizes are
computed as:

d = dE
Max

b
(5)

As we know, it is common for spatial objects to be autocorrelated at shorter
distances. It is not necessary to take the pair correlation at longer distances into
considerations. Simply, dE

Max can be approximated by

dE
Max = 1

2
max

{|max(Projx(ri.S)) − min(Projx(ri.S))| ,
∣
∣max(Projy(ri.S)) − min(Projy(ri.S))

∣
∣
}
, i, j = 1, ..., n (6)

where Projx(·) and Projy(·) represent the projection operations of S location
on X, Y coordinates, respectively. It is reasonable for such approximation since
SCOD focuses on the local relevance estimation.

– Identification of Bin based Pair Dataset (B-PD). Based on the spatial distance,
map each pair of objects into their corresponding distance bin.

Dc = {
< ri, r j >, (c − 1) · d ≤ dE(ri.S, r j.S) < c · d, c ∈ [1, b ]} (7)

For example, for the reference object ri shown in Fig. 3, based on its spatial
distances from others, we can identify 30 objects, {r j}30

j=1, which make < ri, r j >∈
Dc since they satisfy the condition: (c − 1) · d ≤ dE(ri.S, r j.S) < c · d. As depicted
in Fig. 3b, the 30 objects are contained in the shaded circular ring.

– Identification of Bin and Pair Category based Pair Dataset (B-PC-PD). By scan-
ning the identified B-PD, we map each pair of objects into its pair category based
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subset so that their categorical attributes are the specified pair of categories. That
is, we can construct Dc

Al Al′ as follows:

Dc
Al Al′ =

{
〈ri, r j〉,

[
(ri.A == Al)&&(r j.A == Al′)

]

∥
∥
[
(ri.A == Al′)&&(r j.A == Al)

]
,< ri, r j >∈ Dc, c ∈ [1, b ]

}
(8)

In Fig. 3b, in the identified objects {r j}30
j=1 with regard to reference object ri in

Dc, we can map 11 pairs of {< ri, r j >}11
j=1 into Dc−−, and the other 19 pairs into

Dc−+ based on their corresponding categorical attributes. Figure 3c depicts the
pair objects in Dc−,+ with regard to the reference object ri.

– Spatial Pair Frequency computation. The SPF of the pair of categories in the cth

bin can be computed by

SPF(〈Al, Al′ 〉, [(c − 1) · d, c · d]) = |Dc
Al Al′ |
|Dc| (9)

where |Dc
Al Al′ | and |Dc| represent the number of pair objects in Dc

Al Al′ and Dc,
respectively. Overall, for each pair of 〈Al, Al′ 〉, we can estimate b pair frequency
values corresponding with b bins. Based on the b discrete points in a 2-D
space, we can statistically learn a pair frequency function SPF(〈Al, Al′ 〉, dE) by
polynomial and curve fitting, subjecting to the following constraints:

1. SPF(〈Al, Al′ 〉, dE) = SPF(〈Al′ , Al〉, dE)

Proof By definition, it is easy to prove this constraint. �

2. SPF(〈Al, Al′ 〉, 0) =
{

Freq(Al) Al = Al′

0 Al �= Al′

Proof If Al = Al′ , SPF(〈Al, Al′ 〉, 0) = |D0
Al Al′ |
|D0| = nAl

n = Freq(Al), and if

Al �= Al′ , PF(〈Al, Al′ 〉, 0) = |D0
Al Al′ |
|D0| = 0

n = 0. �

3.
∑L

l′=1 SPF(〈Al, Al′ 〉, dE) = Freq(Al).

Proof We can identify Dc
Al as Dc

Al = {〈ri, r j〉, (ri.A == Al)&((c − 1) · d ≤
dE(ri.S, r j.S) < c · d),< ri, r j >∈ D, c ∈ [1, b ]}. �

There is a deduction as follows:
∑L

l′=1 SPF(〈Al, Al′ 〉, dE) =
∑L

l′=1 |Dc
Al Al′ |

|Dc| =
nAl

n = Freq(Al)

SPF takes input as the spatial distance and output the pair frequency. Because spatial
distance is continuous, we can only sample a limited number of spatial distances and
calculate the corresponding spatial pair frequencies based on the data set. What we
need is a parametric form for this function. Therefore, we need to further fit the
sampled values to a curve of parametric form. Based on our observation, we can
conduct regular nonlinear regression process to fit a polynomial curve of order two
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Table 1 Main parameters
used in this paper

Parameters Description

S A dataset storing the spatial attributes
A A dataset storing the non-spatial categorical

attributes
b The number of bins to divide the distance values
m The number of categorical attributes
n The number of spatial objects in the dataset
k The number of spatial neighbors
l The number of SCOs

to minimize the mean squared error (MSE). We implemented the fitting process
using the standard Matlab function “polyfit”.

3.1.2 PCF-SCOD algorithm

The proposed PCF-SCOD algorithm for single attribute domain has 6 input parame-
ters, S, A, b, n, k and l, described in Table 1. Algorithm 1 describes this approach as
the following 4 steps.

Step 1 (lines: 1–3) Formalization of spatial neighborhood. First, we construct dis-
tance matrix, DistMat, in which the ith row records the spatial distances
between ri and the rest of objects in the dataset. With it, the spatial
neighborhood matrix, Neighbor, can be identified for each spatial object.

Step 2 (lines: 4–17) Computation of SPFs among spatial objects.

a. (lines: 4–5) Distance division. With the stored values in DistMat,
identify its maximum and minimum values (0). Then, the size of unit bin,
d, can be computed using Eq. 5.

b. (line: 6) Computation of category frequency. We construct
the frequency array, FreqA, which records the occurrence frequencies
for all the observing category, and the pair category array, PC_Arr,
which stores all the possible pairs of categories (Np represents the
number of possible pairs of categories) in the dataset.

c. (lines: 7–14) SPF computation. This step includes three important
procedures: bin based pair set identification, bin and pair category based
pair set identification and the discrete SPF computations. At step 8, we
use the function, B_PD_Iden, to extract all the pair objects for Dc,
which satisfy certain distance conditions, Condd,c (in Eq. 7). At step 11,
function B_PC_PD_Iden, is used to construct Dc

Al Al′ by scanning the

pair objects in Dc, which satisfy category attribute condition, CondAl Al′

(in Eq. 8). With the above two pair sets, the b discrete SPF values for
each pair of categories can be computed at step 12.

d. (lines: 15–17) Learn of continuous SPF function. With the
above discrete SPF values against b different distance range, we statis-
tically learn a continuous SPF function for each pair of categories using
the polynomial and curve fitting.

Step 3 (lines: 18–24) Construction of PCR matrix. Utilizing Eq. 4, with SPF func-
tion, the relevance scores (PCR) can be simply calculated for each pair
of spatial objects. In addition, PCR matrix, PCRMat, is constructed as
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the mean of the PCR values between the reference observation and its
neighbors.

Step 4 (lines: 25–26) Outlier identification. Finally, the objects are sorted with
ascending PCR values, and the l objects with lower relevance scores are
recognized as outliers.

Computational complexity To form the distance and neighborhood matrices will
take O(n2). It takes O(n) to construct the category frequency array and pair
category array. Identifying Dc and Dc

Al Al′ takes around O(b · Np · |Dc| · n2). Finally,
computing the PCR matrix costs O(k · n). In summary, assuming n � k, n � b ,
n � Np and n � |Dc|. The total computational complexity of PCF-SCOD approach
is O(n2)=(O(n2)+O(n)+O(b · Np · |Dc| · n2))+O(k · n)).

3.2 k nearest neighbor based SCOD in single attribute dataset

For the PCF-SCOD method, in a larger-size dataset, it is a time-consuming process
to estimate PCR values for each pair of categories as a function of distances. To
solve this issue, we propose a kNN based PCR approximation which can help identify
SCOs more efficiently.
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3.2.1 kNN based PCR computation

kNN-based estimation is an approximate computation of PCR value which only
utilizes the kNN relationship to capture the relevances among objects. First, a kNN
mapping function is defined to map the kNN information of the raw dataset into a
pair dataset.

Definition 5 (kNN Mapping Function) Given a dataset D with n observations, let
g : D ×D −→ F be a mapping function which maps any pair of objects with (m + 1)

dimensions in D into one point with (2m + 1) dimensions in F. This mapping
function captures the spatial relationships among the objects into the domain F
over space F (2m+1). Here, each observation contains 2m categorical attributes and
one continuous attribute that stores the distance between the pair of objects in D.
We can simply map the pair objects which are spatial neighbors with each other
in D into the points in Fk, since SCOD only focuses on the local co-occurrence
frequency.

By definition, only kNN relationships are captured to approximate PCR. And we
know Fk is a dataset with at most k · n observations which stores k nearest neighbor
relationships in D. Therefore, as derived from a single attribute dataset D, Fk is a
2-dimension dataset.

Considering a sample spatial categorical dataset with 7 observations, we set k
as 3, and the 3NN neighborhood is depicted in Fig. 4. For each object, it takes
one of categorical values in C = {T, F}. Utilizing the mapping function, g, the 3NN
relationships are mapped into the observations of F3, shown in Table 2. In F3, there
are three types of data: < T, T >, < T, F > (=< F, T >) and < F, F >. With dataset
Fk, we approximate PCR values as follows:

– Identification of pair category based subset, Fk
Al Al′ . Scan Fk and identify all pair

objects whose attributes are specified pair categories. That is, the subset Fk
Al Al′ is

identified as the one in which each object, fi, has pair attributes < Al, Al′ > or
< Al′, Al >.

Fk
Al Al′ =

{
fi,

[
( fi1 == Al)&&( fi2 == Al′)

]

∥
∥ [( fi1 == Al′)&&( fi2 == Al)], fi ∈ Fk} (10)

Fig. 4 A sample of spatial categorical dataset. (Attr.1 means the observed attributes in single
attribute domain, which is used in Section 3.2; Attr.2 means the observed attributes in multiple
attribute domain, which is used in Section 4)
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Table 2 Observations in F3
ID Pair observation in D Observation in F3

f1 < r1, r3 > < F, T >

f2 < r1, r2 > < F, T >

f3 < r1, r7 > < F, T >

f4 < r2, r6 > < F, F >

f5 < r2, r7 > < F, F >

f6 < r3, r4 > < F, F >

f7 < r3, r7 > < F, F >

f8 < r4, r5 > < F, T >

f9 < r4, r7 > < F, F >

f10 < r5, r6 > < F, T >

f11 < r5, r7 > < F, T >

f12 < r6, r7 > < F, F >

For example, we can identify F3
FT = { f1, f2, f3, f8, f10, f11} based on the obser-

vations shown in Table 2.
– Pair frequency computation. Calculate the frequency of each category pair using

Eq. 11.

Freq(Al, Al′) = |Fk
Al Al′ |
|Fk| (11)

Where | · | means the number of the observations in the corresponding dataset.
– PCR computation. kNN-based PCR approximation can be computed by Eq. 12

PCRk(Al, Al′) = Freq(Al, Al′)

Freq(Al) · Freq(Al′)
= |Fk

Al Al′ |/|Fk|
Freq(Al) · Freq(Al′)

(12)

Utilizing the sample in Fig. 4, we calculate the PCR value between objects, r1

and r7, which take category T and F, respectively. First, the frequencies of T
and F in D are computed, Freq(F) = 0.71(5/7) and Freq(T) = 0.29(2/7). Next,
after the mapping process, we scan F3 and identify the subsets, F3

F F , F3
FT , F3

TT
using Eq. 10. In the following, the pair frequency values of < F, F >, < F, T >

and < T, T > are computed as 0.5 = 6/12, 0.5 = 6/12, and 0 = 0/12. Further,
PCR value between r1 and r7 is equal to 2.4283(= 0.5/(0.71 ∗ 0.29)), as shown
in Table 3.

In Fig. 4, there is a typical example to describe the different ways which estimate
the relevance scores among objects by utilizing SNOD and SCOD approaches. For
SNOD, < F, F > and < T, T > must have higher correlation than that of < F, T >.
However, for SCOD, the case is not always true. In Table 4, PCR(< T, T >) is equal
to 0 since there is no such case as pair objects whose pair categories are both Ts,
which means < T, T > never co-occur locally together. Although < F, F > is from
the same category, F, and < F, T > is from different ones, F and T, PCR(< F, F >)

Table 3 PCR computation Pair categories Freq. Prob. PCR

< F, F > 6 0.50 0.9919
< F, T > 6 0.50 2.4283
< T, T > 0 0 0
Comment:Freq(F) = 0.71; Freq(T) = 0.29
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Table 4 Observations for PAS
{< A1, A2 >,< A1, A2 >}
in F3

Pair objects {< A1, A2 >,< A1, A2 >}
< r1, r3 > < {T, P}, {F, P} >

< r1, r2 > < {T, P}, {F, Q} >

< r1, r7 > < {T, P}, {F, P} >

< r2, r6 > < {F, Q}, {F, Q} >

< r2, r7 > < {F, Q}, {F, P} >

< r3, r4 > < {F, P}, {F, Q} >

< r3, r7 > < {F, P}, {F, P} >

< r4, r5 > < {F, Q}, {T, P} >

< r4, r7 > < {F, Q}, {F, P} >

< r5, r6 > < {T, P}, {F, Q} >

< r5, r7 > < {T, P}, {F, P} >

< r6, r7 > < {F, Q}, {F, P} >

is smaller than PCR(< F, T >). That means, for pair categories, F and F, they
have the same co-occurrence frequency(0.5) with that of pair categories, F and
T. However, category T is more infrequent in the whole dataset, and each object
whose categorical attribute is T all co-occurs with objects with F in D. To capture
such spatial correlation characteristic, we normalize the PCR by the frequencies of
observed categories of the pair objects. Equation 12 assigns a higher PCR to the
pair objects of which the categories are more infrequent than that of which if those
are more frequent.

3.2.2 Algorithm of kNN-SCOD-S

We generalize the above procedures as kNN-SCOD-S algorithm. The proposed
approach has 5 input parameters, S, A, n, k and l (see Table 1). Algorithm 2 describes
kNN-SCOD-S as the following 4 steps.

Step 1 (lines: 1–4) Construction of spatial neighborhood and mapping process of
kNN relationships. We identify the k spatial neighbors for each observation
in D, and map such kNN relationship into Fk.

Step 2 (lines: 5–19) PCR computation.

a. (line: 5) Category frequency computation and pair category
identification. The occurrence frequency of each observed cat-
egory is computed, which is stored in FreqA. All the possible pair
categories are identified as PCArr , and Np represents the number of pair
categories.

b. (lines: 6–14) Identification of pair category based pair
object set. By utilizing Eq. 12, the subset of Fk for each pair of
categories is identified.

c. (lines: 15–19) PCR computation. The co-occurrence frequency and
PCR value are calculated for each pair of categories.

Step 3 (lines: 20–25) Computation of relevance among spatial objects. PCR matrix
is constructed, which stores PCRs between each reference object and its
k spatial neighbors. The local relevance of each observation is calculated
by the mean of the PCR values.
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Step 4 (lines: 26–27) Outlier detection. Finally, the objects are sorted with as-
cending PCR values, and the top l objects with lower relevance scores are
recognized as outliers.

Computational complexity To form the neighborhood, it will take O(n log n) for
kNN (Space partitioning) construction. It takes O(n) to identify pair category array
and compute the category frequencies. Identifying Fk

Al Al′ takes around O(k · n).
And computing the PCR values for all pair categories takes around O(Np). Finally,
constructing the relevance vector costs O(k · n). In summary, assuming n � k and
n � Np , the total time complexity of kNN-SCOD-S is O(n log n)(= O(n log n) +
O(n) + O(k · n) + O(Np) + O(k · n)).

4 Spatial categorical outlier detection in multiple attribute dataset

The work of kNN based PCR approximation can be extended to solve the SCOD
issue in multi-attribute domains. That is, given a spatial dataset, an outlying obser-
vation is the one whose non-spatial attribute set occurs infrequently with regard to
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those of its spatial neighborhood. The calculation of PCR is computed by the fre-
quency of co-occurrence of a pair of category sets at a specific spatial distance. Since
PCF based approach is a time-consuming process, we only introduce how to compute
PCR values in kNN-SCOD-M (k Nearest Neighbor based Spatial Categorical Outlier
Detection in Multiple attribute dataset).

4.1 PCR computation in multi-attribute dataset

Similarly, kNN-SCOD-M approach first extracts the kNN relationship from the raw
dataset D and maps it into Fk with 2m dimensions. In Fk, each data frame contains
the attribute set, A = {< A1, .., Am >, < A1, ..., Am >}, Ai ⊆ Ci, i ∈ [1, m]. First, we
need to learn two important concepts about attribute subset in D and Fk.

Definition 6 (Attribute Subset-AS) Given a dataset D with m categorical attributes,
A = {A1, .., Am}, Ai ⊆ Ci, its AS is defined as follows:

AS = {
A∗, {A∗ = {Ax, ..., Ay}}, 1 ≤ x ≤ y ≤ m, Ai ⊆ Di, i ∈ [x, y]} (13)

Considering Attr.2 of the sample spatial dataset as shown in Fig. 4, there are two
category attributes: A1 = {T, F} and A2 = {P, Q}. By definition, we can generate all
of its ASs:

AS : {{A1}, {A2}, {A1, A2}
}
.

Figure 4 also describes the 3NN relationship among objects. By utilizing
Definition 5, we can map it into a dataset set F3 with 4-dimension attributes, as shown
in Table 4.

Definition 7 (Pair Attribute Subset-PAS) Given a dataset Fk with 2m categorical
attributes, A = {< A1, .., Am >,< A1, ..., Am >}, Ai ⊆ Ci, its PAS is defined as
follows:

PAS = {
< A∗, A∗′ >, {A∗ = {Ax, ..., Ay}}&&{A∗′ = {Ax, ..., Ay}}
&& {|A∗| == |A∗′ |}, 1 ≤ x ≤ y ≤ m, Ai ⊆ Ci, i ∈ [x, y]} (14)

Apparently, A∗ and A∗′ always exist in pairs in PAS. They are originated from the
same attribute domain in dataset D. For pair attribute set A, there are (2m − 1) pair
subsets. Similarly, we can enumerate all the PASs for the sample dataset in Fig. 4 as
follows.

PAS : {{< A1 >, < A1 >}, {< A2 >, < A2 >}, {< A1, A2 >, < A1, A2 >}.
In this paper, we call AS and PAS observations as AS and PAS combinations which
are generalized by the following concepts.

Definition 8 (AS Combination) Given a dataset D with m categorical attributes,
A = {A1, .., Am}, Ai ⊆ Ci. Suppose for each attribute Ai, it takes value in
Li={A1

i , ..., ALi
i }. Therefore, an AS Combination (ASC) is one of the possible
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category examples of existing attributes in the AS. The ASC of A∗ (defined in
Definition 7) is,

ASCA∗ =
{
A,A =

{
Alx

x , ..., A
ly
y

}
, Ali

i ⊆ Li, i ∈ [x, y]
}

(15)

As we can see, each observation may take one of values {T, F} for A1, and {P, Q}
for A2. {A1} is one of its ASs, then ASCA1 = {{T}, {F}}. Similarly, ASC{A1,A2} =
{{T, P}, {T, Q}, {F, P}, {F, Q}}.

Definition 9 (PAS Combination) Given a dataset Fk with 2m category attributes,
A = {< A1, .., Am >,< A1, ..., Am >}, Ai ⊆ Ci, i ∈ [1, m]. Similarly, it takes value in
Li={A1

i , ..., ALi
i }. Therefore, an PAS Combination (ASC) is one of the possible pair

category examples of existing attributes in the PAS. That is,

PASC<A∗,A∗′> =
{
< A,A′ >,

{
A = {

Alx
x , ..., A

ly
y
}}

&
{
A′ = {

Alx′
x , ..., A

ly′
y

}}

&
{|A| == |A′|}, 1 ≤ x ≤ y ≤ m, Ali

i , Ali′
i ⊆ Li, i ∈ [x, y]

}
(16)

For example, there are three possible PASCs: {< T >, < T >}, {< T >, < F >}
and {< F >,< F >} for PAS {< A1 >,< A1 >} in F3. And, all the observed PASCs
for {< A1, A2 >, < A1, A2 >} in Fig. 4 are enumerated in the second column in
Table 4.

We can compute the PCR value for each PASC of a specified PAS < A, A′ > by
utilizing the following 5 steps.

– Dataset identification for specific ASC. For a specific ASC A = {Alx
x , ..., A

ly
y }, we

scan the dataset D and identify DA as follows.

DA =
{

ri,
(
ri.Ax = Alx

x

)
& · · ·&

(
ri.Ay = A

ly
y
)
, ri ∈ D, A

l j

j ⊆ L j, j ∈ [x, y]
}

(17)

– Frequency computation of ASC. Calculate the frequency for DA using Eq. 18.

Freq(DA) = |DA|
|D| (18)

For ASC {T} in Fig. 4, DT = {r1, r5}, and its frequency is 2/7 = 0.29.
– Dataset identification for specific PASC. Suppose < A,A′ > =< {Alx

x , ..., A
ly
y },

{Alx′
x , ..., A

ly′
y } > is one of the PASCs of < A∗, A∗′ >({A∗ = {Ax, ..., Ay}}, {A∗′ =

{Ax, ..., Ay}}). Scan the whole set Fk and identify all observations which satisfy
the following conditions.

Fk
{A,A′} =

{
fi,

[(
fi.A∗.Ax = Alx

x

)
&...&

(
fi.A∗.Ay = A

ly
y
)}

&
{(

fi.A∗′ .Ax = Alx′
x

)
&...&

(
fi.A∗′ .Ay = A

ly′
y

)]

|| [(
fi.A∗′ .Ax = Alx

x

)
&...&

(
fi.A∗′ .Ay = A

ly
y
)}

&
{(

fi.A∗.Ax = Alx′
x

)
&...&

(
fi.A∗.Ay′ y = A

ly′
y

)]
, fi ∈ Fk} (19)

In Fk
{A,A′}, it stores all pairs of objects which have the same PASC < A,A′ >.



Geoinformatica (2014) 18:501–536 519

Table 5 PCR computation Pair Categories Freq. Prob. PCR

< {T, P},{F, Q} > 3 0.25 2.00
< {T, P},{F, P} > 3 0.25 2.00
< {F, Q},{F, Q} > 1 0.083 0.99
< {F, Q},{F, P} > 4 0.34 4.04
< {F, P},{F, P} > 1 0.083 0.99
Freq({F, P}) = 0.29;Freq({F, Q}) = 0.29
Freq({T, P}) = 0.43

– Frequency computation of PASC. Calculate the frequency for each PASC
< A,A′ >.

Freq(< A,A′ >) = |Fk
{A,A′}|
|Fk| (20)

For example, for PASC {< T, P >, < F, P >}, F3
{<T,P>,<F,P>} = {< r1, r3 >,

< r1, r7 >,< r5, r7 >}. Its frequency is equal to 3/12 = 0.25.
– PCR computation. Finally, PCR for a PASC can be calculated as Eq. 21.

PCRk(< A,A′ >) = Freq(< A,A′ >)

Freq(DA) · Freq(DA′))
= |Fk

{A,A′}|/|Fk|
(|DA| · |DA′ |)/|D|2 (21)

Therefore, we can compute PCR on {< T, P >, < F, P >} among object r1 and r3

as PCR(< r1, r3 >) = 0.25/(0.29 ∗ 0.43) = 2.00. Table 5 shows all the PCR compu-
tation of all possible PASC for Fig. 4 on the PAS {< A1, A2 >,< A1, A2 >}. In
the same way, we can compute the PCR values of other PASCs with respect to
different PAS.

By scanning the dataset, we can determine, for each pair of spatial objects, there
are at most 2m − 1 PCR scores which correspond to 2m − 1 PASC. After that, we
choose the smallest one as their final relevance score. We identify relevance among
objects in this way because, sometimes, an outlier only exists in the subspace of
multiple attributes. Exhaustively estimating outlier scores in different PASC will help
identify SCOs more effectively. With the smallest PCR vector, we can construct a
PCR matrix (n-by-k). Further, the outlierness value can be computed for each object
using the mean of neighborhood relevance.

4.2 Algorithm of kNN-SCOD-M

We generalize the kNN-SCOD-M approach to detect multi-attribute outliers. There
are 6 input parameters, S, A, n, k, m and l, which are described in Table 1. As shown in
Algorithm 3, identifying SCOs with multiple attributes includes the following 5 steps.

Step 1 (lines: 1–4) (Construction of spatial neighborhood and mapping process
of kNN relationships). For each data observation ri, identify its k spatial
neighbors and map kNN relationship into Fk.

Step 2 (lines: 5–18) PCR computation.

a. (line: 5) Identification of AS and PAS. Algorithm 4 describes
this function in detail. Intuitively, there are (m

i ) ASs which consist of i
attributes, and (m

i ) PASs with size as 2 ∗ i. Therefore, in each loop, (m
i )

ASs and PASs are identified, respectively.
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b. (lines: 6–7) Frequency computation of DASC and Fk
PASC. We

first operate the identification of possible ASCs and PASCs for each
AS∗ and PAS∗ Meanwhile, their corresponding subset, DASC∗ and
Fk

PASC∗ are identified by scanning D and Fk. As shown in Algorithm 5,
for each object in D, any subset of its attributes can be mapped as
one of the possible ASCs (Step 11 and 14). In the same way, for each
pair observations in Fk, any subset of their attributes originated from
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the same domains can be recognized as one of the possible PASCs
(Step 16). After that, we map each object into its corresponding ASC
subset (Steps 12, 15), and each pair of the object and its current spatial
neighbor into the corresponding PASC subset. Finally, the frequencies
of all the DASC and Fk

PASC are computed by using Eqs. 18 and 20.
c. (lines: 8–18) PCR computation for specific PASC. Compute

the PCR values between reference object and its kNN neighbors for
each possible PASC.

Step 3 (lines: 19–28) Computation of Relevances among objects. Use the mean of
k PCRs as the relevance value in each PAS subspace. And, the smallest one
of the 2m − 1 PCR values is recognized as its final relevance score.

Step 4 (lines: 30–32) Outlier detection. Finally, the objects are sorted with ascend-
ing relevance values, and the top l objects with lower relevance scores are
recognized as outliers.

Computational complexity To form the neighborhood, it will take O(n log n) for
kNN (Space partitioning) construction and mapping process. As shown in Algorithm
4, it takes around O(2m − 1) to identify all possible PASs and ASs. Algorithm 5
demonstrates that it takes O(n ∗ k ∗ (2m − 1)) to detect all possible PASCs, ASCs
and their corresponding subsets. Finally, computing the final PCR value for each
observation takes O(n ∗ k ∗ (2m − 1)). In summary, assuming n � k and n � m, the
total computational complexity of kNN-SCOD-M approach is O(n ∗ (2m − 1))(=
O(n log n) + O(2m − 1) + O(n ∗ k ∗ (2m − 1)) + O(n ∗ k ∗ (2m − 1))).
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5 Experiment results and analysis

We conducted extensive experiments on both simulated and real datasets to com-
pare the performances of PCF-SCOD and kNN-SCOD, with other popular outlier
detection approaches [7, 8, 14, 32, 37].

5.1 Experiment settings

This subsection introduces simulation and real life datasets, the outlier detection
methods, and performance metrics.

5.1.1 Simulation and real dataset

For experiments in the single attribute domain, we applied all the approaches into
one simulated and three real datasets. For those in the multiple attribute domain,
since there was no public baseline dataset, we evaluated them on simulation datasets.

Simulation dataset The simulation categorical datasets were generated by dis-
cretization from some numerical simulation datasets. Denote a numerical dataset
S as {Z (s1),...,Z (sn)}, Z (si) ∈ Rm (i = 1 · · ·n), where m is the number of non-spatial
attributes. The simulation datasets S1, ..., Sm were generated by a Gaussian random
field model defined as follows:

[Z (s1)
T , ..., Z (sn)

T ]T ∼ N

⎛

⎜
⎜
⎝0,

⎡

⎢
⎢
⎣

∑
11(θ11) · · · ∑

1n(θ1n)

...
. . .

...
∑

n1(θn1) · · · ∑
nn(θnn)

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠

[θij]1 ∼ Unif orm(1.17, 1.85), [θij]2 ∼ Unif orm(2.00, 3.24), i = j

[θij]1 ∼ Unif orm(1.00, 1.44), [θij]2 ∼ Unif orm(2.30, 2.80), i �= j

s1, · · · , sn ∼ Unif orm(0, 5). (22)

where Z (si) = [z1(si), · · · , zm(si)]T ,
∑

ij(θij) = Var(Z (si), Z (s j)), θ ∈ R2. [∑ij(θij)]km

is defined by an exponential model as
⎡

⎣
∑

ij

(θij)

⎤

⎦

km

= [θij]1 · e
‖si−s j‖
|θij|2 (23)

[θij]1 and |θij|2 are named as sill and range parameters, respectively. The above
simulation model parameters were determined based on the distribution of a bench-
mark data set 97data.dat available in GSLIB software (http://www.gslib.com/), which
has two attributes. It was fitted by the Gaussian random field model which has a
quadratic trend (mean), and the cross covariance functions were approximated by
exponential models with sill and range parameters (1.85, 2.00) for the first attribute,
(1.17, 3.24) for the second attribute, and (1.22, 2.55) for the cross covariance between
the two attributes. Note that, in our simulation model, we did not consider any trend,
and the data distribution was determined purely by the cross covariance functions,
which potentially increases the complexity of the distribution. We did not fix the sill

http://www.gslib.com/


Geoinformatica (2014) 18:501–536 523

Table 6 Three simulation
dataset

Dataset Size Dimension The number of observing categories
in each dimension

Syn1 4000 1 A1: 3
Syn2 4000 3 A1: 3; A2: 3; A3: 3;
Syn3 4000 3 A1: 3; A2: 3; A3: 3;
Syn4 1000 4 A1: 3; A2: 4; A3: 5; A3: 6;
Syn5 4000 2 A1: 5; A2: 8;

and range parameters, but instead sampled the parameters from uniform distribu-
tions around the estimated sill and range parameters for 97data.dat. Our model was
able to flexibly generate spatial simulation data sets with multiple attributes. After
the numerical data sets were generated, we applied a discretization process to convert
the numerical data into categorical data. To illustrate the discretization strategy,
suppose we need to convert a numerical attribute data {Z1(s1), · · · , Z1(sn)} into 3
categories data, we sorted the values and then separated them into three groups such
that the orders among the three groups were preserved. This means, the objects in
group 2 is always larger than those in group 1. The similar situation is for group 2
and 3. Since we focused on nominal data, we assigned each data a label with a unique
category so that the data attributes could not be ordered.

For the five generated simulation data sets, shown in Table 6, Syn1 was utilized
in the experiments for the single attribute domain, while Syn2, Syn3, Syn4 and Syn5

were used in those for the multiple attribute one.

Real dataset We also executed the SCOD approaches on three real datasets with
single attribute to further demonstrate their effectiveness. The three datasets include
Jura, Soil1 and Soil2. Jura data is a well-known categorical dataset from Pieere
Goovarerts book[16]. In the original dataset, five rock types are available. Following
Bel et al. [5], Portlandian is grouped with Quanternary into category 4, because
its frequency of occurrence is very low (1.2 %), which makes those observations
taking Portlandian general outliers. Soil1 and Soil2 dataset were both extracted from
Harmonized World Soil Database (http://webarchive.iiasa.ac.at/Research/LUC/
External-World-soil-database/HTML/). Table 7 describes their detailed information.
Figure 5 provides the data distribution of parts of raw soil datasets which were
utilized in our experiment. Soil1 data seems to distribute uniformly, but that of
Soil2 is more complicated, which needs higher identification qualities for SCOD
approaches.

Table 7 Three real datasets

Dataset Size Dimension The observing categories

Jura 359 1 A1:Argovian; A2:Kimmeridgian; A3:Sequanian;
A4:Quaternary;

Soil1 1000 1 A1:LP-Leptosol; A2:CL-alcisol; A3:RK-utcrops;
A4:DS-Sand Dunes;

Soil2 3000 1 A1:LV-Luvisol; A2:LP-Leptosol; A3:PT-Plinthosol;
A4:VR-Vertisol; A5:NT-Nitisol; A6:LX-Lixisol;
A7:FL-Fluvisol;

http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/
http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/
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Fig. 5 Data distribution of three real-life datasets.(Left:Jura;Middle:Soil1;Right:Soil2)

5.1.2 Outlier detection approach

We compared the performances of our proposed methods, denoted as PCF-SCOD
and kNN-SCOD, to other existing methods introduced in this subsection.

Univariate detection methods

TCOD Considering the local correlation property of spatial data, we chose NN
(Nearest Neighbor) based techniques for SCOD tasks. Typical approaches
include kNN [37] and LOF [8] methodologies. To compute the similarities
among nominal data, we used Lin and OF measurements which showed
high performances [7, 11]. We combined the NN based techniques with
categorical similarity measurements together to get overall 4 different
comparable “TCOD” approaches: LOF-Lin, LOF-OF, kNN-Lin and
kNN-OF.
It is noted that kNN-SCOD is not related to kNN-Lin and kNN-OF,
although they have the same prefix “kNN”. As we introduced above,
kNN-Lin and kNN-OF were generated from one of the most popular
traditional numerical outlier detection approaches: kNN [37], while kNN-
SCOD is proposed in this paper by introducing a novel kNN mapping
function process as an effective and efficient approximation of the general
PCR computation.

SCOD Z-test is one of the most typical methods to identify SNOs. When operating
it on categorical data, we integrated Z-test with Lin and OF measurements.
As a result, there were 2 comparable “SCOD” approaches: Z-OF and
Z-Lin. Also, we directly applied Z-test into the categorical datasets by
assuming that the nominal categories can be ordered, denoted by Z-SNOD.

Multivariate detection methods

TCOD Several advanced TCOD methods have been proposed for multivariate
categorical data, including Bayes Net Method, Marginal Method, LERAD,
Conditional Test, Conditional Test-Combining Evidence, and Conditional
Test-Partitioning. Experiments had shown that Conditional Test and its
two variants outperformed all other methods [14]. Therefore, we focused
on the comparison of our method with the three best methods, denoted as
Conditional Test, Conditional Test-Combining Evidence, and Conditional
Test-Partitioning.
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SCOD For the competing methods in SNOD group, we chose Multivariate
Z-SNOD, which is an extension version of single attribute Z-test, by
considering Mahalanobis distance and MCD (Minimum Covariance De-
terminant) techniques. In addition, we integrated the preceding method
with multiple categorical similarity measurements, Lin and OF, named as
Multivariate Z-Lin, and Multivariate Z-OF.

5.1.3 Performance metrics

We generated synthetic outliers in both simulation and real datasets, which enable
us to analyze the effectiveness of outlier detection approaches in a controllable
way. We assumed the raw dataset as a ground truth, and contaminated around α

percent of the data records as outliers. In our paper, for each dataset, including
both simulation and real life ones, we randomly selected 2, 3 and 5 % of the data
to be anomalies by modifying them from its original category to anyone of others.
For each contamination rate (2, 3 and 5), the synthetic outliers were generated
10 times and the mean and standard deviation of accuracies were calculated for each
method.

To compare the accuracies among all methods, we used the common evaluation
measures: precision (detection rate), i.e., the fraction of examples labeled as outliers
that are true outliers, and recall (detection precision), i.e., the fraction of true outliers
that are correctly identif ied. The precision is plotted against recall, and the curves that
are higher and farther to the right denote better performances since it corresponds
to a higher precision for a given recall. Each point corresponds precision and recall
when a specified number of outlier is predefined, from 1 to n (the number of
objects in the whole dataset). As another measure of accuracy, average precision was
computed to approximate the area under the precision-recall curve.

All the experiments were conducted in a PC with Intel (R) Core (TM) Duo CPU,
CPU 2.80 GHz, and 2.00 GB memory. The development tool was MATLAB 2008.

5.2 Experiment results and analysis

This section presents experimental evaluations for the above approaches on simula-
tion and real datasets. We compared the SCOD accuracies among different methods
based on different parameter combinations.

5.2.1 Results on single attribute datasets

Detection accuracy Figure 6 depicts the comparison of our methods against the
other 7 existing approaches on the single attribute datasets. The contamination rate
α was set as 3, 5, 2 and 5 in Soil1, Soil2, Jura and Syn1, respectively. Each point
in the curves corresponds to the average performance over 10 randomly generated
datasets for each algorithm. We observed that both PCF-SCOD and kNN-SCOD
methods achieved 20–40 % improvement over Z-OF and Z-Lin, and 60–70 % over
LOF-Lin, LOF-OF, kNN-Lin, kNN-OF and Z-SNOD(Z-SOD). From these results,
we found that kNN and LOF can’t handle the categorical outlier detection in spatial
context. After integrating Z-test with OF and Lin similarity measurements together,
the outlier identification quality was increased. Z-Lin was always better than Z-OF.
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(a) (b)

(c) (d)

Fig. 6 Comparison of algorithm performances for the spatial dataset with single attribute

As introduced in [7], OF and Lin compute similarities for categorical attributes in
different ways:

SimOF(X, Y) =
{

1 if X = Y;
1

1+log(N/ fk(Xk))×log(N/ fk(Yk))
otherwise.

ωk = 1/d (24)

SimLin(X, Y) =
{

2log pk(Xk) if X = Y;
2log(pk(Xk) + pk(Yk)) otherwise.

ωk = 1
�d

i=1log pi(Xi) + log pi(Yi)
(25)

where fk(Xk) denotes the number of times attribute to take the value X in the kth

dimension, pk(Xk) the sample probability to take the value Xk in the dataset, and
ωk is the weight value of the kth dimension. When identifying the relevance score
among objects with the same categorical attribute, OF always assigns a constant value
1 to it, while Lin computes the value based on the occurrence probability of the
category. When two objects have different categorical attributes, OF assigns lower
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relevance to the objects with higher frequencies, while Lin assigns higher values.
Consequently, Lin could better capture the spatial relationship than OF by more
accurately computing spatial relevance among objects. If the category of one of the
pair objects occurs frequently in the dataset, it means the higher probability to co-
occur with another category in the whole dataset. That is why the methods integrating
with Lin always achieved better performance than those with OF. However, when
identifying the spatial categorical outliers, Lin and OF measurements are based on
the category frequencies that are determined by the whole data distribution, not the
co-occurrence frequencies which take spatial dependency into considerations. That
was why the performances of Z-Lin and Z-OF were worse than those of PCF-SCOD
and kNN-SCOD.

Compared with kNN-SCOD, PCF-SCOD had better performance. Especially,
when applied to the datasets with more complicated distribution, like Jura and Soil2

(as shown in Fig. 5), PCF-SCOD can accurately capture the relationships among
objects by considering PCRs among pair of categories at different spatial distances.
Furthermore, it can get the highest precision of identifying spatial categorical out-
liers. Also, with the increasing data size, kNN-SCOD got better approximations of
PCF-SCOD, like in Soil1(1000), Soil2(3000) and Syn1(4000), since with the more
objects in the dataset, kNN-SCOD could capture sufficient mapping information
from the raw dataset, which helps accurately approximate PCRs for pair objects.
Finally, we found that the identification qualify of PCF-SCOD was not affected
by different contamination rates. For each contamination value, PCF-SCOD always
achieves higher accuracy with stable process abilities, as shown by its small standard
deviations of detection precisions in Fig. 6b.

The average precision values are also given in Table 8 for all the SCOD ap-
proaches in single attribute domain. Note that for most datasets, PCF-SCOD and
kNN-SCOD achieved higher accuracy than other approaches. We notice that the
performance of the methods also depends on the detection tasks. For example,
kNN-SCOD has comparable or better performance than PCF-SCOD in Soil1 and
Syn1. In Soil1, only 3 % of data are contaminated which makes the outlying behavior
more obvious based on the information derived from the normal objects. There
are 3 categories in Syn1, and only 6 possible pair attributes. It is sufficient for
4000 observations to extract the normal pair attributes which co-occur frequently by
analyzing those behaviors. On the contrary, kNN-SCOD can’t work as well as PCF-
SCOD in Jura. There are only 359 observations which take four different categories,
which means there are overall 10 pair attributes. The neighborhood information

Table 8 Average precision
(normalized area under
precision-recall curve) for
spatial categorical datasets
with single attribute,
comparing PCF-SCOD,
kNN-SCOD-S and other 7
approaches

Approach for single Soil1 Soil2 Jura Syn1

attribute dataset

PCF-SCOD 0.7805 0.7822 0.7481 0.7646
kNN-SCOD-S 0.7811 0.7763 0.6521 0.7148
kNN-Lin 0.0279 0.0389 0.0276 0.0489
kNN-OF 0.0284 0.1261 0.0279 0.0454
LOF-Lin 0.0284 0.0621 0.0279 0.0455
LOF-OF 0.0284 0.0300 0.0279 0.0502
Z-Lin 0.6781 0.5407 0.4362 0.6298
Z-OF 0.6966 0.0473 0.3668 0.0477
Z-SNOD 0.1845 0.1603 0.0807 0.2072
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Fig. 7 Average precisions of
PCF-SCOD by varying k value

in these 359 observations can’t provide substantial information to help derive the
normal behaviors. On the other hand, by observing Fig. 5, we notice that the
distribution of the whole dataset is not uniform. It seems that there are various kinds
of pair attributes co-occurring in near distances, such as, blue-blue, blue-orange, red-
red, red-orange, red-while, and white-orange, etc. In this sense, only considering the
neighborhood based information is not sufficient to mine the normal patterns. Al-
though some pair attributes often co-occur within a near region, but they maybe not
within a little distant one. PCF-SCOD can extract the co-occurrence frequencies of
pair attributes at different distances. That is why PCF-SCOD performs well in Jura1.

Impacts of neighborhood sizes We also evaluated the anomaly detection per-
formances of proposed approaches by varying the sizes of spatial neighborhood.
Figure 7 shows various k values from 6 to 16, respectively. The curves depict the
effects of varying the number of spatial neighbors on the average precisions of PCF-
SCOD on 4 different sizes of datasets. In general, its anomaly detection performance
seems stable as the neighborhood size increases. In Soil1, Soil2 and Syn1, the optimal
k values are around 8 to 14. But for Jura, which is a small-size data set, higher
k value leads to a worse performance. This is because, higher neighborhood size
makes distant objects involve in evaluating the specified observation behaviors,
which violates the spatial correlation theory. This same situation occurred in the
results generated by kNN-SCOD method, as shown in Fig. 8. Since kNN-SCOD work
is based on the neighborhood information, which makes it more sensitive to the k
value. For the dataset with larger data size, 8-16 neighborhood size is appropriate to
collect the co-occurrence information of pair attributes. This is proved by the curves
of Soil1, Soil2 and Syn1. For small dataset, both lower and higher k values result in
worse identification performances.

Impact of bin sizes The effects of bin sizes were examined on the performances of
PCF-SCOD method. Figure 9 shows its performances keep impressive by varying
b values from 6 to 20. Apparently, SCOD identification quality achieves stable after

Fig. 8 Average precisions
of kNN-SCOD-S by varying
k value
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Fig. 9 Average precisions of
PCF-SCOD by varying b value

the points at 10. PCF-SCOD computes the pair attribute frequencies at different
bins. If b is smaller, e.g., b < 8, the pair observations in more distant region are
mixed with those in nearer region that we are interested. This results in the incorrect
computation of the co-occurrence frequency of pair attributes, which further leads
to the worse identification performances. On the contrary, higher b value helps com-
pute the pair frequency more accurately. However, too much bins will cost a lot, and
normally, it is sufficient to set b as 10 which is demonstrated by the curves in Fig. 7.

Computational cost analysis Finally, we showcase the speed and respective scala-
bility of the algorithms. Figure 10 contains the runtime performances of algorithms
in the datasets with varying number of data observations. As observed, the methods
based on Lin have similar runtime with those based on OF. Therefore, we only show
the Lin based approaches. As shown in Fig. 10, PCF-SCOD finished execution at
around 1.14 s for Jura data, while kNN-SCOD had a running time of 0.01 s. And,
in Syn2 dataset, PCF-SCOD is at around 55.5 s, while kNN-SCOD is at only 0.18 s.
By analyzing the results in Fig. 10, kNN-SCOD approximated the accuracy of PCF-
SCOD very well, while it outperformed PCF-SCOD for larger-size datasets. For
other compared approaches, although they finished running more quickly than PCF-
SCOD, they had lower identification accuracies.

5.2.2 Results on multiple attribute datasets

Detection accuracy Figure 11 shows the performances when contamination rate
was 5 % in simulation datasets. Obviously, kNN-SCOD-M still had very preceding
performance increases. The curves demonstrate that kNN-SCOD performs the
best, followed by the Multivariate Z-Lin and Multivariate Z-SNOD. The series of
Conditional Test perform very poorly in comparison. The worst one is Multivariate
Z-OF, since OF measurement can’t handle well the similarities among nominal data

Fig. 10 Runtime in seconds for datasets with varying size
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(a)

(c) (d)

(b)

Fig. 11 Comparison of algorithm performances for the spatial data with multiple attributes

with multiple attributes. Meanwhile, the curves of all methods are also depicted with
the standard variances of precision values of the 10 randomly generated datasets.
The smaller standard variance of kNN-SCOD indicates that it has more stable
performance to detect spatial multivariate categorical outliers.

Similarly, TCOD approaches didn’t achieve competitive results when applied
to the spatial context, as shown by the PR(Precision-Recall) curves generated
by Conditional Test, Combining Evidence, and Conditional Test-Partitioning. The
performance of Multivariate Z-Lin was still much better than that of Multivariate
Z-OF in the multiple dimension domain. Besides the different ways of similarity
computation for a specific attribute domain, OF and Lin applied different weight
values when calculating the final similarities by combining the different values from
different attribute domains. OF assigns the same weight to different attributes, while
Lin computes the corresponding weigh based on the category distribution in it.
As shown in Eq. 25, Lin measure gives higher weight to the same categories with
frequent values, and lower weight to different categories with infrequent values. Such
a way could better reflect the case that if two objects having the same category co-
occur with a higher frequency, they will have higher relevance. Whereas, if they
co-occur frequently with different categories, their relevance score will be lower
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Table 9 Average Precision for spatial categorical datasets with multiple attribute datasets, compar-
ing kNN-SCOD-M and other 6 out of state approaches

Approach for multi-attribute dataset Syn2 Syn3 Syn4 Syn5

kNN-SCOD-M 0.7282 0.7862 0.8003 0.7886
Conditional Test 0.0526 0.2084 0.3895 0.2509
Conditional Test-Combining Evidence 0.0526 0.2084 0.4084 0.2509
Conditional Test-Partitioning 0.0526 0.2082 0.3948 0.2468
Multivariate Z-SNOD 0.3984 0.5536 0.3596 0.4257
Multivariate Z-Lin 0.5950 0.6413 0.5498 0.4068
Multivariate Z-OF 0.0442 0.0512 0.0476 0.0512

since they are assigned a lower weight. However, such measurement to capture the
relevance between pair objects with different categories is significant inconsistent
with the concept of SCOs. That is why the performance of Multivariate-Lin is
much worse than that of kNN-SCOD. It is worthy to note that Z-SNOD approach
performs well compared with TCOD methods since it takes the characteristic of
spatial auto-correlation into considerations when identifying SCOs, although it treats
the categorical attributes as numerical ones.

The average precision values are given in Table 9 for all the SCOD approaches
in the multi-attribute domain. Note that for most datasets,kNN-SCOD achieved
much higher accuracy, from 0.7282 to 0.8003, than other approaches, from 0.0442
for Multivariate Z-OF, to 0.6413 for Multivariate Z-Lin, and 0.5536 for Multivariate
Z-SNOD. Similarly, the performance of the methods also depends on the detection
tasks. In Syn4 and Syn5, the contamination rate are 2 and 3, respectively, which
means there exist less outliers in the whole data sets. The lower contaminated data
alleviated the side-effects of outlying behaviors on the identification quality of kNN-
SCOD-M approach. This is also demonstrated by most of the higher average preci-
sions generated by other methods, like the Conditional Test series. For Multivariate
Z series, they all performs poorer in Syn4 compared in other datasets, since there
are 4 dimensions in it. It is apt to lose information when computing the spatial
relevance by integrating with Mahalanobis distance if there exist more attributes in
datasets (Fig. 11).

Impacts of neighborhood sizes In the same way, we showcase the effects of
neighborhood size on the performance of kNN-SCOD-M on multiple attribute
domain. Figure 12 depicts its identification quality is not sensitive to different sizes,
from 6 to 16, of spatial neighborhood. The sizes of these four data sets are 1000 and

Fig. 12 Average precisions of
kNN-SCOD-M by varying k
value
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4000. It is sufficient to set the k as around 8 to perform the computation of spatial
relevance scores.

5.2.3 Analysis and discussion

Based on the above experimental evaluations, PCF techniques have shown to be
very effective in modeling the relevances among spatial category objects in both
single and multiple attribute datasets. As a result, PCF-SCOD and kNN-SCOD
demonstrated superior identification qualities over the competing techniques in both
simulated and real datasets. The evaluations verify two observations: 1) first, SCOs
are identified in a different way with that of SNOs. Two objects taking different
attributes are not necessarily irrelevant with each other. Sometimes, their frequent
co-occurrence exactly illustrates their higher spatial correlation. This can be demon-
strated by comparisons of Z-SNOD against PCF series of methods; 2) when identi-
fying SCOs, the existing TCOD and SCOD approaches can’t avoid the well-known
swamping and masking problems. TCOD approaches treat spatial and non-spatial
attributes equally and don’t take the spatial dependency and spatial auto-correlation
into considerations, which are the specific properties of spatial data. Z-OF and Z-
Lin outperformed TCOD methods since they differentiate spatial and non-spatial
attributes. However, they performed worse than PCF-SCOD and kNN-SCOD
since their dissimilarity computation is based on the global frequencies, not local
frequencies (Fig. 6).

Notice that there might be white noise in the original data set. Considering
that data noise is usually uniformly distributed over the space, our defined pair
correlation ratio is able to capture the spatial correlation as a small but nontrivial
ratio value between noise observations and normal observations as long as there
exist some correlation patterns between them based on their spatial distances. The
pair correlation ratio will increase if the signal-noise ratio decreases. In the situation
with high signal-noise ratio, noise will not be identified as outliers. In the situation
with low signal-noise ratio, some noise observations may be identified as outliers, but
should not be highly ranked outliers. In the extreme case where the signal-noise ratio
is very high, then all the noise observations will be returned as top ranked outliers,
since they are rare observations and should be regarded as outliers.

This paper assumes that the spatial locations are uniformly distributed. The case
of sparsely distributed data may refer to two scenarios. The first scenario refers to the
situation where the data set has a very low signal-to-noise ratio. In this case, noise will
be handled well as explained above. The second scenario refers to the situation where
some categorical types are rare. This still depends on the sample size of these rare
categorical types is still sufficient to calculate the stable pair correlation ratios. If it is
not sufficient, we may need to remove them in the pre-processing step, since we are
not able to calculate stable statistics for them. However, note that sparse distribution
is not common in spatial categorical data. The datasets that we collected are all not
sparsely distributed.

6 Conclusion

This paper investigates the benefits of PCF technique on the SCOD, and designs
three algorithms which can identify SCOs with single and multiple attributes. The
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general idea in PCF-SCOD is that, first, for each pair of categories, we compute its
Pair Correlation Ratios (PCR) as a function of distances. Then, the outlier scores
are computed by the mean of estimated PCR values between each object and its
spatial neighbors. Finally, the top l objects with higher infrequent behaviors are
recognized as SCOs. We propose two kNN based estimators which utilize kNN
neighborhood information to estimate the co-occurrence frequency of pair objects
in single and multiple attribute domains, respectively. The proposed approaches
have several advantages: (1) they can identify SCOs with both single and multiple
categorical attributes; (2) they can process not only ordinal, but nominal categorical
datasets; (3) compared with existing approaches, they can better avoid swamping
and masking issues. The experiments conducted on the synthetic and real datasets
demonstrated PCF series of approaches significantly outperformed other existing
popular approaches.
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