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The Probability Density Function (PDF) is the fundamental data model for a variety of stream mining
algorithms. Existing works apply the standard nonparametric Kernel Density Estimator (KDE) to approxi-
mate the PDF of data streams. As a result, the stream-based KDEs cannot accurately capture complex local
density features. In this article, we propose the use of Local Region (LRs) to model local density information
in univariate data streams. In-depth theoretical analyses are presented to justify the effectiveness of the
LR-based KDE. Based on the analyses, we develop the General Local rEgion AlgorithM (GLEAM) to enhance
the estimation quality of structurally complex univariate distributions for existing stream-based KDEs. A
set of algorithmic optimizations is designed to improve the query throughput of GLEAM and to achieve
its linear order computation. Additionally, a comprehensive suite of experiments was conducted to test the
effectiveness and efficiency of GLEAM.
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1. INTRODUCTION

Data stream mining has become a popular focus in data mining research. One of the
primary reasons for the popularity of data streams is their pervasiveness in a variety of
domains. Data streams can be categorized into two classes: multivariate and univariate
streams. A multivariate stream is a multidimensional tuple ordered on, for example,
the temporal dimension. An example of a multivariate stream is a spatiotemporal tra-
jectory dataset composed of a moving object’s latitude/longitude coordinate locations
indexed by time. A univariate stream is defined as a one-dimensional tuple set. Uni-
variate streams can be observed in a variety of domains: for example, in finance, data
streams exist as the continually changing prices of a traded stock; in transportation,
they exist as the detected vehicle volume measures within a roadway segment; and in
medicine, they exist as the observed contraction rate of a human heart. These examples
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demonstrate the breadth of scenarios for which univariate data stream applications
can exist. Many more concrete examples of univariate data streams can be seen from
the time series domain [Keogh et al. 2008] whereby one can apply important min-
ing tasks such as outlier detection [Subramaniam et al. 2006] and pattern discovery
[Wegman and Marchette 2003] to elicit additional knowledge from the data-generating
process. In the case of multivariate data streams, one can employ dimension reduction
to generate projected data streams for which univariate analytical techniques can be
applied [Silverman 1986]. Univariate analysis is also useful for uncovering patterns in
domains beyond the traditional Euclidean space. For example, there has been increas-
ing interest in applying univariate probability density estimation on network data
[Okabe et al. 2009; Xie and Yan 2008]. In fact, these recent works demonstrate that a
univariate KDE in network space can produce enhanced estimates over a Euclidean
multidimensional KDE. Hence, due to the wide-ranging applicability of univariate
stream analysis, this work investigates and develops univariate analytical methods for
data streams.

For many stream mining techniques, especially those based on a statistical frame-
work, the Probability Density Function (PDF) is the principal employed data model
[Aggarwal and Yu 2007; Babcock et al. 2002; Heinz and Seeger 2008; Wegman and
Marchette 2003]. The PDF gives a complete distributional description of a random
process and thus provides the basis for several mining algorithms. For instance, the
PDF has been utilized as the core data model to support stream-based outlier detec-
tion, concept drift analysis, and pattern discovery. In outlier detection, the PDF is used
to model a sensor’s data distribution and estimate a distance-based outlier score of
incoming sample points [Knorr and Ng 1998; Subramaniam et al. 2006]. For concept
drift analysis, the PDF is utilized to develop, describe, and compare behavioral pro-
files of incoming data [Aggarwal 2003]. Last, in pattern discovery, the PDF is applied
to visualize and uncover predictive structures in Internet packet data [Wegman and
Marchette 2003].

In the data stream environment, the form of the stream’s PDF (e.g., Gaussian, Pois-
son) is generally unknown and evolving. Under this context, a nonparametric estima-
tion approach can be employed to estimate the PDF. A well established and effective
nonparametric technique is the Kernel Density Estimator (KDE) [Hardle et al. 2004].
The formulation of the univariate KDE is as follows: for n independent and identically
distributed (i.i.d) sample points z1, . . . , zn, bandwidth h, and a kernel function K(·), the
standard KDE is

f̂KDE(x) = 1
n

n∑
i=1

Kh(x − zi). (1)

where Kh(x − zi) = 1
h K( x−zi

h ) and
∫

K(t)dt = 1.
From Equation (1), a KDE generates a probability estimate by summing the con-

tributions at point x of the kernel functions K(·) that are superimposed and centered
on samples z1, . . . , zn. The bandwidth h controls the width of the kernels, and, as a
result, the selection of the bandwidth h and kernel function K(·) significantly impacts
the quality of estimate. Between these two parameters, it has been analytically and
empirically shown that the estimation quality of the KDE is critically dependent on
the bandwidth, whereas different kernel functions may provide marginal effects on
the overall estimation quality [Hardle et al. 2004; Scott 1992; Silverman 1986]. In the
standard KDE, a single bandwidth is applied globally; that is, the same bandwidth h is
applied to each kernel K(·) centered on samples z1, . . . , zn. This global/single bandwidth
assignment can be problematic for a variety of distributions due to its inability to accu-
rately and precisely model the local structures/features (e.g., modes of the distribution).
Therefore, for complex densities such as the multimodal distribution of highway traffic
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speed during a multi-incident event, the global bandwidth KDE may produce poor
and unsatisfactory estimation results [Sain 1994; Van Kerm 2003]. Estimation of local
structures could be improved if the bandwidth h is allowed to vary across different
regions of the density (e.g., smaller bandwidth for highly oscillatory section of the
density).

Due to computational considerations, the majority of stream-based KDEs applies
the global bandwidth form. As a consequence, these methods tend to generate
inaccurate estimates of local structures within complex distributions because their
bandwidth cannot be independently adjusted to model different regions of the density.
The emphasis of existing stream-based KDEs has been on developing techniques
for constructing and maintaining a finite-size model of the data stream without
considering the bandwidth and its impact to estimation quality. Specifically, given a
data stream of size n, the objective of existing techniques is to reduce the data stream
to M representative objects where M � n. The standard global bandwidth KDE is
then applied to the summarized objects to generate the PDF estimates. This reduced
representation allows the KDE to be maintained in a fixed memory environment
and gives rise to various O(M) density query algorithms. However, because these
techniques apply the standard KDE, they exhibit the same estimation problem
inherent to all global bandwidth approaches as described earlier.

This article aims to address the estimation issue associated with the globally as-
signed bandwidth. In particular, accurate estimation of the local features cannot be
achieved with a global/single bandwidth approach [Sain 1994; Van Kerm 2003]. To
address this issue, we propose the use of Local Regions (LRs) to efficiently and effec-
tively model the local structures within the PDF in O(M) time. LRs are partitions of
the sample set that associate a unique bandwidth to each partition. Based on LRs,
a generalized adaptive bandwidth assignment algorithm is proposed. The proposed
algorithm can be applied to an arbitrary class of global bandwidth stream-based KDEs
to enhance its estimation accuracy and assure a worst-case density query cost of O(M).
Specifically, this article makes the following contributions:

1. Theoretical analyses of the LR bandwidth approach: Rigorous analyses of the LR-
based KDE’s expected error, asymptotic consistency, and convergence rate are pre-
sented. The results of the analyses are used to compare the LR approach to the
standard KDE.

2. Design of a generalized LR algorithm: The General Local rEgion AlgorithM
(GLEAM) is proposed for application to existing stream-based KDEs to enhance
the estimation accuracy of complex distributions. Analyses of GLEAM’s time and
space complexity are also given.

3. Development of optimization techniques: Two optimization techniques (heap-based
regularization and hybrid kernel aggregation and filtering) are proposed to improve
GLEAM’s query processing throughput. In addition, cost analyses of the proposed
optimizations are provided.

4. Comprehensive experiments to validate the effectiveness and efficiency: GLEAM was
applied to a set of representative stream-based KDEs, and the results showed that
the LR algorithm improved the estimation quality of existing KDEs. Furthermore,
GLEAM’s throughput performances were comparable or better than its non-LR
counterparts.

This article is organized as follows: Section 2 reviews fundamental properties of the
KDE. Section 3 surveys related works of stream-based KDEs. Section 4 provides in-
depth theoretical analyses of the LR-based KDE. We describe our proposed GLEAM
approach and its associated optimizations in Section 5. Section 6 gives the experimental
results and discussion. Final conclusions are drawn in Section 7.
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2. BACKGROUND

The following provides a background on the KDE. The standard KDE (Equation (1))
at the query point x is essentially a summation of the contributions of weighting
functions K(·) centered on each of the sample points. The constraint

∫
K(t)dt = 1

enforces the KDE to be a PDF because it results in
∫

f̂KDE(x)dx = 1. Most of the kernel
functions used in practice are symmetric (e.g., Gaussian kernel), hence the KDE can
be intuitively viewed as the summation of contributing portions of symmetric “bumps”
that are centered above each data sample. The bandwidth h is regarded as the width
of the kernel functions or “bumps.” Therefore, h serves as the smoothing parameter of
the resulting KDE: A large h can generate a smooth shape density, whereas a small h
can provide an undersmoothed estimate.

The drawback of the standard KDE is its necessary inclusion for the use of a global
bandwidth. Due to the existence of local features in PDFs, a global bandwidth may not
be sufficient to model complex density structures (e.g., multimodal distributions). Ex-
amples of local features are differently shaped and sized modes within a PDF that arise
in highway traffic data and financial trade stocks. However, the KDE still possesses
several attractive features that include rigorous mathematical foundation; generaliza-
tion to other density estimators, such as orthogonal series and histograms; asymptotic
consistency; and inheritance of the kernel function’s continuity and differentiability
properties [Scott 1992; Silverman 1986]. Therefore, if the estimation issue associated
with the global bandwidth can be resolved, the impact of the KDE on stream mining
would be significantly enhanced.

The majority of stream-based KDEs employs the global bandwidth form (i.e., stan-
dard KDE), and, in particular, they utilize a specific bandwidth function called the
Scott’s Rule [Aggarwal 2003; Heinz and Seeger 2006; Silverman 1986; Subramaniam
et al. 2006]. The Scott’s Rule bandwidth assumes a Gaussian distribution reference
and thus has a tendency to mask local features and oversmooth complex densities.
This choice of bandwidth can have negative consequences to data stream applications.
Suppose that the Scott’s Rule bandwidth-based KDE is used for the task of detecting
distance-based outliers [Subramaniam et al. 2006]; then, the generated distributional
model can be oversmoothed and lead some estimates within the sparse regions to be
biased upward [Boedihardjo et al. 2008]. This effect can cause the detection scheme to
dismiss some true outliers. For mission-critical applications such as military surveil-
lance, a single false dismissal can be disastrous.

In the following paragraphs, we briefly sketch the central issue regarding the Scott’s
Rule. The Scott’s Rule bandwidth form is provided as follows:

hSR = CσD
−5
√

|D|, (2)

where C is a constant that depends on the employed kernel function K(·) (e.g., C ≈ 1.06
for Gaussian kernel and C = √

5 for Epanechnikov kernel), D is an i.i.d data sample
set, and σD is the standard deviation of D.

Due to the dependency on a single statistic σD to describe the complete span of the
density, the Scott’s Rule can fail to accurately estimate highly complex structures.
Consider the case when D is a binormal density and each of its modes has a constant
spread; then, σD increases with the distance of the two modes. As a result, σD inflates
the Scott’s Rule bandwidth value and causes the KDE to oversmooth. However, if the
density is a simple unimodal structure, then σD can accurately describe the density
structure, and the Scott’s Rule will provide good estimates. The problem described
above highlights the essential issue underlying all global bandwidth KDE techniques
i.e., its inability to appropriately represent the complete density structure using a
single measure.
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Because of the drawbacks associated with the globally defined bandwidth, the Adap-
tive KDE (AKDE) was proposed to support locally varying bandwidths. The AKDE is
defined as follows [Sain 1994]:

f̂AKDE(x) = 1
n

n∑
i=1

KH(zi )(x − zi), H (zi) ∝ f (zi)−1, (3)

where H(zi) is a bandwidth function that is inversely proportional to the true density
f (zi).

In essence, the AKDE increases its learning capacity (via smaller bandwidth) in
regions of high density where the local features are likely to originate from the true
distribution. This adaptive scheme enables the AKDE to provide superior estimation
accuracy over the standard KDE. Although the AKDE can produce higher estimation
quality, its computational cost (O(n2)) far exceeds that of the standard KDE (O(n)). In
the AKDE, the bandwidth H(·) is computed from the true density f (·). Because the
true density is unknown, a pilot function is defined to provide an estimate for f (·).
Generally, the pilot function is modeled by the standard KDE. This choice implies that
evaluating H(·) is an O(n) process. Therefore, computing a query under the AKDE is
an O(n2) operation since (H·) is computed at least once for each sample point. Because
data streams are fast, mutable, and potentially unbounded, applied mining techniques
should heed the following constraints: employ fixed memory space and perform at
most a linear order scan of the data [Babcock et al. 2002; Garofalakis et al. 2002;
O’Callaghan et al. 2002]. Hence, the AKDE approach cannot be directly applied to data
streams because it clearly infringes on the linear pass restriction.

3. RELATED WORK

The following section surveys existing KDE algorithms under two broad application
categories: offline and online analysis.

3.1. KDE for Offline Analysis

Most of the prior works in KDE were initiated from the perspective of offline analysis.
Methods of this class assume that data are persistent with no or slow updates. This
assumption is not applicable to the online setting, where updates are rapid and con-
tinuous. Additionally, the computational constraints of online techniques are far more
stringent than their offline counterparts. For example, online methods have limited
space and can only perform at most a linear pass on the data. Due to the assumption
on data persistence and the lack of strict enforcement on computational costs, offline
estimators cannot, in general, be directly applied to the online environment.

The following provides a summary of offline KDEs. Offline estimators can be catego-
rized in terms of their bandwidth selection strategy: Cross-Validation (CV) and Plug-In
(PI) [Heidenreich et al. 2010; Jones et al. 1996; Loader 1999; Turlach 1993]. Popular ex-
amples of CV-based approaches include Integrated Squared Error (ISE) minimization
of the leave-one-out strategy used in Bowman [1984] and Rudemo [1982]. By design,
CV methods are sensitive to sampling variations and therefore tend to produce under-
smoothed estimates and result in poor performance. However, it has been shown that
the least squares CV estimator can obtain the optimal convergence rate of O(n−4/5)
[Stone 1984].

The PI methods mitigate the issues of CV approaches by offering bandwidths that
generate smoother estimates and possess faster convergence rates [Heidenreich et al.
2010]. At the core, PI-based approaches enforce some prior knowledge of the higher
order pilot estimate in their error minimization criterion. Hence, the estimation quality
of the PI-based approaches depends on the assumed distributional form of the pilot
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estimates. Some well-known PI approaches are found in Hall and Marron [1987], Hall
et al. [1991], and Sheather and Jones [1991]. As pointed out by Loader, because both CV-
and PI-based methods employ a single global bandwidth, they suffer from an inability
to properly estimate global and local features simultaneously [Loader 1999].

Local likelihood density estimation is an approach that can provide effective esti-
mation of both global and local features [Hjort and Jones 1996; Loader 1996]. For a
given query point x, the approach fits a polynomial curve of the log density around
a local neighborhood of x via a kernel-smoothed maximum likelihood estimate. Vary-
ing bandwidth values can be employed to enhance density estimates of both global
and local features [Loader 1996]. However, the computational cost of applying vary-
ing bandwidth is expensive. To compute the local likelihood density estimate of a
single bandwidth requires a summation of the kernel-weighted samples and solving
for a system of equations. Determining the solution involves numerical calculation
of integrals or, in the case of Gaussian kernel, a closed-form solution can be derived
but with degraded estimates [Loader 1996]. Hence, applying varying bandwidths to
the local likelihood density estimator would further burden the total computational
cost.

Due to the potentially high computational costs of the just described KDE methods
(e.g., CV and local likelihood), a number of computationally efficient techniques have
been proposed. However, these approaches assume a working environment conducive
to offline analysis and therefore cannot be readily applied to an online setting. The
following highlights some prior studies for efficiently computing KDEs within an offline
environment. Zhang et al. proposed an algorithm to maintain a space-efficient KDE
by using CF-tree [Zhang et al. 1996] and CF-Kernels [Zhang et al. 1999]. However,
the method employs a global bandwidth in CF-Kernels that can lead to oversmoothing
and loss of local density information. Gray et al. proposed a kernel space partitioning
technique utilizing a KD-Tree and bounded support kernels to offline datasets [Gray
and Moore 2003]. The KD-Tree reduces computations by pruning kernels that do not
contribute to the density query. These KDE computational methods assume that data
samples are persistent or, at worst, undergo slow updates, such as in the CF-tree.
However, in the data stream setting, updates are continuous, data are unbounded, and
sample probability distributions can evolve rapidly. Hence, different computational
models are required to efficiently and effectively estimate PDFs in data streams. In
the next section, more recent innovations in online KDE methods are described.

3.2. KDE for Online Analysis

Recently, some works have attempted to address the issues surrounding the manage-
ment of online stream-based KDEs. The techniques employed by these works can be
classified as sample-based, grid-based, and cluster-based.

3.2.1. Sample-Based and Grid-Based KDE. Sample-based KDE employs a subsampling
methodology to reduce the total sample size. It provides an efficient management
strategy that gives a consistent throughput performance for any given dataset.
Subramaniam et al. proposed an outlier detection algorithm for sensor networks by
modeling the probabilistic densities of node observations with sample-based KDEs
[Subramaniam et al. 2006]. A global bandwidth based on the Scott’s Rule is applied to
the KDEs. Wegman et al. employed an online KDE to analyze the behavior of Internet
traffic [Wegman and Marchette 2003]. They suggested the use of a sequence-based and
exponentially aging sliding window to accommodate a fixed storage environment. To
derive estimates, a global bandwidth KDE is utilized. Grid-based KDE generates a uni-
formly spaced and discretized representation of the sample points. Its sample process-
ing throughput varies between datasets, but can provide improved estimation quality
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due to its ability to capture aggregated information. Aggarwal proposed a framework
to model the structural evolution of data streams by using a grid-based KDE [Aggarwal
2003]. The samples are summarized in a multidimensional grid where the Scott’s Rule
global bandwidth is employed within each dimension. Concepts of forward and reverse
density profiles are introduced to discover the occurrences of concept drifts.

3.2.2. Cluster-Based KDE. Cluster-based KDE performs kernel merging to maintain
fixed-size storage. Due to the merging of kernels, the processing throughput is heav-
ily dependent on the data’s characteristics, and its throughput can be quite low for
continuous-value data [Boedihardjo et al. 2008; Heinz and Seeger 2008]. As a result,
the cluster-based estimator does not possess the stability in throughput performance
as the sample-based approaches, but it can achieve much higher estimation accu-
racy. Zhou et al. introduced the M-Kernel, a cluster-based KDE maintenance strategy
that performs numerically based kernel mergers under a fading window [Zhou et al.
2003]. However, their proposed bandwidth strategy does not guarantee their estimate
converges to the true density as the number of samples is increased (i.e., pointwise
consistency is not assured). To address the drawbacks of M-Kernel, Heinz et al. pro-
posed the Cluster Kernels, which employ a constant time pairwise merging technique
and a global bandwidth scheme based on the Scott’s Rule [Heinz and Seeger 2008].
The Cluster Kernels were shown to outperform the M-Kernel in terms of estimation
quality and throughput performance. To mitigate the problem of the globally assigned
bandwidth while ensuring consistency, we previously proposed a cluster-based KDE
that supports multiple bandwidth assignments [Boedihardjo et al. 2008].

All of these stream-based KDE approaches depend on a single maintenance strategy:
sample-based, grid-based, or cluster-based. Each maintenance strategy possesses its
own set of benefits and drawbacks. For example, sample-based KDE achieves stable
throughput but can produce lower estimation quality than its grid-based and cluster-
based counterparts. The gaps in estimation quality between the various classes of
KDEs can be significant (i.e., cluster-based vs. sample-based). As a result, the KDE
selection criteria can be biased toward those KDEs that produce high-quality estimates.
However, if the qualities of estimates for all classes of KDEs are made sufficiently high,
then the suitability of a chosen KDE can be decided on other characteristics (e.g., sample
throughput). Hence, this article proposes a generalized algorithmic framework that
can be applied to any global bandwidth stream-based KDE to enhance the estimation
quality of complex distributions while achieving O(M) query cost.

In addition to these issues, the proposed GLEAM approach differs from our previous
KDE method [Boedihardjo et al. 2008] in the following two major aspects:

(1) GLEAM integrates LR regularization: In the previous method, the number of
local bandwidths is constant, which can lead to poor estimation performance, espe-
cially under concept drifts. GLEAM addresses this issue by developing a dynamic
local bandwidth generation method (initialized with a large LR number) through
a novel online regularization (i.e., reduce local bandwidth count) algorithm.

(2) In-depth theoretical study of GLEAM: Rigorous theoretical analyses are pro-
vided for GLEAM that include its expected error, convergence rate, and error re-
duction (with regard to classical global bandwidth KDE). Because GLEAM is a
generalization of the previously proposed approach, the theoretical analyses pro-
vided in this article are applicable to the prior work. Online histograms have also
been developed in the field of database optimization to provide query selectivity es-
timates and approximate queries [Ioannidis 2003]. Online histograms include dy-
namic quantiles [Gilbert et al. 2002], equidepth histograms [Gibbons et al. 2002],
and V-optimal histograms [Guha et al. 2006]. Due to the histogram’s inherent
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discontinuities and slower convergence rate, the histogram may not be suited for
the tasks of stream analysis [Hardle et al. 2004; Silverman 1986].

4. LOCAL REGION PROPERTIES

This section introduces the concept of the LR-based KDE and provides its estimation
properties. Results of the theoretical analyses motivate the application of the LR con-
cept to existing KDEs. In the following section, the estimation quality of the LR- based
KDE is derived, analyzed, and evaluated against the standard KDE. In particular,
this section focuses on the estimator’s pointwise accuracy, global accuracy, convergence
rate, and error reduction capacity.

The following provides the definition of the LR-based KDE and assumptions on the
kernel functions and bandwidth forms.

Definition 4.1 (Local Region (LR)). Let S be an i.i.d. sample set for a given time
period and D be the ordered set of S. In modeling the data stream, the ordered set D
is indexed on a temporal attribute such as arrival time. Let p = [a, b] be a subinterval
of D, then an unrestricted LR of D is l = {z|z ∈ D ∧ (a ≤ z ≤ b)}. Furthermore, define
the lower and upper bounding functions of l as �(l) = a and �(l) = b, respectively.
Then, the complete set of k LRs of D is L = {lj | ∩k

i 
= j((�(li),�(li)] ∩ (�(lj),�(lj)]) = ∅}
and z ∈ D ⇒ � (li) < z ≤ � (li) for exactly one li ∈ L. Hence, L is a set of LRs that
disjointly partitions the sample set D. Due to this disjoint constraint, each lj ∈ L is
called a restricted LR. Throughout this article, an LR (without a qualifier) refers to the
restricted LR as just defined.

Definition 4.2 (LR Center and Radius). Let l be an LR; then, the center of l is defined
as center (l) = 1

|l|
∑

z∈l z (i.e., mean of the samples in l). The radius of l is defined as

radius(l) =
√∑

z∈l(z − center(l))2 (i.e., standard deviation of the samples in l).

Definition 4.3 (LR-based KDE). For a given i.i.d. sample set D and its corresponding
set of LRs L, the LR-based KDE f̂LR (x) of D is defined as follows:

f̂LR (x) = 1
|D|

|D|∑
i=1

Khzi
(x − zi), (4)

where zi ∈ D, hzi = HLR (l) | l ∈ L∧ (zi ∩ (�(l),�(l)] 
= ∅), and HLR (l) is the locally global
bandwidth associated with LR l that contains zi.

Assumptions on Kernel Function: The kernel function K (·) must satisfy the
following conditions:

K (t) ≥ 0,

∫
K (t) dt = 1,

∫
tK (t) dt = 0,

∫
t2K (t) dt < ∞ (5)

Assumptions on the Bandwidth: Each bandwidth hj is positive and follows
Parzen’s sufficiency conditions [Parzen 1962]:

hj → 0 and |D|hj → ∞ as |D| → ∞ (6)

The LR-based KDE is an estimator that assigns an identical bandwidth to each data
sample within an LR. For example, suppose that D is partitioned into two LRs, l1 and
l2. The LR-based KDE assigns the bandwidth h1 to all samples in l1 and bandwidth h2
to all samples in l2. The bandwidths h1 and h2 are not necessarily identical because
they are entirely a function of l1 and l2, respectively. As a result, the maximum number
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of unique bandwidths for the LR-based KDE is |L|. The standard KDE is a special case
of the LR-based KDE with |L| = 1. Applying Parzen’s sufficiency condition for each
LR enables the LR-based KDE to achieve asymptotic consistency; that is, as the size
of data |D| → ∞, the estimation error approaches 0 (see Sections 4.1–4.3 for detailed
analyses and proofs).

As stated in Definition 4.1, LRs provide a total and disjoint partitioning of the data
sample set D. The criterion by which to partition D (i.e., construct the LRs) is dependent
on the bandwidth function assigned to each LR. Hence, the specification of the LR
construction is achieved after establishing the desired condition of the local estimates.
For example, if a single LR is chosen to model a unimodal distribution, then the Scott’s
Rule bandwidth would be an appropriate function to employ within each region. The
use of the Scott’s Rule would then dictate a particular construction criterion for the
LRs.

Justification for Independent and Identical Distribution: Most of the exam-
ined stream-based KDEs in this article, including the proposed GLEAM approach,
assume that the samples are i.i.d. conditioned on the time window [Heinz and Seeger
2008; Zhou et al. 2003]. Because the sliding time window constrains the model to the
most recent samples, it is reasonable to assume that these samples originate from
the same or identical generating process. When distributional changes occur, samples
representing the newest distribution are captured, and old samples from the previous
distribution are removed by the sliding window. This identical distribution assump-
tion has also been discussed and justified in other data stream works [Domingos and
Hulten 2012; Heinz and Seeger 2008]. In many streaming scenarios, the samples are
generated independently, as in Automatic Teller Machine (ATM) transactions; hence,
it is reasonable to suppose that no correlation exists between the samples. In settings
where data correlation exists, it has been shown theoretically and empirically that the
asymptotically optimal bandwidth KDE provides high-quality estimates on dependent
samples [Hall et al. 1995].

Error analysis of LR-based KDE under a theoretical framework: To evaluate
a given LR bandwidth form HLR, a theoretical framework that allows one to analyze
the estimation results induced by HLR is required. To that end, this section derives
some concrete forms of the estimation error (e.g., mean squared error; MSE), whereby
an arbitrary HLR can be applied and its resulting estimator evaluated. Furthermore,
the error forms have been selected in a manner that provides a fair comparison with
existing results of the standard KDE. The support for such comparative analysis al-
lows one to determine the conditions for which the LR-based KDE obtains enhanced
estimates over the standard KDE.

Consistency and convergence rate of the LR-based KDE: The theoretical
framework supports the analyses of both pointwise and global accuracy. These estima-
tion aspects are expressed in terms of the bias, variance, MSE, and mean integrated
squared error, which are analyzed in Sections 4.1–4.3. The error forms are then used
to establish the estimator’s asymptotic consistency. In data streams, consistency can
ensure that the expected error will decrease as more samples are processed. However,
the rate at which the error diminishes is not provided by consistency alone. Hence,
the convergence rate of the LR-based KDE is derived and analyzed. Results show that
the LR-based KDE’s convergence rate is no lower than the standard KDE’s. Under
certain complex distributions (i.e., those with large values of the integrated density
curvature), and based on the results of the asymptotic mean integrated squared error
(Sections 4.1–4.3), it is shown that the LR-based KDE can provide a lower expected er-
ror than the standard KDE (Section 4.4). These estimation properties of the LR-based
KDE motivates the development of GLEAM.
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4.1. Point-Wise Accuracy

In this section, the accuracy of the LR-based KDE is analyzed for a given density
query point x. In particular, the estimator’s bias and variance are derived, and their
relationship to data streams is discussed. Subsequently, the derived bias and variance
are used to obtain the estimator’s MSE.

4.1.1. Bias and Variance. This subsection discusses the role of the bandwidth hj in the
LR-based KDE’s bias (Lemma 4.1) and variance (Lemma 4.2) within the data stream
setting. It can be observed that reducing hj lowers the bias but increases the variance,
which results in the common Bias-Variance tradeoff [Hastie et al. 2001]. However,
because the estimator is applied to data streams, the error contribution of the bias can
far outweigh the error contribution of the variance. Analytically, this observation can be
justified as follows: suppose the Asymptotic Mean Integrated Squared Error (AMISE)
optimal bandwidth (Equation (14) with regard to standard KDE) is applied to each
LR, then variance

bias → |D|− 2
5 → 0 as |D| → ∞ since bias ∝ h2

j and variance ∝ (|D|hj)−1.
This result also holds when the Scott’s Rule is applied to each LR due to its AMISE
optimality with regard to a normal reference. Hence, it is a focus of the LR-based KDE
to reduce the bias in data stream applications.

LEMMA 4.1 (BIAS OF LR-BASED KDE). Let f (x) be the PDF of D and hj be the bandwidth
of LR lj, then the bias of f̂LR (x) is given as follows:

BIAS
(

f̂LR (x)
) ≤
⎛
⎝ |L|∑

j=1

|lj |h2
j

|D|

⎞
⎠( f ′′ (x)

2

∫
s2K (s) ds

)
+ o

⎛
⎝ |L|∑

j=1

|lj |h2
j

|D|

⎞
⎠ . (7)

PROOF. To prove the bias of f̂LR (x), the bias is initially proved with |L| = 2 and
subsequently generalized to |L| ∈ Z

+.
The proof begins with the definition of bias, which is given as follows:

BIAS
(

f̂LR (x)
) = E

[
f̂LR (x) − f (x)

] = E
[

f̂LR (x)
]− f (x).

Suppose that L = { l1:zi |1≤i≤m
l2:zi |m+1≤i≤|D| and zi ≤ zi+1; then, by the definition of f̂LR (x), we

have the following:

E
[

f̂LR (x)
] = E

⎡
⎣ m∑

i=1

Kh1 (x − zi)
|D| +

|D|∑
i=m+1

Kh2 (x − zi)
|D|

⎤
⎦ ,

= m
|D| E

[
1
h1

K
(

x − Z1

h1

)]
+ |D| − m

|D| E
[

1
h2

K
(

x − Z2

h2

)]
,

where E[ 1
h1

K( x−Z1
h1

)] = ∫
l1

1
h1

K( x−zi
h1

) f (zi)dz ≤ ∫ 1
h1

K( x−zi
h1

) f (zi) dz = E[ 1
h1

K( x−Z
h1

)] and
E[ 1

h2
K( x−Z2

h2
)] = ∫l2 1

h2
K( x−zi

h2
) f (zi)dz ≤ ∫ 1

h2
K( x−zi

h2
) f (zi)dz = E[ 1

h2
K( x−Z

h2
)]

E
[

f̂LR (x)
] ≤ m

|D| E
[

1
h1

K
(

x − Z
h1

)]
+ |D| − m

|D| E
[

1
h2

K
(

x − Z
h2

)]

= m
|D|
∫

1
h1

K
(

x − z
h1

)
f (z) dz + |D| − m

|D|
∫

1
h2

K
(

x − z
h2

)
f (z) dz. (8)

Let s1 = z−x
h1

and s2 = z−x
h2

and derive dz
ds1

and dz
ds2

; the following expression is obtained:

E
[

f̂LR (x)
] ≤ m

|D|
∫

K (s1) f (x + s1h1) ds1 + |D| − m
|D|

∫
K (s2) f (x + s2h2) ds2.
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Using the second-order Taylor expansion for f (·) and substituting the result into
this expression, the following LR-based KDE bias is derived:

E
[

f̂LR (x)
]− f (x) ≤

(
m
|D|h

2
1 + |D| − m

|D| h2
2

)(
f ′′ (x)

2

∫
s2K (s) ds

)
+ o
(

m
|D|h

2
1 + |D| − m

|D| h2
2

)
.

The additive composition of Equation (8) for |L| = k is

m1

|D|
∫

1
h1

K
(

x − z
h1

)
f (z) dz + · · · + mk

|D|
∫

1
h2

K
(

x − z
h2

)
f (z) dz,

where
∑k

i=1 mi = |D|. Using this generalized form, the expression becomes the final
bias expression shown in Equation (7).

LEMMA 4.2 (VARIANCE OF LR-BASED KDE). Let f (x) be the PDF of D and hj be the
bandwidth of LR set lj ; then, the variance of f̂LR (x) is given as follows:

VAR
(

f̂LR (x)
) ≤
⎛
⎝ |L|∑

j=1

|lj |
|D|2hj

⎞
⎠( f (x)

∫
K(s)2ds

)
+ o

⎛
⎝ |L|∑

j=1

|lj |
|D|2hj

⎞
⎠ . (9)

PROOF. The variance of the LR KDE is initially derived with |L| = 2 then generalized
to |L| ∈ Z

+.
Let L = { l1 : zi |1 ≤ i ≤ m

l2 : zi |m+ 1 ≤ i ≤ |D| and zi ≤ zi+1 then by the definition of f̂LR (x) we have the
following:

VAR
(

f̂LR (x)
) = VAR

⎛
⎝ m∑

i=1

Kh1 (x − zi)
|D| +

|D|∑
i=m+1

Kh2 (x − zi)
|D|

⎞
⎠

= 1

|D|2 VAR

(
m∑

i=1

Kh1 (x − zi)

)
+ 1

|D|2 VAR

( |D|∑
i=m+1

Kh2 (x − zi)

)

= m

|D|2 VAR
(
Kh1 (x − Z1)

)+ |D| − m

|D|2 VAR
(
Kh2 (x − Z2)

)

VAR
(

f̂LR (x)
) ≤ m

|D|2
(
VAR

(
Kh1 (x − Z)

)+ E
[
Kh1 (x − Z)

]2)

+|D| − m

|D|2
(
VAR

(
Kh2 (x − Z)

)+ E
[
Kh2 (x − Z)

]2)
. (10)

Applying the Taylor series expansion, the following variance expression is obtained:

VAR
(

f̂LR (x)
) ≤
(

m

|D|2 h1
+ |D| − m

|D|2 h2

)
f (x)

∫
K (s)2 ds + o

(
m

|D|2 h1
+ |D| − m

|D|2 h2

)
.

The additive composition of Equation (10) for |L| = k is m1
|D|2 VAR(Kh1 (x − Z)) + · · · +

mk
|D|2 VAR(Kh2 (x − Z)) where

∑k
i=1 mi = |D|. Using this generalized form, the expression

becomes the final variance expression shown in Equation (9).

4.1.2. Mean Squared Error (MSE). The MSE of the LR-based KDE is provided in
Lemma 4.3. Using the MSE, Theorem 4.1 shows that the pointwise estimate is L2
consistent [Lehmann 1998]. Consistency assures that the LR-based KDE will converge
to the true density as the sample size approaches infinity (i.e., |D| → ∞). This property
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can be observed in Equation (11), where the MSE of the estimate at x approaches zero
as the sample size |D| diverges to infinity. For data streams, this property is especially
important because the large and increasing number of samples is guaranteed (assum-
ing that the maximum rate of decrease of any hj is bounded by (|D| + 1)−1) to reduce
the LR-based KDE’s mean pointwise error.

LEMMA 4.3 (MEAN SQUARED ERROR (MSE) OF THE LR-BASED KDE). Let f (x) be the PDF
of D, hj be the bandwidth of LR set lj , and select hj such that it satisfies the conditions
of Equation (6); then, the MSE of f̂LR (x) is given as follows:

MSE
(

f̂LR (x)
)≤
⎛
⎝ |L|∑

j=1

|li| h2
j

|D|

⎞
⎠

2(∫
s2K (s) ds

)2 f ′′ (x)2

4
+
⎛
⎝ |L|∑

j=1

∣∣lj
∣∣

|D|2 hj

⎞
⎠(∫ K (s)2 ds

)
f (x)

+ o

⎛
⎝ |L|∑

j=1

|li| h2
j

|D|

⎞
⎠+ o

⎛
⎝ |L|∑

j=1

|lj |
|D|2hj

⎞
⎠ . (11)

PROOF. Recall that

MSE
(

f̂
) = BIAS( f̂ )2 + VAR( f̂ ).

Substituting Equation (7) (bias) and Equation (9) (variance) into this expression, the
MSE of f̂LR (x) becomes the following:

MSE
(

f̂LR (x)
) ≤

(∫
s2K (s) ds

)2 f ′′ (x)2

4
+
⎛
⎝ |L|∑

j=1

∣∣lj
∣∣

|D|2 hj

⎞
⎠(∫ K (s)2 ds

)
f (x)

+ o

⎛
⎝ |L|∑

j=1

∣∣lj
∣∣h2

j

|D|

⎞
⎠+ o

⎛
⎝ |L|∑

j=1

|lj |
|D|2hj

⎞
⎠+ o

⎛
⎝ |L|∑

j=1

∣∣lj
∣∣h2

j

|D|

⎞
⎠

2

Because each hj fulfills Parzen’s sufficiency conditions (Equation (6)), the MSE in
Equation (11) is obtained.

THEOREM 4.1 (MSE-CONSISTENCY OF LR-BASED KDE). Given the conditions of the kernel
function (Equation (5)) and assumptions on the bandwidth (Equation (6)), the LR-based
KDE is MSE (pointwise) consistent.

PROOF. To prove MSE consistency, we show that the LR-based KDE’s MSE
(Equation (11)) approaches 0 as |D| → ∞.

In the following, it is shown that
∑|L|

j=1
|lj |h2

j

|D| and
∑|L|

j=1
|lj |

|D|2hj
converge to 0 as |D| → ∞:

|L|∑
j=1

|lj |h2
j

|D| ≤
|L|∑
j=1

max
∣∣l1≤i≤|L||

∣∣ · max
∣∣h2

1≤i≤|L|
∣∣

|D|

= |L| · max
∣∣l1≤i≤|L||

∣∣
|D| · max

∣∣h2
1≤i≤|L|

∣∣
= k · max

∣∣h2
1≤i≤|L|

∣∣→ 0 as |D| → ∞.
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and
|L|∑
j=1

∣∣lj
∣∣

|D|2 hj
≤

|L|∑
j=1

1
|D| hj

≤ |L| 1
|D| · min

(
h1≤i≤|L|

) → 0 as |D| → ∞.

From the kernel conditions, we have:

(∫
s2K (s) ds

)2 f ′′ (x)2

4
< ∞ and

(∫
k (s)2 ds

)
f (x) < ∞.

Therefore MSE( f̂LR(x)) → 0 as |D| → ∞.

4.2. Global Accuracy

To provide an understanding of the estimator’s global accuracy, the analysis of the
LR-based KDE is performed on the entire support of the density f (·). The global error
is defined as the cumulative pointwise error (

∫
MSE( f̂LR(x))dx) in the complete domain

space. In Theorem 4.2, it is shown that the cumulative pointwise error (MISE) of the
LR-based KDE converges to zero; therefore, the LR-based KDE is L2 consistent within
the support of the density. Notice that the || f ′′||22 term in Equation (12) describes the
aggregated rate of fluctuations in the density f (x) (i.e., || f ′′||22 quantifies the overall
complexity of the density). It will be shown in Section 4.4 that the LR-based KDE can
reduce the error generated by || f ′′||22 via a reduction in the integrated squared bias

weight
∑|L|

j=1
|lj|h2

j

|D| . Similar to the pointwise estimate, reducing the integrated squared

bias weight produces an increase in the integrated variance weight
∑|L|

j=1
|lj|

|D|2hi
. How-

ever, as discussed in Section 4.1, the effective contribution of the integrated variance
is relatively small due to the large sample size of the data stream.

LEMMA 4.4 (ASYMPTOTIC MEAN INTEGRATED SQUARED ERROR (AMISE) OF THE LR-BASED

KDE). Let f (x) be the PDF of D, hj be the bandwidth of LR set lj , and select hj such that
it satisfies the conditions of Equation (6), then the AMISE of f̂LR(x) is given as follows:

AMISE
(

f̂LR (x)
) ≤
⎛
⎝ |L|∑

j=1

∣∣lj
∣∣h2

j

|D|

⎞
⎠

2

υ2 (K)2

4
|| f ′′||22 +

⎛
⎝ |L|∑

j=1

∣∣lj
∣∣

|D|2 hi

⎞
⎠ ||K|| 2

2, (12)

where υ2 (K) = ∫ s2K(s)ds, ||K|| 2
2 = ∫ K(s)2ds, and || f ′′||22 = ∫ f ′′ (x)2 dx.

PROOF. Notice that

MISE
(

f̂LR (x)
) =
∫

MSE
(

f̂LR (x)
)

dx.

Substituting the MSE (Equation (11)) into this MISE expression gives the following
LR-based KDE MISE:

MISE
(

f̂h(i) (x)
) ≤

⎛
⎝ |L|∑

j=1

∣∣lj
∣∣h2

j

|D|

⎞
⎠

2

υ2 (K)2

4
|| f ′′||22 +

⎛
⎝ |L|∑

j=1

∣∣lj
∣∣

|D|2 hi

⎞
⎠ ||K|| 2

2

+ o

( |L|∑
i=1

∣∣lj
∣∣h2

j

|D|

)
+ o

( |L|∑
i=1

∣∣lj
∣∣

|D|2 hj

)
, (13)

where υ2 (K) = ∫ s2K(s)ds, ||K|| 2
2 = ∫ K(s)2ds, and || f ′′||22 = ∫ f ′′ (x)2 dx.
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Let |D| → ∞ and, since each bandwidth hj fulfills Parzen’s sufficiency condition
(Equation (6)), the AMISE of the LR-based KDE simplifies to Equation (12).

THEOREM 4.2 (MISE CONSISTENCY OF LR-BASED KDE). Given the conditions of the
kernel function (Equation (5)) and assumptions on the bandwidth (Equation (6)), the
LR-based KDE is MISE (globally) consistent.

PROOF. From the result of the MSE consistency it is shown that
|L|∑
j=1

|lj |h2
j

|D| and
|L|∑
j=1

|lj |
|D|2hj

converge to 0 as |D| → ∞.

Furthermore, from the kernel conditions we have:

υ2 (K)2

4
|| f ′′||22 < ∞ and ||K||2

2 < ∞,

where υ2 (K) = ∫ s2K(s)ds, ||K|| 2
2 = ∫ K(s)2ds, and || f ′′||22 = ∫ f ′′ (x)2 dx.

Therefore, by applying the limits above to the MISE expression (Equation (13)), we
have:

MISE
(

f̂LR (x)
)→ 0 as |D| → ∞.

4.3. Convergence Rate

The convergence rate of a KDE is dependent on the selected form of the bandwidth. In
this subsection, the AMISE optimal bandwidth of the KDE is applied to the LR-based
KDE, and its convergence rate is compared against the standard KDE (Equation (1)).
The AMISE optimal bandwidth for the standard KDE is transformed into an LR-based
KDE compatible form as follows:

hj =
(

||K||22
|| f ′′

j ||22 u2 (K)2 |lj |

) 1
5

, (14)

where υ2 (K) = ∫ s2K(s)ds, ||K|| 2
2 = ∫ K(s)2ds, and || f ′′

i ||22 = ∫ f ′′
i (x)2 dx (i.e., squared L2

norm of the density curvature of li).
Substituting the bandwidth shown here into Equation (12) gives the following band-

width form-specific AMISE:

AMISE
(

f̂LR (x)
) ≤ || f ′′||22 u2 (K)2

4 |D|2

⎛
⎝ |L|∑

i=1

(
|li| 3

2 ||K|| 2
2

|| f ′′
i ||22 u2 (K)

) 2
5
⎞
⎠

2

+ ||K|| 2
2

|D|2
|L|∑
i=1

(
|li|6 || f ′′

i ||22 u2 (K)2

||K|| 2
2

) 1
5

= O
(|D| −4

5
)
. (15)

In comparison, the AMISE of the standard KDE with the optimal bandwidth is as
follows:

AMISE
(

f̂KDE (x)
) = 5

4
(||K|| 2

2

) 4
5
(
u2(K)|| f ′′||22

) 2
5 |D| −4

5 = O
(|D| −4

5
)
. (16)

From Equations (15) and (16), the convergence rates of the LR-based KDE and the
global bandwidth approaches are identical. This result is not surprising because the
number of LRs is constant and orthogonal to the sample size |D|. We also note that
the optimality of the global bandwidth KDE does not necessarily imply the optimality
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of the LR-based KDE. The true AMISE-optimal LR-based KDE bandwidth can be
produced by utilizing the gradient of Equation (12) and determining hj , which produces
zero gradient. The steps to attaining a closed-form solution involve the determination
of quintic roots. However, it is guaranteed that the AMISE optimal bandwidth for the
LR-based KDE will provide a convergence rate that is no worse than O(|D| −4

5 ).

4.4. LR-based KDE Error Reduction over the Standard KDE

This subsection compares and analyzes the AMISE of the LR-based KDE and standard
KDE under the commonly used Scott’s Rule bandwidth. The Scott’s Rule bandwidth
provides oversmoothed estimates of complex structures. However, it can give accurate
estimates of simple features (e.g., unimodal density) and is amenable to efficient im-
plementations [Scott 1992; Silverman 1986]. If each LR is tasked to capture the simple
features of the density, then applying the Scott’s Rule bandwidth to each LR can result
in improved estimation quality over the standard KDE. In the following theorem, we
describe the conditions for which the LR-based KDE provides lower AMISE than the
standard KDE under this specific application of the Scott’s Rule bandwidth.

THEOREM 4.3 (AMISE REDUCTION OF LR-BASED KDE). Let the AMISE differ-
ence between the standard KDE and LR-based KDE be defined as Z( f̂KDE, f̂LR) =
AMISE( f̂KDE(x)) − AMISE( f̂LR(x)) and suppose that the Scott’s Rule bandwidth is ap-
plied to the standard KDE and to each LR of the LR-based KDE (as shown in Equation
(14)) and |D| > 0, then

Z
(

f̂KDE, f̂LR
) = AMISE

(
f̂KDE (x)

)− AMISE
(

f̂LR (x)
)

> 0

⇔

⎛
⎜⎝|D| 6

5 σ 4
D −
⎛
⎝ |L|∑

i=1

|lj | 3
5 σ 2

j

⎞
⎠

2
⎞
⎟⎠ || f ′′||22 > α2 (K)

⎛
⎝ |L|∑

i=1

|lj | 6
5

σ j
− |D| 6

5

σD

⎞
⎠, (17)

where σD is the standard deviation of D, σ j is the standard deviation of lj , α2 (K) =
4||K||2

2

C5u2(K)2 , and C is a constant that is dependent on the kernel function K (see Equation (2)).

PROOF. Apply the Scott’s Rule (Equation (2)) to both the standard KDE and LR-based
KDE to obtain the following:

Z
(

f̂KDE, f̂LR
) = C4u2 (K)2

4 |D|4

⎛
⎝(|D| 3

5 σ 2
D

)2
−
( |L|∑

i=1

∣∣lj
∣∣ 3

5 σ 2
j

)2⎞⎠ || f ′′||22

+ ||K|| 2
2

C |D|2

⎛
⎝ |D| 6

5

σD
−

|L|∑
i=1

∣∣lj
∣∣ 6

5

σ j

⎞
⎠

⇒

⎛
⎜⎝|D| 6

5 σ 4
D −
⎛
⎝ |L|∑

i=1

|lj | 3
5 σ 2

j

⎞
⎠

2
⎞
⎟⎠ || f ′′||22 = Z

(
f̂KDE, f̂LR

)
α1 (K, D)

+α2 (K)

⎛
⎝ |L|∑

i=1

|lj | 6
5

σ j
− |D| 6

5

σD

⎞
⎠ ,
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where σD is the standard deviation of D, σ j is the standard deviation of lj , α1 (K, D) =
4|D|2

C4u2(K)2 , α2 (K) = 4||K||2
2

C5u2(K)2 , and C is a constant that is dependent on the kernel function
K as shown in Equation (2).

Suppose Z( f̂KDE, f̂LR) > 0 (i.e., the AMISE of the LR-based KDE is lower than
the standard KDE), then we have Z( f̂KDE, f̂LR)α1 (K, D) > 0 because α1 (K, D) =

4|D|2
C4u2(K)2 > 0. Hence,

⎛
⎜⎝|D| 6

5 σ 4
D −
⎛
⎝ |L|∑

i=1

|lj | 3
5 σ 2

j

⎞
⎠

2
⎞
⎟⎠ || f ′′||22 > α2 (K)

⎛
⎝ |L|∑

i=1

|lj | 6
5

σ j
− |D| 6

5

σD

⎞
⎠

It is straightforward to show that if the this condition holds, then Z( f̂KDE, f̂LR) > 0
since α1 (K, D) > 0 (i.e., converse relationship is true). Therefore,

Z
(

f̂KDE, f̂LR
)

> 0 ⇔

⎛
⎜⎝|D| 6

5 σ 4
D −
⎛
⎝ |L|∑

i=1

|lj | 3
5 σ 2

j

⎞
⎠

2
⎞
⎟⎠ || f ′′||22 > α2 (K)

⎛
⎝ |L|∑

i=1

|lj | 6
5

σ j
− |D| 6

5

σD

⎞
⎠ .

Theorem 4.3 shows that if the parameters of the LR-based KDE satisfies
Equation (17), then it is guaranteed that the LR-based KDE’s AMISE will be lower
than the standard KDE. The form of the expression in Equation (17) demonstrates
the relations between the curvature || f ′′||22 (i.e., complexity of the PDF), the AMISE
difference Z( f̂KDE, f̂LR), and the parameters of the KDEs in a somewhat compli-
cated manner. To simplify these relations, we investigate the conditions for which

(|D| 6
5 σ 4

D − (
∑|L|

i=1 |lj | 3
5 σ 2

j )2) > 0. Because
√

|D| 6
5 σ 4

D > 0 and
∑|L|

i=1

∣∣lj
∣∣ 3

5 σ 2
j > 0, we have

⎛
⎝|D| 6

5 σ 4
D −
( |L|∑

i=1

∣∣lj
∣∣ 3

5 σ 2
j

)2⎞⎠ > 0 ⇔
(

|D| 3
5 σ 2

D −
|L|∑
i=1

∣∣lj
∣∣ 3

5 σ 2
j

)
> 0

Furthermore,(
|D| 3

5 σ 2
D −

|L|∑
i=1

∣∣lj
∣∣ 3

5 σ 2
j

)
≥
(

|D| 3
5 σ 2

D −
|L|∑
i=1

∣∣lj
∣∣ 3

5
(
max{σ1, . . . , σ j, . . . , σ|L|}2))

= |D| 3
5 −

|L|∑
i=1

|lj | 3
5

max{σ1, . . . , σ j, . . . , σ|L|}2

σ 2
D

.

The lower bound |D| 3
5 −∑|L|

i=1 |lj | 3
5

max{σ1,...,σ j ,...,σ|L|}2

σ 2
D

is minimized when each
∣∣lj
∣∣ = 1.

This condition is achieved when |L| = |D|; however, in practice, |L| < |D|. Hence,
we consider this minimum to be the worst-case scenario for the lower bound ex-
pression. Under this worst-case scenario, it is guaranteed that the lower bound
|D| 3

5 − ∑|L|
i=1 |lj | 3

5 ( max{σ1,...,σ j ,...,σ|L|}2

σ 2
D

) > 0 when max{σ1,...,σ j ,...,σ|L|}
σD

< |D| −1
5 . Therefore, if

max{σ1,...,σ j ,...,σ|L|}
σD

< |D| −1
5 , then |D| 6

5 σ 4
D − (

∑|L|
i=1 |lj | 3

5 σ 2
j )2 > 0 which implies that

Z
(

f̂KDE, f̂LR
)

> 0 ⇔ || f ′′||22 > β (K, L, D) , (18)
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Fig. 1. An example of concept drift due to modal distance shifts.

where β(K, L, D) = α2(K)(
∑|L|

i=1
|lj |

6
5

σ j
− |D| 6

5

σD
)/(|D| 6

5 σ 4
D − (

∑|L|
i=1 |lj | 3

5 σ 2
j )2) is called the pa-

rameter difference ratio.
Based on this expression, the LR-based KDE can generate lower estimation errors

than can the standard KDE when the structural makeup of the true density is complex
(i.e., high || f ′′||22 value). This observation can also be implied from Equation (17), where
the dominance of || f ′′||22 can lead to the dominance of (|D| 6

5 σ 4
D − (

∑|L|
i=1 |lj | 3

5 σ 2
j )2)|| f ′′||22

over α2(K)(
∑|L|

i=1
|lj |

6
5

σ j
− |D| 6

5

σD
), which implies that AMISE( f̂KDE(x))−AMISE( f̂LR(x)) > 0.

In short, the higher the complexity of distributional structure (e.g., multimodal), the
more likely that the LR-based KDE will generate lower AMISE than the standard
KDE.

Another important result of Equation (18) is the implication on the estimation qual-
ity under the conditions of concept drifts. In particular, the LR-based KDE can provide
stable estimates of systems that undergo modal shifts. Such evolutionary behavior can
be exemplified by a binormal density that exhibits changes to its mode center distance
(see Figure 1). In this simulated scenario, the density estimates are performed by em-
ploying a batch process on the data samples at each of the estimated timestamps. This
scenario aims to show the proposed estimator’s capacity to adjust to new distributions.
Issues regarding the management of streaming data samples (e.g., sample reweight-
ing) are discussed in Section 5. According to the parameter difference ratio β (K, L, D)
in Equation (18), the LR-based KDE allows for the adaptation to modal shifts and pro-
duces (in general) constant error under such distributional mutations. In this scenario,
the LR-based KDE’s parameters |lj | and σ j remain constant, and the standard KDE pa-
rameter σD increases in proportion to the distance of the mode centers. Furthermore,
the aggregated curvature || f ′′||22 is relatively unchanged when the distance between
the mode centers exceeds the sum of the mode scales. The increase in mode center dis-
tance lowers the parameter difference ratio but retains the aggregated curvature fixed.
Hence, the LR-based KDE can provide a fairly consistent AMISE as the mode center
distance increases. Assuming in Equation (18) that || f ′′||22 dominates α2 (K), then the
standard KDE’s error increases as the modal distance becomes larger. Therefore, as
the distance between the mode centers increases, the LR-based KDE generates better
estimation results than does the standard KDE. This adaptive characteristic of the
LR-based KDE is critical because it allows for high-quality estimates under dynamic
stream environments.

4.5. Application of LR to Existing KDEs

It can be concluded from Section 4.4 that the LR-based KDE can improve the esti-
mation quality over the global bandwidth KDE for complex densities (i.e., densities
with sufficiently large || f ′′||22). The conditions for this result are embedded within the
assumption of the AMISE: The samples of D are i.i.d. This assumption enables the ap-
plication of existing stream-based KDEs that employs i.i.d. assumptions conditioned on
a time window [Heinz and Seeger 2008; Zhou et al. 2003]. The significance of the i.i.d.
samples is that it guarantees that the sample set accurately represents the distribution
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Fig. 2. GLEAM Architecture.

of the original data. Data can be synopsized under various techniques, such as clus-
tered/merged objects, discretized grids, and sub-sampled points. These representations
can be regarded as a sampling of the original dataset. Depending on the summariza-
tion technique, the represented set can be regarded as i.i.d. samples. This fact implies
that the LR bandwidth scheme can be applied to existing stream-based KDEs, given
that the representative sampling components accurately model the distribution of the
original dataset. However, methods such as gridding may violate the i.i.d. property due
to the nonuniform modeling associated with each summarized object. However, such
representation errors can often be parameterized and bounded to an arbitrarily small
error ε.

5. GLEAM: GENERALIZED LOCAL REGION ALGORITHM

The discussion of Section 4.4 demonstrates that the LR-based KDE can provide im-
proved estimation accuracy over the standard KDE. Furthermore, Section 4.5 shows
that the LR scheme can be applied to existing stream-based KDEs to enhance their es-
timation quality. This characteristic of the LR scheme motivates the development of the
GLEAM. GLEAM is an LR bandwidth modeling approach that can be integrated into
an existing global bandwidth stream-based KDE. In addition to providing enhanced
bandwidths, GLEAM employs efficient strategies to attain time and space costs that
are at most O(M). Here, M refers to the number of kernel objects maintained by the
existing stream-based KDE, KDEbase.

Figure 2 depicts the proposed GLEAM architecture. GLEAM possesses the following
three components: LR_list, LR_modeler, and LR_query_processor. LR_list maintains a
linked list of LRs for the current stream, LR_modeler directs the construction of the
LRs within LR_list, and LR_query_processor coordinates and resolves the search for
the bandwidths to be assigned to the kernel objects in KDEbase. Utilizing these three
components, GLEAM performs the following two major tasks: LR construction and
density query processing. For LR construction, the LR_modeler continuously maintains
a set of LRs stored in LR_list that reflects the current state of the data stream. For
density query processing, LR_query_processor performs bandwidth searches for the
kernel objects in KDEbase and assembles the final density result.

The following provides a short example of the data processing in GLEAM. Each
stream sample is forwarded to the KDEbase and LR_modeler. The KDEbase processes
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the sample following its original approach in maintaining the M representative kernel
objects. For the LR_modeler, the sample is processed to continuously maintain a set
of LRs that describes the current stream. This process of GLEAM is known as “LR
construction,” which is discussed in Section 5.1. To generate a density query estimate,
the LR_query_processor module retrieves the relevant LRs and kernel objects from
the LR_modeler, LR_list, and KDEbase, and aggregates the kernel contribution values
to obtain the final result. The detailed description of the density query algorithm is
provided in Section 5.2. Cost analyses and optimizations techniques are provided in
Sections 5.3 and 5.4, respectively.

5.1. Local Region Construction with LR_modeler

The LR construction is formulated as an optimization task. The following provides the
objective criterion.

Local region construction objective criterion: To construct the LRs, a crite-
rion is proposed based on the application of the Scott’s Rule (Equation (2)) to each
LR. Imposing this bandwidth results in an error form (see Section 4.4) that estimates
the local deviation σ j for 1 ≤ j ≤ |L|. To produce a low parametric difference ratio
β (K, L, D) relative to the aggregated curvature || f ′′||22 in Equation (18), the follow-
ing LR assignment heuristic is proposed: each LR is tasked to encapsulate a single
mode in order to provide a reasonable balance between the numerator and denomi-
nator of β (K, L, D). Hence, if each LR is designed to model a unimodal density, then
the construction of the LRs should aim to minimize the total Sum Squared Error
(SSE). If the SSE minimization objective is employed, then the number of LRs Q
must be determined. Because each LR is aimed to capture a unimodal structure, the
natural choice for Q is the number of true modes in the density. Verifying against
Equation (18), this choice of Q will give a relatively low parametric difference ratio
β (K, L, D).

To estimate the number of modes within the density, σ j is used to measure the suit-
ability of the unimodality assumption imposed on LR lj . Suppose that a representative
sample set D of the density is partitioned into r number of LRs constructed via the
SSE criterion. Let σ j and σk be the standard deviations of the nearest neighbor pair of
LRs lj and lk, respectively. Furthermore, define σ j ∪ k to be the standard deviation of the
merged pair lj ∪ lk. The nearest neighbor of lj is the LR that has a center closest in L2
distance to the center of lj . For the univariate case, the nearest neighbor candidates of
lj are the pair of lj ’s adjacent LRs. If lj and lk are both unimodal, then in the general
case σ j ∪ k > σ j + σk holds. However, if σ j ∪ k ≤ σ j + σk, then lj ∪ lk is a more accurate
representation of the unimodal structure than lj and lk individually. In this case, lj
and lk should be merged to improve the opportunity of capturing a unimodal structure.
If the merging process is performed until each nearest neighbor pair (lj, lk) satisfies
σ j ∪ k > σ j + σk, then the resulting number of LRs s ≤ r would be a suitable estimate for
the number of modes in the sample set D.

Based on this mode estimation strategy, the LR_modeler generates the LR in two
phases: LR seeding and LR regularization. In LR seeding, the LR_modeler continuously
constructs and maintains at maximum Qmax number of LRs in the LR_list where
Qmax is set to the application’s maximum allowable size. In the second phase, the
LR_modeler regularizes the LRs in LR_list by merging those regions that invalidate
the unimodality assumption. The result of this regularization phase guarantees that
any nearest neighbor pair of LRs (lj, lk) satisfies σ j ∪ k > σ j +σk. The regularized/merged
LRs are then used to compute the density estimates.

Phase 1. LR seeding: The process of LR seeding employs a single-scan incremen-
tal K-Means clustering on the data stream [Aggarwal et al. 2003]. Let Qmax be the
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maximum number of LRs that can be stored in LR_list to provide a fine granular
representation of the data stream. Each LR lj maintains a vector of local statis-
tics �v j = 〈∑|lj |

i=1 z0
i ,
∑|lj |

i=1 z1
i ,
∑|lj |

i=1 z2
i 〉 where zi ∈ lj . Other required statistics, such as

center(lj) and radius(lj), can be quickly computed from �v j . LR addition/subtraction is
defined as the componentwise addition/subtraction operation that results in efficient
computation of LR merging and splitting.

When a new data sample d arrives, the LR_modeler identifies the in-
tersecting lj in LR_list and updates its corresponding �v j . Here, intersection
is defined as follows: d and lj intersects if and only if (d ∩ [(center(lj) −
μ · radius(lj)) · · · (center(lj) + μ · radius(lj))]) 
= ∅ and where μ ≥ 1. However, if the
LR_modeler cannot find an intersecting lj , a new LR is created for d. The construction
process continues in this manner until the number of LRs is greater than Qmax (i.e.,
|LR list| > Qmax). If |LR list| > Qmax, the LR_modeler merges the two nearest-neighbor
LRs that minimize the SSE residual until |LR list| = Qmax. The merging of any two
LRs is achieved by performing the addition operation on the corresponding pair of vec-
tors. Hence, the merge operation can be efficiently performed in O (dim (�v)) time where
dim (�v) is the dimension of �v.

Phase 2. LR regularization: The number of LRs in the LR_list can be much
larger than the actual number of modes in the density. This condition can cause cer-
tain LRs to break the minimum unimodality assumption and artificially deflate the
bandwidths (i.e., overfit the data). To resolve this issue, the LR_modeler regularizes
LR_list by agglomerating (at query time) the nearest-neighbor pairs of LRs lj and
lk that have σ j ∪ k ≤ σ j + σk. The nearest neighbor LR pair is defined as the two
LRs with the minimum L2 distance between their centroids from all other LR pair
sets.

To regularize the LRs, the LR_modeler employs an incremental merge strategy that
combines the nearest-neighbor LRs until no pair of LRs can satisfy the merge condition
(i.e., all resulting LR pairs suffices σ j ∪ k > σ j + σk). In the first step, the LRs of LR_list
are copied to the regularized LR list Lreg. Next, the LR_modeler scans Lreg to obtain the
pair of nearest-neighbor LRs (i.e., has minimum L2 distance between their centroids)
that satisfies the merge condition (i.e., σ j ∪ k ≤ σ j + σk for LRs lj and lk). The scan process
takes O(|Lreg|) time since only the adjacent pairs of LRs are required for consideration.
After obtaining the nearest-neighbor LRs, they are combined to form a new LR to
replace the original pair within Lreg. As a result of this merging process, |Lreg| is reduced
by one LR. The algorithm continues to scan and combine the nearest-neighbor merge
candidates until there is no pair of LRs that satisfies the merge condition σ j ∪ k ≤ σ j +σk.
Hence, at the algorithm’s termination, Lreg will contain the regularized LRs where
|Lreg| ≤ |L| and each nearest neighbor lj and lk fulfills σ j ∪ k > σ j + σk.

Setting the Qmax Parameter: Qmax is defined as the upper bound on the number
of LRs that can be supported by the system’s memory and CPU availability. In large
systems, naively allowing the LRs to grow to the system’s available resources can lead to
overfitting, which increases estimation variability. However, because GLEAM performs
regularization, the LRs are merged to minimize overfitting and reduce estimation
variance. Hence, GLEAM can automatically tune the number of LRs by adding and
merging LRs via the seeding and regularization process.

Concept Drift Modeling: There are two components in GLEAM that impact the
modeling performance of evolving streams: the kernel maintenance module KDEbase
and the LR seeding submodule. For the KDEbase, the particular approach employed
to handle concept drifts is intrinsic to the chosen KDEbase algorithm and thus is not
modified by GLEAM. For example, the sample-based KDEs [Subramaniam et al. 2006;
Wegman and Marchette 2003] are designed to only capture the data samples for the
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given time window and hence simulate the batch processing scenario as described in
Section 4.4. The second component of GLEAM that impacts modeling of concept drifts
is the LR seeding submodule. To accurately capture the evolving states of KDEbase, the
internal statistics of the LRs will need to be recomputed for every state change in the
KDEbase. Specifically, updating k elements in KDEbase will incur at most O(k) operations
on the corresponding LR to update its first and second moments. This “exact” approach
can be applied for any algorithm implemented as the KDEbase.

This LR update cost can be reduced if the moment estimates are able to toler-
ate additional error. For example, the seeding module can adopt a policy to remove
LRs with an average time (plus its standard deviation) older than a given threshold
[Agarwal et al. 2003]. Although lower update cost is achieved, a significant amount
of stale information can remain in LR_list, which can increase estimation errors. An
improved variation would be to allow gradual fading of the LRs’ weights based on the
proportion of the LR’s time span (defined as the average timestamp ± standard devi-
ation) and a given minimum timestamp threshold. Similar to the prior approach, the
threshold can represent the starting point of a (sliding) time window. The two varia-
tions just described can reduce the total update costs compared to the “exact” update
method.

Extension for Local Region Splitting: GLEAM can be extended to support LR
splitting as follows. After the seeding process, the selection of the split candidate is
determined by the LR’s normalized variation. For an LR lj , the normalized variance
is defined as NVj = σ j

max(lj )−min(lj )
where min(lj) and max(lj) respectively denote the

minimum and maximum kernel centers in lj . The larger the NV value, the weaker
the unimodality assertion becomes. Therefore, the LR with the maximum NV can be
considered for splitting. Once the split candidate lc (i.e., LR with maximum NV ) is
identified, the LR is split as follows:

1. Generate all bipartite and continuous segments l(p)
c and l(q)

c where l(p)
c ∪ l(q)

c = lc,
{l(p)

c , l(q)
c } ∈ LRs, and |l(p)

c |, |l(q)
c | > 1.

2. Compute the standard deviations σ
(p)
c and σ

(q)
c , respectively, for l(p)

c and l(q)
c .

3. Find the pair of l(p)∗
c and l(q)∗

c where σc − (σ (p)∗
c + σ

(q)∗
c ) > 0 is maximized.

4. Replace lc with l(p)∗
c and l(q)∗

c in LR_list.
5. Forward the LR_list for LR regularization.

In Step 1, the algorithm generates all pair combinations (l(p)
c , l(q)

c ) of LRs such that
the union of their kernel sets is equal to the kernel set of lc. In Steps 2 and 3, the
individual standard deviations of l(p)

c and l(q)
c and the reduction in the standard devia-

tions σc − (σ (p)∗
c + σ

(q)∗
c ) > 0 are computed. This reduction in standard deviations is the

logical complement of the merge criterion. Hence, the LR pairs, l(p)∗
c and l(q)∗

c , with the
maximum reduction values are selected as the new LRs. Step 4 replaces lc with l(p)∗

c

and l(q)∗
c in the LR_list. Because the split can generate new merge candidates with its

neighbors, Step 5 applies regularization on the new pair and its neighbors to detect
potential mergers. The total cost to find and split an LR is O(Qmax + |lc|) = O(M).

5.2. Query Processing with LR_query_processor

To process a density query, the LR_query_processor initiates the LR regularization
from the LR_modeler to obtain the Lreg. Using Lreg, the LR_query_processor deter-
mines the density estimate by obtaining and aggregating the relevant sets of LRs and
kernel objects. The retrieval and aggregation steps are accomplished via the following
two tasks: bandwidth retrieval and kernel aggregation. In bandwidth retrieval, the
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LR_query_processor retrieves the bandwidths from Lreg and associates them to the
kernel objects in KDEbase. In kernel aggregation, the LR_query_processor combines
the density contribution of the kernel objects to produce the final density estimate.

Bandwidth retrieval: For each contributing kernel object in KDEbase, the
LR_query_processor must obtain the corresponding bandwidth from Lreg. A band-
width query function is expressed as BQ(x) = HLR (l) |l ∈ Lreg ∧ (x ∩ (� (l) · · · � (l)] 
= ∅)
where x ∈ R, and HLR (l) is the bandwidth of LR l. An important goal of the
LR_query_processor is to minimize the time required to search for an intersecting l
(i.e., minimize BQ(·)’s processing time). Because a bandwidth query is invoked for
every contributing kernel in KDEbase, minimizing the cost of this step is essential to
achieving good throughput performance.

Kernel aggregation: The final density estimate is achieved by aggregating the
contributions of the kernel objects and its newly assigned bandwidths to the density
query. The computation of the final density strictly follows the formulation of the LR-
based KDE as shown in Equation (4).

To further illustrate the density estimation algorithm, an example is provided here.
Assume q is a density query that is submitted to the LR_query_processor. The first
step in generating the estimate is to produce the regularized version of LR_list via
the LR_modeler. The LR_modeler will output Lreg, the regularized LR list. Second, the
LR_query_processor will obtain all the relevant sets of kernel objects from the KDEbase,
which may include all M kernel objects. Third, for each kernel object k retrieved from
the KDEbase, its corresponding bandwidth is obtained by invoking the bandwidth query
function BQ

(
K center(k)

)
on Lreg, where K center outputs the center of k to the R do-

main. The contribution of each kernel object and its bandwidth to q are aggregated
following the form as dictated by f̂LR (·) in Equation (4). Depending on the employed
KDEbase technique, the kernel object weights will need to be considered in the calcu-
lation. In such a case, f̂LR (·) will be normalized by the aggregated kernel weights as
opposed to the aggregated count |D|. From this example, it is clear that the query per-
formance is highly dependent on BQ(·) because it is invoked for every retrieved kernel
object. If a direct or linear search approach is employed for the bandwidth query, then
the total density query cost is O(M · |Lreg|) = O(M · Qmax). In light of this issue, we
propose a suite of optimizations (Section 5.4) that can reduce the density query cost to
O(|M − T | · log (Qmax)) where T ≥ 0.

5.3. Time and Space Cost Analyses

In this subsection, GLEAM’s time and space complexities are analyzed from the per-
spective of its two primary tasks: LR construction and density query processing.

Local region construction: The LR construction involves two subtasks: LR seeding
and LR regularization. These subtasks impact both the insertion and density query
costs. Because local regularization is invoked only at query time, the insertion cost
(without consideration to KDEbase) is solely dependent on the LR seeding. The cost
of the LR seeding is equal to the combined costs of locating/inserting an intersecting
LR (O(Qmax)) and merging a pair of LRs (O(Qmax)). Therefore, the final cost of the
seeding process for each accepted data sample is O(Qmax). The total insertion cost with
the KDEbase is O (Qmax) + insert cost(KDEbase). The insertion cost of the KDEbase is
bounded by O(M). Because Qmax � M and Qmax are independent of M, the complete
insertion cost of GLEAM with the KDEbase is O(M).

Density query processing: For each density query, the LR_list is regularized, and
the bandwidth of each contributing kernel object in KDEbase is determined. For the
LR regularization phase, a copy process from LR_list to Lreg is O (Qmax), and each
scan/merge is bounded by O(Qmax). The algorithm performs at most O (Qmax) scan and
mergers. Hence, the cost of the regularization process is O(Qmax + Q2

max). The total
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cost of a density query is O(Qmax + Q2
max +∑M

i=1 Cost (BQ(mi)) where mi is a kernel
object of the KDEbase. If BQ(·) implements an exhaustive search method, the cost of
calculating all the contributing kernel objects is

∑M
i=1 Cost (BQ(mi)) = O (M · Qmax).

Because Qmax � M and Qmax ⊥ M, the total cost of the density query is O(M).
The space incurred by GLEAM is O(Qmax) due to the storage of LR_list and the

generation of Lreg where |Lreg| ≤ Qmax. The combined space of GLEAM is dominated by
the KDEbase; therefore, its total space cost is O(M).

5.4. Optimizations

In the following, two sets of optimization strategies are proposed to enhance the perfor-
mance of the LR regularization operation and to reduce the calculation of the density
contributions of kernel objects in KDEbase. To improve the computation of the reg-
ularization task, a heap tree is utilized to minimize the search costs for LR merge
candidates. This first set of optimizations is called the heap-based regularization. To
improve the calculation of density contributions, a second set of optimizations called hy-
brid kernel aggregation and filtering is proposed that includes techniques that perform
LR buffering, LR indexing, and kernel truncation.

Heap-based Regularization Optimization: To reduce the computation of the
regularization task, an optimization scheme is proposed that performs an incremental
breadth-first search strategy to merge the closest candidate LR pairs. Initially, the
elements of LR_list are copied to the LR list structure Lreg. Next, each pair of LRs in
Lreg that satisfies the merge condition (i.e., σ j ∪ k ≤ σ j +σk for nearest neighbors lj and lk)
is inserted into a heap queue with the L2 distance between their centers as the priority
value. Now, the heap contains an initial set of merge candidate pairs from Lreg. Next,
the lowest priority value or closest pair of LRs is dequeued from the heap. Because the
dequeued object pair represents the closest LRs that satisfy σ j ∪ k ≤ σ j + σk, the pair
is merged into a single LR lm, which is performed using the vector addition operation
defined previously. The merging process occurs in-situ, which immediately updates the
elements in Lreg. If new merge candidates are formed using the combined LR lm and its
current nearest neighbors, then these candidates, along with lm, are reinserted into the
heap for potential future mergers. Otherwise, if no merge candidates exist for lm, then
the algorithm proceeds to dequeue the next pair candidates from the heap. Because the
constituent LRs of lm can appear multiple times within the heap as members of other
candidate merge pairs, the algorithm must check that each dequeued pair of LRs has
not been merged. If it is determined that at least one of the candidate pair has been
merged, then the algorithm abandons processing of the current pair and continues to
dequeue the next candidate from the heap. The regularization algorithm continues in
this manner until there are no more candidates available (i.e., heap is empty). At the
algorithm’s termination, Lreg will contain the regularized LRs where |Lreg| ≤ |L| and
each nearest-neighbor lj and lk satisfies σ j ∪ k > σ j + σk.

The heap-based regularization algorithm performs at most O (Qmax) insertions/
removals, and each insertion and removal from the heap is O(log (Qmax)). Hence, the
total cost of the optimized regularization is O(Qmax + Qmax log(Qmax)), which is a sig-
nificant reduction from the O(Qmax + Q2

max) cost of the direct method described in Sec-
tion 5.1. Integrating this optimization strategy results in lowering the density query
cost to O(Qmax + Qmax log(Qmax) +∑M

i=1 Cost(BQ(mi)) where mi is a kernel object of the
KDEbase.

Hybrid Kernel Aggregation and Filtering Optimization: To improve the perfor-
mance of the kernel density contributions, three strategies are proposed to reduce the
computational requirements of the LR search and kernel aggregation. These techniques
are integrated to provide the hybrid kernel aggregation and filtering optimization.
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The first strategy, LR buffering, stores previously accessed LR in a cache buffer and
provides direct access for nearby bandwidth queries. When a search on Lreg is invoked,
the target (i.e., last found) LR lt is stored in the cache buffer. As a new bandwidth
query on x is invoked, lt is checked for intersection with x, and if lt and x intersect,
then the bandwidth of lt is returned. Here, intersection is defined to be the intersection
condition of BQ(·) established in Section 5.2. Otherwise, if x and lt do not intersect,
then a search in Lreg is invoked. This buffering technique attempts to exploit bandwidth
queries that are issued from neighboring kernel objects within KDEbase. A neighboring
set of kernel objects may share a high number of LRs and therefore would benefit from
the cached LR. In the best case, the buffering strategy reduces the calculation of all the
contributing kernel objects to O(M). In the worst case, the buffering strategy would
incur O(M · Qmax) time. The space cost for this technique is an additional constant for
the buffer storage.

The second strategy, LR indexing, replaces the Lreg linked list with a preallocated
array structure. Because the output of the LR regularization process maintains the
sorted order of the regions’ centroids, the LRs can be transformed to a preallocated
array structure that preserves this ordering in linear time. With the preallocated array,
binary searches can be performed to locate an LR within Lreg. Under this strategy, the
cost of processing the density contribution of all kernel objects is reduced to O(M ·
log (Qmax)) with additional space cost of O(Qmax − |Lreg|).

The third strategy, kernel truncation, attempts to reduce the total number of con-
tributing kernels by pruning kernels that provide within ε error of the total density
query result. A query that is sufficiently distant from a kernel k absorbs (for practical
purposes) negligible contribution from k. Hence, this strategy proposes to truncate the
kernel functions in order to prune the small-valued kernels. This strategy is especially
useful when applied to infinitely supported kernels such the Gaussian kernel. Because
the truncated kernels can introduce additional errors, a bound on these errors can be
derived and parameterized via a user-defined parameter s:

ε ≤ 1∑|M|
i=1 mi

|T |∑
i=1

w(mi) · Khmin(shmin), (19)

where mi is a kernel object in KDEbase, w(·) is the weight, hmin is the minimum band-
width in Lreg, s is a threshold parameter for defining the scale of the kernel function
support, and T ≤ |M| is the set of kernel objects for which |x − mi| ≥ shmin.

With the truncated kernels, the LR_query_processor determines in O(Qmax) time the
boundaries of kernel objects that will have contributions below the specified thresh-
old (i.e., determine kernel centers with distance |x − mi| ≥ shmin). Hence, the cost of
calculating the total density contribution with this optimization is O (Qmax · |M − T |).
No additional space is required. Combining the LR buffering, LR indexing, and kernel
truncation, the cost of calculating a density contribution is O(|M − T |·log (Qmax)), which
results in a total density query cost of O(Qmax + Qmax log (Qmax) + |M − T | · log (Qmax)).

5.5. Multivariate Setting

To extend GLEAM to the multivariate data setting, the product kernel is considered.
Equation (20) gives the form of the product kernel multivariate KDE f̂MKDE [Scott
1992]:

f̂MKDE (x) = 1
n

n∑
i=1

p∏
j=1

Khj (xj − zi, j), (20)
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where x = <x1 . . . xp> is a p-dimensional query point, zi, j is the value of ith sample in
the jth dimension, and hj is the global bandwidth for the jth dimension.

To extend GLEAM to the multivariate setting, an LR-based bandwidth is associated
to each dimension. Let Lj be the set of LRs in dimension j; then, the multivariate
LR-based KDE f̂MLR is defined as follows:

f̂MLR (x) = 1
|D|

|D|∑
i=1

p∏
j=1

Khj,zi
(xj − zi, j), (21)

where D is a multidimensional dataset and hj,zi is the bandwidth associated to LR
l ∈ Lj , which contains zi, j .

Because a separate set of LRs is maintained for each dimension, the approach
(Section 5.1) for maintaining the LRs and its associated optimizations (i.e., heap-
based regularization and LR buffering and indexing (Section 5.4)) can be applied di-
rectly. To compute a density query, the algorithms proposed for the LR_query_processor
(Section 5.2) can be employed with some minor modifications. Specifically, for each ker-
nel object in KDEbase, the intersecting LR is determined for all p dimensions and its
contribution computed via the product kernel (i.e.,

∏p
j=1 Khj,zi

(xj − zi, j)). The kernel
truncation optimization (Section 5.4) can also be utilized if the threshold s is defined
for each dimension. Once the density contribution of the kernel object is attained, the
process is repeated for the next object in KDEbase. The final density output is the sum-
mation of each kernel object contribution. Because p number of independent LR sets
is maintained, modeling the LRs can be performed in parallel to improve throughput.
A significant portion of the density query can also parallelized because the individual
contribution can be computed independently. Hence, the multivariate LR-based KDE
proposed earlier can provide an efficient solution for estimating multidimensional data
streams.

Generally, data become sparser as dimensionality increases, and the sample size
required to guarantee a relative MSE � 0.1 at 0 is fairly small when the density is
multivariate normal and the optimal bandwidth is selected [Silverman 1986]. There-
fore, relatively good estimation can be attained by extracting the most representative
projections from multidimensional data and then applying our proposed univariate
techniques. Principal Components Analysis (PCA) is one popular technique that can be
used for dimension reduction to generate projections with maximal variances [Chatfield
and Collins 1990]. To apply PCA to the data stream environment, single-pass and mem-
ory constrained-based PCAs, such as those presented in Mitliagkas et al. [2013] can be
utilized.

6. EXPERIMENT

Comprehensive experiments on GLEAM were conducted to evaluate the following per-
formance elements: estimation accuracy, sample throughput, query throughput, opti-
mization effectiveness, impact of density complexity on estimation quality, estimation
under concept drift, and general applications. The experiments are organized as follows:
Section 6.1 introduces the experiment design. Sections 6.2–6.4 provide an in-depth eval-
uation of GLEAM’s effectiveness when applied to existing stream-based KDEs under
the metrics of estimation accuracy, sample throughput, and query throughput. In Sec-
tion 6.5, GLEAM’s optimization strategies are analyzed using various baseline KDEs
and datasets. In Sections 6.6 and 6.7, error analyses on the general LR-based KDE and
standard KDE are performed to provide insight into the specific conditions by which
the LR-based KDE can attain lower estimation error than the standard KDE. Specif-
ically, Section 6.6 examines the relationship between the complexity of datasets, the
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parameter difference ratio, and the estimation quality. In Section 6.7, the estimation
errors of LR-based KDE and standard KDE are compared under certain concept drift
conditions. Section 6.8 illustrates general applications of GLEAM to data mining tasks
such as clustering and outlier detection. Last, Section 6.9 summarizes the experimental
results.

6.1. Experiment Design

This section describes the datasets, KDE algorithms and parameters, and evaluation
criterion.

Datasets: To evaluate GLEAM’s estimation accuracy, sample throughput, query
throughput, and optimization effectiveness, three synthetic and two real-world time
series datasets were employed. The synthetic datasets simulate simple to com-
plex densities that were constructed from a mixture of normals: MIX2 [ 1

2 (N(20, 1)+
N(51, 1.352))], MIX4 [ 1

10 (N(30, 1) + N(40, 1)) + 2
5 (N(20, 1) + N(51, 1.352))], and MIX8

[ 1
8 (N(10, 1.252) + N(20, 1) + N(27, 22) + N(35, 1.42) + N(43, .952) + N(48, 3.52) +

N(53, .752) + N(57, 1.52))]. For each mixture, five time series instances were created.
Hence, there are a total of 15 synthetic time series datasets. The samples are ran-
domly ordered, hence the sample distributions for any two time intervals are identical.
Scenarios involving time dependency are captured within the real-world data. The real-
world data consist of highway loop detector measurements (HIGHWAY) [Asuncion and
Newman 2007] and a power demand log from a Dutch facility (POWER) [Keogh et al.
2008]. Each time series contains 25K sample points. The true PDFs of the real-world
datasets were defined as the density estimated from the AKDE using all available
sample points.

To empirically analyze the effects of data complexity and concept drift on the LR-
based KDE and standard KDE, the employed dataset must provide a broad range and
high fidelity of values on the independent variables: aggregated curvature and rate of
distributional change. Hence, 30 time series with different aggregated curvature values
and PDFs were generated to test the effects of data complexity on estimation quality.
To evaluate the estimators’ performance under concept drift, 30 additional time series
with evolving density structure (parameterized by the mode center distance) were
synthesized. These datasets provide an extended range of values on the aggregated
curvature (i.e., structural complexity) and rate of distributional change (i.e., mode
center distance variation) at a finer scale.

Algorithms and Parameters: Five existing global bandwidth stream-based density
estimators were evaluated including (1) Epanechnikov KDE (EKDE) [Subramaniam
et al. 2006], (2) Gaussian KDE (GKDE), (3) Cluster Kernels KDE (CKKDE) [Heinz
and Seeger 2008], (4) Adaptive KDE (AKDE), and (5) Histogram (HST). EKDE and
GKDE are sample-based KDEs that employ the Epanechnikov and Gaussian kernel
functions, respectively. As mentioned in Section 3, the CKKDE is a global bandwidth
estimator that clusters/merges the sample points to maintain a finite number of kernel
objects. The proposed GLEAM algorithm was applied to all the global bandwidth KDEs,
and the resulting enhanced estimators are called GLEAM-EKDE, GLEAM-GKDE,
and GLEAM-CKKDE. Both the optimized and nonoptimized versions of GLEAM were
tested. For each global bandwidth KDE, the employed bandwidth form was Scott’s
Rule, and the maximum number of kernel objects was M = 1000. The histogram
employed a bin assignment rule based on the normal reference [Scott 1992]. For the
GLEAM-based KDEs, the following parameters were used: Qmax = 10, M = 1000,
and each LR applied the Scott’s Rule bandwidth. The parameter values were defined
under the assumption of a resource-constrained environment that needed to generate
rapid and high-quality estimates. This assumption reflects many practical applications
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(e.g., automatic highway incident detection) that must provide real-time analysis for
multiple streams and can only provision a small amount of CPU time and memory to
each stream. To simulate this environment, a relatively low M and medium Qmax were
used. First, the M parameter was set such that a good balance of speed and space cost
was achieved. Second, the Qmax value was set such that it did not violate the response
time and space upper bounds imposed by the system.

Evaluation Criterions: The Integrated Absolute Error (IAE) is employed to quan-
tify the estimation discrepancy. Estimation accuracy is defined as the difference be-
tween the theoretical maximum IAE and the computed IAE normalized by the theo-
retical maximum IAE. The following provides the formula of the estimation accuracy
score:

A( f̂ ) = 1 −
(

1000∑
i=0

| f̂ (xi) − f (xi)|	x

)
/Emax, (22)

where x1, . . . , x1000 are query points that uniformly divide the entire span of the dis-
tribution, 	x = xi−1 − xi, and Emax is the theoretical maximum integrated absolute L1
error.

The sample throughput is defined as the rate of data stream samples that can be
processed for a given time unit. Likewise, the query throughput is defined as the rate of
density queries that can be completed for a given time unit. The reported experiment
results are the average values of these criterion measures. The calculated standard
deviation % is the percentage ratio of the standard deviation and the average. The
experiments were performed on a Windows Server 2003 Enterprise OS. The hardware
platform was a 2.0GHz Intel Pentium Core 2 Duo with 3GB of RAM.

6.2. Estimation Accuracy

The results of the estimation accuracy are provided in Figure 3. In the graphs, the
x-axis is the sample size, and the y-axis is the estimation accuracy (Equation (22)). For
this set of tests, the GLEAM-based algorithms utilized the heap-based regularization
and hybrid kernel aggregation and filtering optimizations. Overall, the GLEAM-based
KDEs provided comparable or better (in most cases) accuracy than all the competing
density estimators. The most significant gains attained by the GLEAM-based KDEs
were with the MIX2, MIX4, and MIX8 datasets, which provide substantial improve-
ments (23% to 44%) over the global bandwidth KDEs (i.e., CKKDE, EKDE, and GKDE).
These large gains can be attributed to the datasets’ high level of structural complexity
(MIX4 and MIX8) and highly localized features (MIX2). The local bandwidth AKDE
obtained similar accuracy scores under these complex datasets as the GLEAM-based
estimators. However, in most cases, the GLEAM-based KDEs outperformed the AKDE.
The performance of the histogram was comparable to the global bandwidth KDE tech-
niques, but its estimation results exhibited observably higher variability than any of
the KDE-based approaches.

For the POWER data, the GLEAM-based KDEs improved the accuracy of the global
bandwidth estimators for data size �10K, with GLEAM-CKKDE achieving the highest
accuracy for data size �15K. Observe that the estimation quality of the Cluster Kernels
exceeds that of other global bandwidth KDEs. Due to the generality of the GLEAM
approach, it can take advantage of such feature from the base KDE to further enhance
its estimation performance. In the HIGHWAY data, the existing methods provided
high-quality results with an accuracy of >90%. The GLEAM-based methods achieved
comparable or improved estimates over the existing estimators. Specifically, GLEAM-
GKDE and GLEAM-EKDE were able to increase the accuracies of GKDE and EKDE for
data size �10K. For GLEAM-CKKDE, comparable scores were obtained for data sizes
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Fig. 3. Estimation accuracy of all the datasets (note the varied accuracy scale).

10K–20K. However, GLEAM-CKKDE at data sizes 5K and 25K and GLEAM-EKDE at
5K provided slightly lower scores (with <1.5% difference) than their baseline methods.
This minor discrepancy indicates a potential overfitting condition for GLEAM-based
methods. However, the LR regularization component was able to reduce the impact of
overfitting and help to minimize the estimation error.

In summary, the GLEAM algorithm improved the accuracy in most of the datasets
and exhibited the highest gains for complex densities (MIX2, MIX4, MIX8, and
POWER). The GLEAM-based KDEs also inherit the advantages of the base KDE,
which can further improve their estimation accuracy. The standard deviation percent-
age of the accuracy for all the KDE-based techniques is ≤2.5%. The standard deviation
percentage of the histogram is ≤5%.

6.3. Query Throughput

Figure 4 gives the query throughput results of all the estimators. The x-axis is the query
throughput (query/sec), and the y-axis is the density estimator. In most instances, the
optimal GLEAM-based KDEs provided higher query throughput over their base KDEs
due to GLEAM’s ability to efficiently regularize the LRs and effectively prune kernel
objects. Note that the GLEAM-CKKDE and CKKDE consistently achieved the highest
throughputs within all the datasets. This performance advantage can be attributed
to the use of a sorted index within the base KDE that allows for more aggressive
pruning than the sample-based techniques. Because of its quadratic query process-
ing cost, the AKDE exhibited the lowest query throughput (at a 10−3 rate of the
next slowest estimator). All 25K samples were used from each dataset to measure
the query throughput. The standard deviation percentage for this set of experiment
is �7%.
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Fig. 4. Query processing performance (log scaled).

Fig. 5. Sample processing performance (log scaled).

6.4. Sample Throughput

The sample throughput is given in Figure 5. In the plots, the x-axis is the sample
throughput rate (sample/sec), and the y-axis is the KDE technique. Here, “n-o” refers
to the nonoptimized GLEAM-based KDEs. The GLEAM-based KDEs produced negli-
gible overhead in the sample throughput. In fact, most of the differences between the
(optimized and nonoptimized) GLEAM-based KDEs and their base KDEs are within the
standard deviation. It is important to note that the cluster-based KDEs (i.e., GLEAM-
CKKDE and CKKDE) attained the lowest throughput performance in all the datasets,
except HIGHWAY, which achieved exceptionally high throughput. This is due to the
significantly lower number of discrete values in the HIGHWAY dataset (�100), which
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Fig. 6. Query processing performance of various optimizations (log scaled).

effectively reduced the number kernel objects in CKKDE and GLEAM-CKKDE. In
contrast, the sample-based methods provided stable throughput irrespective of the
dataset. This experiment showed that GLEAM can successfully adopt the differing
capabilities of the base KDEs. All 25K samples were used from each dataset to mea-
sure the sample throughput. The standard deviation percentage for this experimental
component is �7%.

6.5. Optimization Effectiveness

This experiment tests the effectiveness of the proposed optimization strategies heap-
based regularization and hybrid kernel aggregation and filtering. Figure 6 shows the
query throughput of GLEAM with varying combination of optimization techniques.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 1, Article 2, Publication date: August 2014.



A Framework for Exploiting Local Information to Enhance Density Estimation of Data Streams 2:31

Table I. COMPLEX1, COMPLEX2, and COMPLEX3 Dataset Specification

Dataset
Name Description

# of
time

series

Sample
size for

each
time

series

Center ci
values for
each time

series

Scale si
values for
each time

series

Weight wi
values for each

time series

COMPLEX1

varied
centers ci ,
fixed scales
si , fixed
weights wi

10 1000 c1 = 31,
ci+1 = ci +C · i
where
7 ≤ C ≤ 11
and C unique
to each time
series

si = S > 0 ∀i
where S is
unique to
each time
series

wi = 1/G ∀i

COMPLEX2

varied
centers ci ,
varied
scales si ,
fixed
weights wi

10 1000 Same as
COMPLEX1

s1 = S0,
si+1 = si +S1 ·i
where 1/3 ≤
S0, S1 ≤ 13/5
and S0, S1
unique to
each time
series

wi = 1/G ∀i

COMPLEX3

varied
centers ci ,
varied
scales si ,
varied
weights wi

10 1000 Same as
COMPLEX1

1/3 ≤ si ≤
13/5 where
si 
= sj∀i, j

w1 = W0,
wi+1 =
wi + W1 · i
where 1/10 ≤
W0, W1 ≤ 3/5
and S0, S1
unique to each
time series and∑

i=1,...,p wi = 1

The x-axis is the query throughput (query/sec), and the y-axis is the GLEAM optimiza-
tion technique. Within all of the datasets, the combined heap-based regularization and
hybrid kernel aggregation and filtering optimizations always outperformed all other
combination of optimizations. The degree of improvement generated by each optimiza-
tion strategy is dependent on the employed base KDE. For example, in the TRAFFIC
dataset, the hybrid kernel aggregation and filtering optimization provides significantly
higher throughput improvement than heap-based regularization for GKDE but not for
EKDE and CKKDE. This dramatic increase in query throughput is achieved by pruning
kernel objects of the unbounded support Gaussian kernel. Overall, each optimization
strategy improves the query throughput, and, when combined, the optimizations can
provide significant throughput enhancement. All 25K samples were used from each
dataset to measure the query throughput of different optimization strategies.

6.6. Impact of Data Complexity on Estimation Quality

The following provides an empirical study of the relationship between the dataset’s
aggregated curvature || f ′′||22, the AMISE disparity between the standard KDE and
LR-based KDE (i.e., Z( f̂KDE, f̂LR)), and the parameter difference ratio β(K, L, D). In
particular, this experiment intends to demonstrate the effects of data complexity (as
measured by its aggregated curvature || f ′′||22) on the parameter difference ratio and
estimation performance of the LR-based KDE and standard KDE. Because the data
complexity is the independent variable, 30 synthetic time series were generated with
varying degree of aggregated curvature || f ′′||22 values. The synthesized time series em-
ployed a mixture of normal density with the following canonical form:

∑G
i=1 wi N(ci, si),

where G = 11 is the maximum number of modes. Table I describes the parameters
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Fig. 7. Generated mixture of normals with its curvature values from COMPLEX1 and COMPLEX2.

Fig. 8. Plot of the relationship between aggregated curvature (|| f ′′||22), ISE difference (≈ Z( f̂KDE, f̂LR)), and
parameter difference ratio (β(K, L, D)).

of the generated datasets. Figure 7 shows some examples of the densities from COM-
PLEX1 and COMPLEX2 datasets. For each time series, its density was estimated using
the standard KDE (implemented by EKDE) and the LR-based KDE (implemented by
GLEAM-EKDE). This simulation utilized the ISE measure to approximate the AMISE
difference Z( f̂KDE, f̂LR).

Figure 8 provides the results of the simulation that demonstrate the interaction
between the datasets’ aggregated curvature, ISE difference, and parameter difference
ratio. In each instance, when the aggregated curvature is larger than the parameter
difference ratio (i.e., || f ′′||22 > β(K, L, D)), the ISE difference between the standard
KDE and LR-based KDE is positive (i.e., the LR-based KDE gave lower error than
the standard KDE). This relationship is consistent with Theorem 4.3 and the analysis
of Equation (18) in Section 4.4. Furthermore, the figure shows that when the data
increase in complexity (higher || f ′′||22 values), the parameter difference ratio decreases.
This inverse relationship increases the disparity between the aggregated curvature
and the parameter difference ratio, thus resulting in further estimation improvements
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Table II. DRIFT1, DRIFT2, and DRIFT3 Dataset Specification

Dataset
Name Description

# of
time

series

Sample
size for

each
time

series

Center ci values
for each time

series

Scale s
values for
each time

series

Weight w

values for
each time

series

DRIFT1
2 modes with
increasing average
centroid distance

10 1000 c1 = 40,
ci+1 = ci + C · i
where 0 ≤ C ≤ 9
and C unique to
each time series

s = 1/4. w = 1/2.

DRIFT2
3 modes with
increasing average
centroid distance

10 1000 Same as DRIFT1 s = 1/4. w = 1/3.

DRIFT3
4 modes with
increasing average
centroid distance

10 1000 Same as DRIFT1 s = 1/4. w = 1/4.

Fig. 9. Examples of densities concept drift datasets DRIFT1 and DRIFT2.

in the LR-based KDE over the standard KDE as the data’s PDF becomes more complex
(i.e., higher || f ′′||22). From these results, the LR-based KDE shows that it can provide
substantial estimation accuracy over the standard KDE for complex data streams.

6.7. Effects of Concept Drifts on Estimation Accuracy

To illustrate the LR-based KDE’s adaptive property, a simulation study was conducted
to compare its estimation performance against the standard KDE under concept drifts.
The concept drifts were generated from instances of data densities using the following
form:

∑G
i=1 w · N(ci, s), where G is the number of modes. The datasets have varied

centers with fixed scales and weights. A detailed description of the datasets is provided
in Table II. For each dataset, the average distance between the mode centers was varied
at regular increments. Similar to Section 6.6, the standard KDE and LR-based KDE
were implemented using EKDE and GLEAM-EKDE, respectively. Figure 9 gives some
examples of the PDFs in DRIFT1 and DRIFT2 datasets.

Figure 10 shows the estimation results of the concept drift simulation. In all the
datasets, the standard KDE error increases with the mode center distance, whereas
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Fig. 10. KDE performance under modal shifts.

Fig. 11. Density estimation plots of MIX4.

the LR-based KDE generally remains the same. These behaviors of the standard KDE
and LR-based KDE directly support the analyses of Section 4.4. When the mode center
distance is small, the LR-based KDE and standard KDE are able to attain similar
performance because their error parameters are approximately equal. For example,
when the mode distance is 0, the data distribution is unimodal, and hence the band-
widths of the standard KDE and LR-based KDE are the same. As the distance between
the modes increases, the estimation quality of the standard KDE degrades due to the
increase in σD. However, the LR-based KDE estimation error remains fairly constant
because the increase in modal distance does not affect σ j and |lj | of the parameter
difference ratio. This observation coincides with the analytical results of Section 4.4,
where the estimation error of the LR-based KDE was expected to be unaffected by the
concept drift. The analyses of Section 4.4 and these simulation results show that, under
modal shifts, the LR-based KDE can be employed to effectively mitigate the effects of
changing density structures.

6.8. General Applications

This subsection discusses some general applications of GLEAM to popular data mining
tasks, including outlier detection and clustering within the data stream environment.
Figure 11 provides the density plot of the MIX4 dataset and its estimates from EKDE,
GKDE, CKKDE, and their GLEAM versions for all 25K samples. In all cases, the
GLEAM estimators provide highly accurate models (accuracy >90%) and drastically
improve on the baseline KDEs. For examples, GKDE fails to correctly estimate the
two modes in the center, whereas EKDE gives a misleading model by estimating a
single mode between the true modes. CKKDE is able to capture the structure of all the
modes but at much lower throughputs than the GLEAM version, GLEAM-CKKDE (see
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Sections 6.3 and 6.4). Applying these density estimates to clustering (via a mode finding
method) would result in potentially significant false dismissals. In some surveillance
scenarios, clustering is employed as a mechanism to represent the baseline behavior
of the environment sensed from commodity and single-mode (i.e., one dimensional)
sensors. The dismissed clusters would lead to reduced sensitivity to true changes in
the environment and lower surveillance effectiveness.

In a related context, distance-based outliers can be estimated by utilizing the proba-
bility of a given sample interval falling below a prespecified threshold [Subramaniam
et al. 2006]. Now consider the case of some of the sample points falling within the
troughs of the true density and regard these points as the true outliers. If a stream-
based estimator employs one of the existing KDE methods, EKDE, GKDE, or CKKDE,
then these outlying samples would have a greater chance of being misclassified as
normal samples than an estimator using GLEAM because the density values of these
sample points would be overestimated by the existing techniques. Because GLEAM is
able to model the troughs of the density with much higher accuracy (�25%) than ex-
isting methods, GLEAM can produce significantly lower misclassification rate. Hence,
within these usage scenarios, it can be seen that GLEAM’s superiority in estimation
quality over existing stream-based KDEs can lead to nontrivial improvements in the
effectiveness of the data mining applications.

6.9. Discussion

The experiments in Section 6.2 demonstrated that applying GLEAM to the existing set
of stream-based KDEs can dramatically improve the estimation quality of structurally
complex distributions (up to 44%). In addition, through its LR regularization, GLEAM
has been shown to effectively minimize the overfitting problem by providing compara-
ble or better estimation accuracy for simple densities (e.g., HIGHWAY). Because data
streams have a high propensity to mutate, it is critical to the overlying mining opera-
tions that the density estimators accurately capture the consequent changes in their
density structure. For mining tasks such as concept drift detection, where its detection
performance is crucially dependent on the underlying estimator’s (modeling) capacity,
the appearance of unseen local features can cause detection failure if the estimator is
unable to appropriately model a variety of complex distributions.

GLEAM’s ability to improve modeling accuracy is complemented by its efficient ap-
proach to sample and query processing. As shown in Sections 6.3–6.5, GLEAM, with
its heap-based regularization and hybrid kernel aggregation and filtering optimiza-
tions, can adopt and improve the throughput of the base KDEs while bounding it to
O(M) asymptotic worst-case performance. An example of GLEAM’s ability to retain
the critical features of its base KDE is seen in the HIGHWAY dataset. In this dataset,
GLEAM-CKKDE outperformed all the noncluster-based KDEs in query throughput,
whereas GLEAM-EKDE and GLEAM-GKDE retained the sample throughput consis-
tency of the sample-based approaches. This property of GLEAM provides for a high
level of versatility that is not present in any existing stream-based KDEs.

The simulation study in Section 6.6 demonstrated that the LR-based KDE provided
lower estimation error than did the standard KDE as the dataset complexity increases
(i.e., aggregated curvature value increases). Furthermore, the condition for which this
improvement occurs is made to be precise by analyzing the relationship between the
data’s aggregated curvature and parameter difference ratio.

The empirical analysis of Section 6.7 investigated the performance of the LR-based
KDE under a common data stream scenario: concept drifts. Mode center variation can
occur in practice, such as in highway traffic. For example, some roadway constructions
shift the mode centers of normal traffic patterns. The experiments showed that the
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LR-based KDE, as implemented by GLEAM, can effectively adapt to these structural
mutations to produce stable estimation.

7. CONCLUSION

This article provides in-depth analyses of the LR-based KDE to derive important prop-
erties such as the AMISE, conditions for attaining lower estimation error than the
standard KDE, and application to existing stream-based KDEs. Based on the analyses,
the generalized LR-based algorithm (GLEAM) framework is proposed that can be ap-
plied to existing stream-based KDEs to enhance the estimation accuracy of structurally
complex distributions. The bias-reducing qualities of the LR-based approach are justi-
fied through analyses of its estimation errors. Consistent with the theoretical analyses,
experiments have shown that the GLEAM framework effectively improved the estima-
tion quality of existing techniques under a variety of datasets and especially those
that possess complex distributions. Optimization strategies are proposed to reduce the
query processing overhead, which results in consistent throughput improvements over
the standard version. Furthermore, GLEAM combined with the proposed optimizations
is guaranteed to process any density query in at most linear time. Due to the generic
nature of GLEAM, it can effectively leverage the characteristics of its base KDE to
provide an unprecedented level of versatility to support a wide array of stream mining
applications.
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